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Abstract. This document provides further details about Foveated Fea-
ture Maps (Sec. 1) and network architecture (Sec. 2). We also include ad-
ditional termination prediction results and compare different backbones
(Sec. 3).

1 Detailed description of Foveated Feature Maps
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the pyramid.  To render an arbitrary desired resolution, at any given pixel location, we first determine which two 
pyramid levels have resolutions that bracket the desired resolution, and then average the pixel values in the images from 
these two pyramid levels.  The relative weights placed on the two pixels values in computing the average are given by a 
blending function.  To define blending functions, we note that the spatial resolution associated with each level of the 
pyramid “slices” the resolution map at a particular resolution value (height) parallel to the horizontal plane (see Figure1).   

 

Figure 4. Transfer functions for the first four levels of a Gaussian multi-resolution pyramid. 

The values of the resolution map that lie between adjacent slices are used to define the blending functions, one blending 
function for each adjacent pair of slices.  Let ( ),iB x y  be the blending function defined by the slices at heights iR  and 

1iR − .  The blending function is defined by the following equation: 
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where iT  is the transfer function for the ith level of the pyramid.  For pixels where the value of the resolution map is less 

than or equal to iR  the blending function is given a value of 0.0.  For pixels where the value of resolution map is greater 

than or equal to 1iR − , the blending function is given a value of 1.0.  For all other pixels, the blending function has a 

value between 0.0 and 1.0.  Note that as ( ),R x y  approaches 1iR − ,  ( )( )1 ,iT R x y−  approaches 0.5 and hence the 
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Fig. 1. Foveated feature maps (FFMs) overview. FFMs combine the in-network
feature pyramid produced by a pretrained ConvNet based on the previous fixations and
a set of predefined transfer functions (see Sec. 3.1 in the main paper). In the foveated
weight maps and the relative resolution map, a darker color represents a greater value
with all values ranging from 0 to 1.
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Fig. 2. Transfer functions for the first four levels of the multi-resolution feature
pyramid {P1, · · · , P4}. For example, given a pixel at (x, y) (marked in red) whose
relative resolution is R(x, y) and R∗

3 < R(x, y) < R∗
2, we set the foveated weights

at (x, y) at layers other than 2 and 3 to be zero: Wi(x, y) = 0 for i ∈ {0, 1, 4, 5}. We
computeW3(x, y) as the ratio of the distance between the fixed bandwidth (0.5) and the
layer 3 to the distance between the layer 2 and 3 at (x, y) in relative amplitude space:
W3(x, y) = d1/d2, where d1 = 0.5− T3(R(x, y)) and d2 = T2(R(x, y))− T3(R(x, y)).

Fig. 1 gives an overview of the computation of our proposed foveated feature
maps (FFMs). Given an input image which is resized to 320×512 and a fixation
point (for illustration purposes we only consider a single fixation point), we
pass the image input through a pretrained ConvNet (e.g., ResNets [3]) and
obtain the feature pyramid denoted as {C1, · · · , C5}. We project all feature maps
to the same depth and upsample them to the spatial size of C1. We denote
the upsampled feature pyramid as {P1, · · · , P5}. Finally, we compute the final
foveated feature maps M as the weighted combination of the upsampled feature
maps using a set of foveated weight maps Wi: M =

∑
i Wi⊙Pi, where ⊙ denotes

the element-wise multiplication at the spatial axes. Wi is computed based on the
relative resolution map R(x, y) ∈ [0, 1] contingent on the input fixation point
(see Eq. (1) of the main paper). Below we describe how to compute Wi based
on R(x, y).

To compute the foveated weight maps, we first define a transfer function Ti,
which maps relative resolution r to relative amplitude Ti(r) ∈ [0, 1], for the i-th
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level of the pyramid as

Ti(r) =

{
exp(−(2i−3r/σ)2/2) i ∈ {1, · · · , 4}
0 i = 5

(1)

