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A Experimental Setups

Datasets. Our experiments are based on six large-scale video recognition bench-
mark datasets, i.e., ActivityNet [1], FCVID [4], Mini-Kinetics [5,15], Something-
Something (Sth-Sth) V1&V2 [3] and Diving48 [7]. The official training-validation
split is adopted for all of them. Note that these datasets are widely used in the
experiments of a considerable number of recently proposed baselines. We select
them for a reasonable comparison with current state-of-the-art results.

– ActivityNet [1] contains the videos of 200 human action categories. It in-
cludes 10,024 training videos and 4,926 validation videos. The average du-
ration is 117 seconds.

– FCVID [4] includes 45,611 training videos and validation 45,612 videos. The
data is annotated into 239 classes. The average duration is 167 seconds.

– Mini-Kinetics is a subset of the Kinetics [5] dataset. It contains include 200
randomly selected classes of videos, with 121k videos for training and 10k
videos for validation. The average duration is around 10 seconds [5]. We
establish it following [15,10,11,9].

– Something-Something (Sth-Sth) V1&V2 [3] datasets contain 98k and 194k
videos respectively. Both of them are labeled with 174 human action cate-
gories. The average duration is 4.03 seconds.

– Diving48 [7] is a fine-grained video dataset of competitive diving, consisting
of ∼18k trimmed video clips of 48 unambiguous dive sequences.

Data pre-processing. We uniformly sample 18 frames from each video on
ActivityNet, FCVID and Mini-Kinetics, while sampling 8/16 frames on Sth-
Sth and Diving48. These configurations are determined on the validation set
for a favorable accuracy-efficiency trade-off. The data augmentation pipeline in
[8,10,11,12,13] is adopted. Specifically, the frames of training data is randomly
scaled and cropped into 224×224 images. On all the datasets except for Sth-Sth
V1&V2 and Diving48, the random flipping is performed as well. At test time,
all the frames are resized to 256×256 and centre-cropped to 224×224.

⋆ Equal contributions. †Corresponding Authors.
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B Baselines

Baselines. We compare AdaFocusV3 with a variety of recently proposed ap-
proaches that focus on improving the efficiency of video recognition. The results
on ActivityNet, FCVID and Mini-Kinetics are provided. In addition to the pre-
vious versions of AdaFocus, the following baselines are included.

– LiteEval [15] dynamically activates coarse and fine LSTM networks condi-
tioned on the importance of each frame.

– SCSampler [6] is an efficient framework to select salient video clips or frames.
The implementation in [10] is adopted.

– ListenToLook [2] searches for the task-relevant video frames by leveraging
audio information. We adopt the image-based variant introduced in their
paper for fair comparisons, since we do not use the audio of videos.

– AR-Net [10] processes the frames with different resolutions based on their
relative importance.

– AdaFrame [14] adaptively identifies the informative frames from the videos
with reinforcement learning.

– VideoIQ [11] learns to process each frame with different precision based the
importance in terms of video recognition.

– OCSampler [9] is a one-stage framework that learns to represent the video
with several informative frames with reinforcement learning.

C Training Details

On ActivityNet, FCVID and Mini-Kinetics, the training of AdaFocusV3 ex-
actly follows the same end-to-end training pipeline as AdaFocusV2 [13]. On
Something-Something (Sth-Sth) V1&V2 and Diving48, we first train the two
deep encoders and the classifier with a random policy, and then train the policy
network isolatedly. We find that this two-stage training pipeline yields a better
performance, while its training cost is approximately the same as its end-to-end
training counterpart.

D More Results

Effectiveness of the early-termination algorithm is validated in Figure 1.
The results on ActivityNet with the cube size of 128×128×1 are presented. Three
variants are considered: (1) adaptive early-exit with prediction confidence; (2)
random early-exit with the same exit proportion as AdaFocusV3; (3) early-exit
with fixed cube number. Our entropy-based mechanism shows the best perfor-
mance.
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Fig. 1. Ablation study on early-termination algorithm.
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