
Continual 3D Convolutional Neural Networks for
Real-time Processing of Videos

Lukas Hedegaard and Alexandros Iosifidis

Department of Electrical and Computer Engineering, Aarhus University, Denmark
{lhm,ai}@ece.au.dk

Appendix

A Worst-case memory for CoX3D-M

In this section, we provide a detailed overview of the memory consumption in-
curred by the internal state in a Continual X3D-M (CoX3D-M) model. For
Continual 3D CNNs, there is no need to store input frames between time steps,
though this is the case for regular 3D CNNs applied in an online processing
scenario. Intermediary computations from prior frames are kept in the continual
layers as state if a layer has a temporal receptive field larger than 1. A continual
kT ×kH×kW = 1×3×3 convolution is equivalent to a regular convolution, while
a 3× 1× 1 is not. The same principle holds for pooling layers. As a design deci-
sion, the temporal component of the average pooling of Squeeze-and-Excitation
(SE) blocks is discarded. Hence, SE blocks do not incur a memory overhead or
delay. Keeping the temporal pooling of the SE block would have increased mem-
ory consumption by a modest 85.050 (+1.4%). We can compute the total state
overhead using Eqs. (2), (8), and (9) of the main paper by adding up the state
size of each applicable layer shown in Tab. 5. An overview of the resulting com-
putations can be found in Tab. 4. The total memory overhead for the network
state is 4,771,632 floating point operations. In addition to the state memory, the
worst-case transient memory must be taken into account. The largest interme-
diary feature-map is produced after the first convolution in conv1 and has a size
of 24 × 112 × 112 = 301,056 floats. The total worst-case memory consumption
for CoX3D-M (excluding models weights) is thus 5,072,688 floats.

If we were to reduce the model clip size from 16 to 4, this would result in a
memory reduction of 5,184 floats (only pool5 is affected) for a total worst-case
memory of 5,067,504 floats (−0.1%). Increasing the clip size to 64 would yield
an increased state memory of 20,736 floats giving a total worst-case memory of
5,093,424 floats (+0.4%).

https://orcid.org/0000-0002-2841-864X
https://orcid.org/0000-0003-4807-1345

2 L. Hedegaard and A. Iosifidis

Stage Layer Mem. (floats)

conv1 convT (5− 1)× 24× 112× 112 = 1,204,224

res2 residual1 (3− 1− 1)× 24× 112× 112 = 301,056
residual2−3 [(3− 1− 1)× 24× 56× 56]× 2 = 150,528
conv1−3 [(3− 1− 1)× 54× 56× 56]× 3 = 508,032

res3 residual1 (3− 1− 1)× 24× 56× 56 = 75,264
residual2−5 [(3− 1− 1)× 48× 28× 28]× 4 = 150,528
conv1−5 [(3− 1)× 108× 28× 28]× 5 = 846,720

res4 residual1 (3− 1− 1)× 48× 28× 28 = 37,632
residual2−11 [(3− 1− 1)× 96× 14× 14]× 10 = 188,160
conv1−11 [(3− 1)× 216× 14× 14]× 11 = 931,392

res5 residual1 (3− 1− 1)× 96× 14× 14 = 18,816
residual2−3 [(3− 1− 1)× 192× 7× 7]× 6 = 56,448
conv1−3 [(3− 1)× 432× 7× 7]× 7 = 296,352

pool5 - (16− 1)× 432 = 6,480

Total 4,771,632

Table 4: CoX3D-M state memory consumption by layer.

Continual 3D Convolutional Neural Networks 3

Stage Filters
Output size
(T ×H ×W)

input - 16× 224× 224

conv1

1× 32, 24

5∗ × 12, 24
16× 112× 112

res2 res


1× 12, 54

3× 32, 54

SE
1× 12, 24

× 3 16× 56× 56

res3 res


1× 12, 108

3× 32, 108

SE
1× 12, 48

× 5 16× 28× 28

res4 res


1× 12, 216

3× 32, 216

SE
1× 12, 96

× 11 16× 14× 14

res5 res


1× 12, 432

3× 32, 432

SE
1× 12, 192

× 7 16× 7× 7

conv5 1× 12, 432 16× 7× 7

pool5 16× 72 1× 1× 1

fc1 1× 12, 2048 1× 1× 1
fc2 1× 12,#classes 1× 1× 1

Table 5: X3D-M model architecture. When converted to a continual CNN,
the highlighted components carry an internal state which results in a memory
overhead. *Temporal kernel size in conv1 is set to 5 as found in the official X3D
source code [1].

4 L. Hedegaard and A. Iosifidis

B Benchmarking details

This section should be read in conjunction with Sec 4.3 of the main paper. To
gauge the achievable on-hardware speeds of clip and frame predictions, a bench-
mark was performed on the following four system: A CPU core of a MacBook Pro
(16-inch 2019 2.6 GHz Intel Core i7); Nvidia Jetson TX2; Nvidia Jetson Xavier;
and a Nvidia RTX 2080 Ti GPU (on server with Intel XEON Gold processors).
A batch size of 1 was used for testing on CPU, while the largest fitting multiple
of 2N up to 64 was used for the other hardware platforms which have GPUs
and lend themselves better to parallelisation. Thus, the speeds noted for GPU
platforms in Tab. 1 of the main paper should not be interpreted as the number
of processed clips/frames from a single (high-speed) video stream, but rather as
the aggregated number of clips/frames from multiple streams using the available
hardware. The exact batch size and input resolutions can be found in Tab. 6. In
conducting the measurements, we assume the input data is readily available on
the CPU and measure the time it takes for it to transfer from the CPU to GPU
(if applicable), process, and transfer back to the CPU. A precision of 16 bits
was used for the embedded platforms TX2 and Xavier, while a 32 bit precision
was employed for CPU and RTX 2080 Ti. All networks were implemented and
tested using PyTorch, and neither Nvidia TensorRT nor ONNX Runtime were
used to speed up inference.

