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1 HOI Hard Cases

In Fig. 1a (main text, the same below), we show the histograms of hard cases in
HICO-DET [1] train set and find that hard cases are common in HOI datasets,
which impedes interactiveness learning. In Sec. 5.3, we split HICO-DET [1] test
set and compare the interactiveness detection performance of TIN++ [5] and
our method. We detail the settings as follows:

– Tiny interactive persons. In the 1-st histogram in Fig. 1a, for each in-
teractive H-O pair, the ratio r of the area of the human bounding box to
the area of the image is calculated. In the test set, the image is considered
as “tiny-persons scenes”, if it has at least one interactive pair with the ratio
r<0.1.

– Crowded Scenes. We calculate the detected person counts in each image
and show them in the 2-nd histogram in Fig. 1a. In the test set, the image
is considered as “crowded scenes”, if it has at least three interactive pairs.

– Occlusion. In the 3-rd histogram in Fig. 1a, for each interactive H-O pair,
the average of human joint detection confidence is calculated based on the
pose estimation results [2]. In the test set, for each image, we calculate the
average of joint detection confidence of all the human bounding boxes in it
as j. An image is regarded as “more-occlusion scenes” if j<0.2 and regarded
as “less-occlusion scenes” if j>0.6.

Notably, we split the test set in image level for the convenience of model
inference, i.e., avoid an image to be seen in inference phrase. For example, in an
image tiny persons and normal size persons may co-exist, and more/less-occluded
persons may co-exist. After the split, for all the interactive persons in “tiny-
persons scenes” images, 84.3% of them has a ratio r<0.1. For all the interactive
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persons in “more-occlusion scenes” images, 83.1% of them has an average of
joint detection confidence j<0.2. Thus, with the image-level split, the model
performance on hard cases can still be evaluated effectively and accurately with
a much higher ratio of hard instances within images compared to the previous
split.

Suppl Tab. 1 shows interactiveness AP under different settings on HICO-
DET [1]. With our global perspective to learn the holistic relationship of body-
part interactiveness, the difficulty of interactiveness learning is alleviated. Com-
paring our method with open-source state-of-the-art methods [5,7,8,9], the gains
of hard cases are larger than non-hard cases, validating the effectiveness of our
method, especially for HOI hard cases.

Table 1: Interactiveness AP under different settings.

Method Full Sparse/Crowded Normal/Tiny Less/More Occ

TIN++ 14.35 16.96/9.64 16.11/8.94 16.49/8.06
PPDM 27.34 34.67/26.69 31.79/26.33 29.83/17.25
QPIC 32.96 36.80/27.04 34.02/26.14 32.08/19.75
CDN 33.55 39.92/28.84 36.10/25.11 34.55/21.69

Ours 38.74 43.62/33.10 39.85/32.47 38.60/22.75

2 Sparse vs. Crowded Scene

In this section, we detail the discussion about sparse/crowded scenes in Sec. 4
of the main text.

In the widely used HOI dataset HICO-DET [1] and V-COCO [4], we analyze
the detected person counts on each image, and find that images with more than
two persons account for 47.3%/62.5% in train/test set in HICO-DET [1], and the
number is 40.36%/58.6% for V-COCO [4]. Thus, crowded images occupy a large
proportion in the HOI dataset, validating the effects brought by our method.

We split HICO-DET [1] test set into sparse and crowded scenes respectively
and evaluate the interactiveness AP. Here, images with at least three interac-
tive pairs are considered as “crowded”. The performances are 16.96/9.64 AP
(TIN++ [5]) and 43.62/33.10 AP (ours). From the large performance gap (7.32
for TIN++ [5] and 10.52 for ours), we can see that interactiveness learning
is mainly bottlenecked by crowded scenes. Therefore, it matters to focus on
crowded scenes for interactiveness learning.

3 Detailed Experiment Settings

In our training process, the interactiveness classifier is first trained and then
is the verb classifier. Since the box detector is fine-tuned in the 2-nd stage, for
each image we finally get two predicted sets: 1) detection with verb classification
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results pv: R = {ri|ri = (b(h)i, b(o)i, ci, piverb)}
Nq

i=1, and 2) detection with inter-

activeness classification results p : R
′

= {rj′ |rj′ = (b(h)j
′
, b(o)j

′
, cj

′
, pjint)}

Nq

j=1.

We use R
′

to calculate interactiveness AP in Tab. 1. For HOI detection boosting
in Tab. 2 and Tab. 3, for each ri ∈ R, a matched proposal rf(i)

′
is found from

R
′

and the matched interactiveness results p
f(i)
int is used for non-interaction sup-

pression [6], where H-O pairs with lower interactiveness scores p
f(i)
int are filtered

out. Here, the matching function f(i) is obtained via

f(i) = argmax
j:1≤j≤Nq,ci=cj′

(IoU(b(h)i, b(h)j
′
) + IoU(b(o)i, b(o)j

′
)). (1)

i.e., the matched proposal should have the correct object class and maximum
human&object bounding boxes IoUs. When no matched proposal is found for
ri, the interactiveness score is 0.

In Tab. 4, we feed the representative two-stage HOI method iCAN [3] (human-
object pairs are exhaustively paired) with our detected pairs. The inference score
S is obtained via S = Sv∗So, where Sv is the HOI prediction score from iCAN [3]
and So is the object prediction score from our method. Also, a pairwise NMS
with a threshold of 0.6 is conducted. In our method, interactiveness inference
results are used for filtering out non-interaction pairs. Additionally, CDN [9]
reports similar results by replacing detected boxes (Tab. 1 in their paper) while
the results are different. We assume it is because of different experiment settings.