Fig. 2 gives an illustration of the transfer functions and the computation of the
foveated weights at (x, y). Each level of the feature pyramid Pi represents a
certain eccentricity, corresponding to a fixed spatial resolution, which we denote
as R∗

i . R
∗
i is defined as the relative resolution where a transfer function Ti(r) is at

its half maximum, i.e., Ti(R
∗
i ) = 0.5 [5]. It can be shown that R∗

1 > R∗
2 > R∗

3 >
R∗

4 > R∗
5 = 0. We rescale R∗

i such that R∗
1 = 1. Note that R∗

1, · · · , R∗
5 form four

resolution bins whose boundaries are defined by R∗
i and R∗

i−1 (i ∈ {2, 3, 4, 5}).
To compute the weights at location (x, y), we first determine which bin pixel
(x, y) falls in, according to its relative resolution R(x, y). Assume pixel (x, y)
falls in between layer j and j − 1, i.e., R∗

j−1 ≥ R(x, y) > R∗
j . Then, we compute

Wi(x, y) as follows:

Wi(x, y) =


0.5−Tj(R(x,y))

Tj−1(R(x,y))−Tj(R(x,y)) if i = j − 1,

1− 0.5−Tj(R(x,y))
Tj−1(R(x,y))−Tj(R(x,y)) if i = j,

0 otherwise.

(2)

It can be seen that
∑

i Wi(x, y) = 1 and at location (x, y) only features from
layer j and layer j − 1 are integrated into the final FFMs.

2 Detailed Network Architecture

Our model has three components: a set of 1 × 1 convolutional layers that map
the feature maps in the feature pyramid to the same dimension (i.e., the num-
ber of channels in FFMs); an object detection module; and a fixation prediction
module. We set the number of FFMs channels to 128 (i.e., the output channel
of the 1×1 convolutional layers). The fixation prediction module and the object
detection module share the same ConvNet consisting of three consecutive convo-
lutional blocks which reduce the spatial resolution of the input foveated feature
maps (FFMs) by a factor of 8 (from 160 × 256 to 20 × 32). Each convolutional
block is composed of two convolutional layers whose kernel sizes are 3, 1 with
padding 1, 0, output channels are 32, 32 and strides are 1, 2. In between two
consecutive convolutional layers of a convolutional block, we apply Layer Nor-
malization [1] and a ReLU activation function. Finally, the fixation prediction
module uses two convolutional layers, whose kernel sizes are 3, 1 with padding
1, 0 and output channels are 32 and 18, to map the outputs of the shared Con-
vNet into 18 attention maps (one for each target in COCO-Search18 [2]). The
object detection module has a similar structure, but the output channels of the
convolutional layers are 64 and 80 (corresponding to the 80 object categories in
COCO), respectively.
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Additional details on four baseline methods. Detector: The detector
network takes the outputs of the “conv4” stage of a pretrained ResNet-50 as
input and outputs 18 target object center maps. It consists of two convolutional
layers whose kernel sizes are 3, 1 with padding 1, 0, and output channels are 128,
18. Between the convolutional layers, we use batch normalization and ReLU.
The detector network predicts a 2D spatial heatmap map of the target from the
image input and is trained using the ground-truth location of the target with the
target-present images in COCO-Search18. Another similar baseline is Fixation
Heuristics: This network shares exactly the same network architecture with
the detector baseline but it is trained with behavioral fixations in the form of
saliency maps (heatmaps indicating how likely each pixel in the images will be
fixated by a person), which are generated from the fixations of 10 subjects on
the training images. DCB+IQL-Learn: The DCB representation [8] is of size
134× 20× 32. Following [8], we train a ConvNet with four convolutional layers
whose kernel sizes are 5, 3, 3, 1 with padding 2, 1, 1, 0 and output channels are
128, 64, 32 and 1. Between two consecutive convolutional layers, we use Layer
Normalization and ReLU. CFI+IQL-Learn: This network shares exactly the
same network architecture with the DCB+IQL-Learn baseline, but it takes the
outputs of conv4 of a pretrained ResNet-50 on a cumulative foveated image [9]
as input.

3 Additional Experimental Results

3.1 Termination Prediction

Table 1. Effect of different components in termination prediction. The ab-
lated components are: Q-values (640-D), number of fixation (1-D), time (i.e., cumulative
fixation duration, 1-D) and subject ID (10-D).

