Supplementary Material of “Delving into
Details: Synopsis-to-Detail Networks for Video
Recognition”

Shuxian Liang!?*, Xu Shen?, Jianqiang Huang?, and Xian-Sheng Hua!**

! Zhejiang University
shuxian.lsx@zju.edu.cn, huaxiansheng@gmail.com,
2 Alibaba Cloud Computing Ltd.
{shenxuustc, jianqiang.jgh}@gmail.com

In the supplementary material, we will provide more technical background,
technical details, training details and efficiency analysis of our method. Specif-
ically, we discuss the differences between S2DNet and some related works in
Sec. 1. Then, we present more details about the detail sampler in Sec. 2 and
more details about the training in Sec. 3. At last, we compare the efficiency of
S2DNet to efficient action recognition methods in Sec. 4.

1 Differences between S2DNet and Some Related Works

Differences vs. Space-time Attention. The space-time attention is one of the
basic components of the transformers-based works [1,2,4,10]. The differences
between the space-time attention and our space-time sampling lie in: 1) the
attention uses global information and the sampling uses local information; 2) the
attention works by importance weighting and the sampling works by Gaussian
filtering or linear interpolation; 3) the attention is performed at the feature level
while the sampling is performed at the input level (explained in Sec. 2).

Differences vs. Ensemble Models. Previous works for video recognition
[5,9,12] use different variants of their proposed methods for ensemble, so as to
further improve the accuracy. A key difference between the ensemble models and
S2DNet is: the different variants for ensemble are parallel while SNet and DNet
of S2DNet are arranged in a serial and progressive way. Notably, in our case, a
direct ensemble of SNet and DNet is 4.0% worse on top-1 accuracy compared to
the proposed S2DNet (b1 ws. b0 in Tab. 2b of the main paper).

2 Details about Detail Sampler

The representation of the top-k likely actions: hard top-k scheme ws.
soft top-k scheme. Using hard top-k scheme (where s is a k-hot vector), DNet
treats each of the k classes equally and is enforced to extract discriminative
features that differentiate them. Using soft top-k scheme (where s is the softmax

* This work was done when the author was visiting Alibaba as a research intern.
** Corresponding author.

2 S. Liang et al.

predictions from SNet), DNet could take a shortcut by voting for actions with
high scores in s. As a result, our hard top-k scheme (a0 in Tab. 2 of the paper)
is +1.2% better on top-1 than the soft top-k scheme in our experiments.
Sampling at the Input Level. In our detail sampler, S2DNet adopts grid
sampling over raw input frames while previous methods [8, 14] adopt grid sam-
pling over features. The reason for input-level sampling is: it is too expensive for
S2DNet to extract frame-wise features from the input frames as dense as Z.
While applying the grid sampling at the input level, a new challenge emerges:
if the key frames/regions are missed by the input-level sampling, it is difficult
to recover them at later stages®. This leads to a high variance of the gradients
received by the location & scale module fy, hindering the optimization process.
To mitigate the problem, firstly, the gradients of the output volume V are
normalized to (—1,1) before they are back-propagated to the module fy. Sec-
ondly, using Kaiming initializer [7] with a = 5, we initialize (ps, pt, 1ty) around 0,
(0z,98y) around 1, and ¢; around ﬁ These settings help stabilize the gradients
and enable the detail sampler to start from an appropriate initialization at the
beginning of training.
Scaling Location & Scale Parameters. The location & scale parameters
0 are scaled before they are fed to the detail sampler. Specifically, the grid centers
(¢, phas, fty) are scaled to (—1,1) by:

fir = tanh (p),
fie = tanh (pig), (1)
tiy = tanh (uy),

which ensures the grid centers are within the sampling input. The grid strides
(¢, 05, 9,) are processed by:

(§t = dt exp (515),
(;Ar = d,exp (51)7 (2)

oy = dyexp (6y)7

where exp is used to ensure positivity, and d; = ﬁ,
to the aforementioned initial values of these strides.

Choices of Filters. To mimic the foveation of human eyes, early works [6,
14] uses Gaussian filters for spatial sampling. [8] shows that the mixture of a
temporal linear filter (based on linear interpolation) and two spatial Gaussian
filters work well for spatio-temporal sampling. For S2DNet, as shown in Tab. 1,
given the dense input Z, using Gaussian filters for both sampling achieves compa-
rable results (—0.1%) while being significantly faster than the mixture ({5.9x).
Hardware-oriented optimization might speed up the temporal linear filter but
that is beyond the scope of this paper. Thus, we use Gaussian filters for both
spatial and temporal sampling for S2DNet.

d, =1 and dy = 1 refer

3 By contrast, for feature-level sampling, the features are able to keep the infor-
mation about the neighborhood and thus make it possible to recover the missing
frames/regions.