Fig. 1: Some examples where our proposed global perspective facilitates interac-
tiveness learning. In the images, red boxes represent targeted body-parts, blue
boxes represent targeted objects, and purple boxes represent body-parts of other
persons which provide informative cues for interactiveness classification of the
targeted body-parts and objects.
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Fig. 2: More visualization results of how the learned attention changes in each
layer, which shows the effectiveness of progressively masking and attention con-
centration.

4 Visualization

In Suppl Fig. 1, we extend Fig. 1b and show some examples where our pro-
posed global perspective facilitates interactiveness learning. For example, in the
left-most image of the upper row, the athlete is inspecting a sports ball, and
her competitor who is inspecting and reaching for it can provide some useful
information.

Fig. 4 shows some visualization results of the learned attention. Here we
provide a detailed analysis. In Fig. 4d, f, our model learns the attention on the
same body-parts (head & hands) of the target person and other persons. In
Fig. 4a/c, when classifying hands/hands interactiveness of the target person,
our model learns to highlight arms & legs/legs & feet of other persons to explore
visual cues. For hard cases, train passengers (Fig. 4e) and other athletes in the
field (Fig. 4g) provide useful visual cues.

Moreover, Suppl Fig. 2 shows more visualization results of how the learned
attention changes in each layer. The 1-st layer allows attention computation from
different body-parts of different persons. The 2-nd layer emphasizes the same
body-part from different persons in the image, while the 3-rd layer focuses on
the body-part of the targeted person. We can see that with the progressive masks
throughout transformer layers, different visual patterns are flexibly encoded to
facilitate body-part interactiveness learning.
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(a) (b)

Fig. 3: The resolution of the feature map, the detected body-part boxes and the
calculated attention masks. a) The resolution of the feature map (the grid). b)
The detected body-part boxes (left/right legs in blue boxes) and the calculated
attention masks (highlighted white regions).

5 Detailed Design of Attention Masks

In Sec. 3.2 of the main text, we propose to construct body-part saliency maps via
transformer attention masks. In this section, we introduce the detailed design.

Given a transformer layer in fdec2, the input queries are D = {di|di ∈
RDc}Nq

i=1, and the keys and values K,V ∈ RS×Dc (S = H ·W ) are obtained
from feature map z. For the i-th proposal, originally we have the self-attention
calculation as Att(di,K, V ) = softmax(diK

T /
√
Dc)V . With a mask matrix

mi ∈ {0, 1}S(0 for masked) to emphasize body-parts, we have Att∗(di,K, V ) =
softmax(mi∗◦(diKT )/

√
Dc)V , where ◦ is Hadamard product, mi∗ = {mi∗

s |mi∗
s =

mi
s(m

i
s = 1) or mi∗

s = −inf(mi
s = 0)} and inf is numerically big enough (e.g.,

232 − 1). Thus, unrelated tokens are dropped from self-attention calculation.

For the attention mask in Eq. 1, the resolution of the feature map z is scaled
down from that of the original image and the scaling factor is 32 with ResNet-50
backbone. Masks are applied on the feature map instead of the original image
for the convenience of model design. Despite the down-sampling, masks on the
feature map can accurately express body-parts. An example is shown in Suppl
Fig. 3. For each of the three boys, their legs occupy more than 15 tokens. Even
for the background person in the left upper corner, he occupies 10 tokens.

Another consideration is that, for the tokens near the body-part boxes border,
they may have a small overlap with the useful body-part while a large overlap
with the background, thus bringing noisy information, or a large overlap with
other body-parts, thus bringing confusion. Thus, we propose to randomly drop
these tokens based on how much ratio a token is inside the part box. For example,
the two red tokens in Suppl Fig. 3a may be randomly dropped. Nevertheless, we
find the detection performance is slightly changed (interactiveness AP is 38.72
/38.74 w/o random dropping). Therefore, the mask is accurate enough to express
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the semantics of body-parts despite some geometrical ambiguity because most
of the tokens contain the correct body-parts.

Fig. 4: Interactiveness detection AP on hard cases with progressively masking
removed.

6 Analysis of Progressively Masking

In this section, we analyze the effect of progressively masking in detail. As an
extension of the ablation studies in Sec. 5.5 of the main text, we remove progres-
sively masking and apply the same attention mask on all decoder layers in fdec2
when classifying interactiveness. The interactiveness AP is 37.91/38.06/37.95
when applying masks m1/m2/m3 on all layers, while AP is 38.74 with progres-
sively masking. Additionally, we report the detailed performance on hard cases
in Fig. 4. Progressively masking has a slight advantage for sparse scenes with
only one/two interactive pairs, while an obvious advantage for other cases, es-
pecially for hard cases. The results validate its effectiveness to integrate diverse
body-part oriented visual patterns flexibly.

7 Discussion of Limitations

Despite the effectiveness of the proposed global perspective, there are still some
limitations. One limitation is the accuracy of body-part boxes from pose esti-
mation results. It may be better to integrate body-part box regression into the
training. Moreover, body-part interactiveness would be learned better if visual
patterns across different images are considered. We plan to improve them in the
future work.
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