Q-values Number of fixations Time Subject ID AuROC

(a) ✓ - - - 0.631
(b) ✓ ✓ - - 0.691
(c) ✓ - ✓ - 0.693
(d) ✓ ✓ - ✓ 0.766

We train a binary classifier to predict the termination of a scanpath. The in-
put to the binary classifier includes 1) Q-values (i.e., output from the Q-function)
and 2) number of fixations (as a rough estimate of time). Here we ablate each
component to study the effect of each component in predicting termination. In
addition, we ablate two extra components which we did not include in the main
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Table 2. Comparing different backbones in FFMs (rows) using multiple scanpath
metrics (columns) on the target-absent test set of COCO-Search18. The best results
are highlighted in bold.

SemSS SS cIG cNSS SS(2) SS(4) MAE

ResNet-50 0.516 0.372 0.729 1.524 0.537 0.441 2.627
ResNet-101 0.510 0.364 0.635 1.465 0.543 0.459 2.658
VGG16 BN 0.520 0.373 0.560 1.393 0.531 0.443 2.570

paper1: 3) cumulative fixation duration is the sum of the duration of ground-
truth previous fixations (i.e, the time the reviewer has spent in searching for
the target); and 4) subject ID which is an one-hot vector indicating the subject
identity. Here, we ablate cumulative fixation duration to show that the number
of scanpath length serves an a good approximation of the time to predict termi-
nation; and we ablate subject ID to show that the termination criterion varies
significantly across subjects.

Tab. 1 shows the area under the receiver operating characteristic curve (AU-
ROC) of the termination classifier trained with different input combinations.
Comparing the first three rows of Tab. 1, we see that “time” plays an important
role for predicting scanpath termination and the number of fixations is a good
approximation of time (AUROC is only dropped by 0.002 when replacing cu-
mulative fixation duration with the number of fixations). Interestingly, we found
that including the subject ID (the last row of Tab. 1) boosted the performance
of the termination classifier significantly, which suggests that the termination
criterion differs from subject to subject. Some subjects tend to carefully search
through the whole image for the target, leading to long scanpaths, whereas
some other subjects tend to only scan through the most probable locations and
quickly come to a conclusion of whether the image being viewed is target-present
or target-absent, leading to scanpaths of much shorter length. This provides ad-
ditional evidence for our finding in Sec.4.4 of the main paper: individualized
modeling may be more suitable for target-absent search prediction.

3.2 Comparing backbones

The proposed FFMs can potentially work with any pretrained ConvNets that are
able to produce a feature pyramid. Here, in addition to the results of the main
paper which uses ResNet-50 [3] as the backbone, we present the results of our
model when combined with other backbones, i.e., ResNet-101 [3] and VGG16 [7]
with batch normalization [4] (abbreviated as “VGG16 BN”). Since ResNet-101
has similar structure with ResNet-50, we use the outputs of conv1, conv2, conv3,

1 We did not include cumulative fixation duration and subject ID in our model of the
main paper because our model does not predict fixation duration and is a group
model where no subject identity is available, respectively.
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conv4, and conv5 in ResNet-101 as the feature pyramid to construct FFMs (see
details in Sec. 3.1 of the main paper and Sec. 1 of this supplementary). For
VGG16, we use the outputs of each max-pooling layer in VGG16, which has 5
max-pooling layers in total, as the feature pyramid to construct FFMs.

Tab. 2 shows the results of our model with different backbones. It can be seen
that ResNet-50, ResNet-101 and VGG16 BN have similar scanpath prediction
performance in general. ResNet-50 performs best in cIG, cNSS; VGG16 BN is the
best in full-scanpath semantic sequence score (SemSS) and sequences score (SS)
due to its best termination prediction performance (i.e., MAE); and ResNet-101
achieves the best sequence scores of fixed-length scanpaths (SS(2) and SS(4)).
Notice that the top-1 accuracy of ResNet-50, ResNet-101 and VGG16 BN on
ImageNet [6] are 76.1%, 77.4% and 73.4%, respectively. Without considering
termination prediction (i.e., performance in fixed-length scanpaths, SS(2) and
SS(4)), we see a general trend between the accuracy of the pretrained ConvNets
in image recognition and the performance of FFMs in target-absent fixation
prediction: the better the backbone performs in image recognition, the better
FFM (with that backbone) performs in predicting target-absent fixations.
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