Delving into Details: Synopsis-to-Detail Networks for Video Recognition 3

Table 1: Comparison of the filters for the detail sampler on Something-Something
V2. Latency denotes the inference time (ms) per video using a Tesla V100 with
batch size as 16. Code is implemented using PyTorch [11]

Temporal Spatial Latency (ms) top-1

Linear Gaussian 38.2 62.6
Gaussian Gaussian 6.5 62.5

Configurations of fusing contextual features m to detailed features.
As shown in Table 2, compared to our default settings (d0), using m in detail
backbone/classifier alone (d1/d2) degrades the top-1 result by 1.4%/0.6%. More-
over, fusing m after res2 & res3 (d0) has +0.5%/40.2% better performance than
those involving less or more stages (d3/d4). The above results suggest that the
fusion of m is more effective on high-level detail features.

Table 2: Results of different configurations of fusing contextual features m to
detailed features. “cls.” denotes the detail classifier

res2 res3 resd cls. top-1 top-5 GFLOPs

do v v V747 91.1 18.0
dl v v 74.1 90.7 18.0
d2 v 733 909 17.9
d3 v v 742 909 18.0

d4d v v v v o745 911 18.1

3 Training Details

Training Algorithm. Since all components of S2DNet are differentiable, our
network can be trained from scratch in an end-to-end manner. In practice, for
a faster convergence, we adopt a two-stage training algorithm as follows. In
the first stage, the location & scale parameters 6 are frozen. The center crop
of uniform input frames is used as input for DNet and all components except
the the location & scale module fy are trained jointly. In the second stage, the
parameters 6 are activated and all components of S2DNet are trained in an
end-to-end manner.

Training Hyper-parameters. For all datasets, S2DNet is trained using a
SGD optimizer with a momentum of 0.9. For Mini-Kinetics and Something-
Something V1 & V2, instantiated using TSM, the backbones are initialized
from ImageNet [3] pretrained weights. The training parameters are: 120 training
epochs (40 for the first stage and 80 for the second), initial learning rate 0.001

4 S. Liang et al.

(with a cosine learning rate decaying schedule), weight decay 0.001, batch size 64
and dropout rate 0.5. For Kinetics-400, instantiated using X3D, the backbones
are initialized randomly. The training parameters are: 150 training epochs (50
for the first stage and 100 for the second), initial learning rate 0.005 (with a
cosine learning rate decaying schedule), weight decay 0.001, batch size 64 and
dropout rate 0.5.

4 More Efficiency Analysis

This subsection provides the efficiency analysis of the S2DNet variant in Tab. 3b
of the main paper. Notably, this variant is compared to the efficient action recog-
nition methods (e.g., [13]) while the one in Sec. 4.5 of the main paper is compared
to the state-of-the-art methods (e.g., [12]). For all methods in comparison, the
testing batch size is set as 16 and a single Tesla V100 is used. As shown in
Tab. 3, one can observe that S2DNet is more accurate and enjoys significant
practical speedup with minor extra parameters. With comparable backbones
and similar/more frames, S2DNet achieves its efficiency gain by reducing re-
dundant computation for spatial processing. More sophisticated implementation
(e.g., hardware-oriented optimization) might bring in more efficiency gain. This
is left to our future work.

Table 3: Efficiency comparison on Something-Something V2. All measures use
a Tesla V100 with batch size as 16. T denotes the reproduced results using the
corresponding official code

Methods Backbones Frames Spatial Size GFLOPs Param. Latency (ms) top-1

TSM [9] R50 8 2242 33 24.3M 8.4 59.1
AdaFocus [13] MN2/R50 8/12 2242/176° 34 26.3Mf 16.0t 60.7

S2DNet (ours) MN2/R50 8/12 1442 /1442 22 28.0M 6.5 62.5

Delving into Details: Synopsis-to-Detail Networks for Video Recognition 5

References

10.

11.

12.

13.

14.

. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lu¢i¢, M., Schmid, C.: Vivit: A

video vision transformer. arXiv preprint arXiv:2103.15691 (2021)

Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for
video understanding? arXiv preprint arXiv:2102.05095 (2021)

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: CVPR (2009)

Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., Feichtenhofer, C.:
Multiscale vision transformers. arXiv preprint arXiv:2104.11227 (2021)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recogni-
tion. In: ICCV (2019)

Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent
neural network for image generation. In: ICML (2015)

He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: ICCV (2015)

Huang, Z., Xue, D., Shen, X., Tian, X., Li, H., Huang, J., Hua, X.S.: 3d local
convolutional neural networks for gait recognition. In: ICCV (2021)

Lin, J., Gan, C., Han, S.: Tsm: Temporal shift module for efficient video under-
standing. In: ICCV (2019)

Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video transformer network. arXiv
preprint arXiv:2102.00719 (2021)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. NeurIPS 32 (2019)

Wang, L., Tong, Z., Ji, B., Wu, G.: Tdn: Temporal difference networks for efficient
action recognition. In: CVPR (2021)

Wang, Y., Chen, Z., Jiang, H., Song, S., Han, Y., Huang, G.: Adaptive focus for
efficient video recognition. In: ICCV (2021)

Yang, J., Shen, X., Tian, X., Li, H., Huang, J., Hua, X.S.: Local convolutional
neural networks for person re-identification. In: ACM MM (2018)