Model Input shape Batch size
(T × S2) CPU TX2 Xavier RTX

I3D-R50 8× 2242 1 16 16 32
R(2+1)D-188 8× 1122 1 16 16 32
R(2+1)D-1816 16× 1122 1 8 16 32
Slow-8×8-R50 8× 2562 1 8 8 8
SlowFast-8×8-R50 8× 2562 1 8 32 32
SlowFast-4×16-R50 16× 2562 1 16 32 32
X3D-L 16× 3122 1 16 32 32
X3D-M 16× 2242 1 32 64 64
X3D-S 13× 1602 1 64 64 64
X3D-XS 4× 1602 1 64 64 64
CoI3D 1× 2242 1 8 8 8
CoSlow 1× 2242 1 8 8 8
CoX3D-L 1× 3122 1 8 16 32
CoX3D-M 1× 2242 1 32 64 64
CoX3D-S 1× 1602 1 32 64 64

Table 6: Benchmark model configurations. For each model, the input shape
is noted as T × S2, where T and S are the temporal and spatial input shape.

Continual 3D Convolutional Neural Networks 5

Model FLOPs
Throughput (evaluations/s)
CPU TX2 Xavier RTX

(Co)I3D 5.04× 3.39× 0.95× 1.62× 1.64×
(Co)Slow 7.95× 7.68× 1.19× 1.44× 1.65×
(Co)X3D-L 15.34× 9.20× 5.21× 5.77× 5.98×
(Co)X3D-M 15.06× 9.05× 4.79× 4.95× 6.86×
(Co)X3D-S 12.11× 5.91× 4.15× 4.98× 3.41×

Table 7: Relative improvements in frame-by-frame inference in Continual 3D
CNN relative to regular 3D CNN counterparts. The improvements (× lower for
FLOPs and × higher for throughput) correspond to the results in Tab. 1 of the
main paper.

C A note on RCU FLOPs

In Tab. 1 of the main paper, we have approximated the FLOPs for RCU [2] as
follows: We use a different measure of FLOPs (the one from the ptflops [3]) than
the RCU authors and therefore employ a translation factor of 28.6/41.0, which
is our measured FLOPs for I3D (28.6) divided by theirs (41.0), multiplied with
their reported 54.0 for RCU. Considering that their method used 8 frames and
can be applied per frame, we also divide by 8. Note that the this approximation
lacks the repeat classification layer and may thus be considered on the low side.
The resulting computation becomes 28.6/41.0 · 54.0/8 = 4.71.

D Supplemental visualisations of benchmark

As a supplement to the results presented in the main paper, this appendix
supplies additional views of the benchmarking results in Tab. 1. Accordingly,
graphical representations of the accuracy versus speed trade-offs from Tab. 1
are shown in Figures 6-9. As in Fig. 1 of the main paper, the noted accuracies
on Kinetics-400 were achieved using 1-clip/frame testing on publicly available
pretrained models, the CoX3D models utilised X3D weights without further
fine-tuning, and the numbers noted in each point represent the size of the global
average pooling layer. Likewise, Tab. 7 shows the improvements in continual in-
ference relative to the regular models. In general, the FLOPs improvements are
higher than on-hardware speed evaluations, with relatively lower improvements
on hardware platforms with GPUs. We attribute these differences to a memory
operations overhead, which does not enjoy the same computational improvement
as multiply-accumulate operations do on massively parallel hardware.

From Figures 6-9 we likewise observe, that the I3D, R(2+1)D and SlowFast
models perform relatively better on hardware compared to the X3D and CoX3D
models, which utilise computation-saving approaches such as 1D-convolutions
and grouped 3D-convolutions at the price of increasing memory access cost.

6 L. Hedegaard and A. Iosifidis

100 101
Frames per second

100 101

Clips per second

45

50

55

60

65

70

75

Ki
ne

tic
s t

op
-1

 a
cc

ur
ac

y
(%

)

4

13

16

16

13

64

16

64

16

64

8

64

8

4
8

8

8

8

16

CoX3D-L
CoX3D-M
CoX3D-S
CoSlow
CoI3D
X3D-L
X3D-M
X3D-S
X3D-XS
Slow-R50
SlowFast-R50
I3D-R50
R(2+1)D-18

Fig. 6: CPU inference throughput versus top-1 accuracy on Kinetics-400.

100 101
Frames per second

100 101

Clips per second

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ki
ne

tic
s t

op
-1

 a
cc

ur
ac

y
(%

)

4

13

16

16

13

64

16

64

16

64

8

64

8

4

8
8

8

8

16

CoX3D-L
CoX3D-M
CoX3D-S
CoSlow
CoI3D
X3D-L
X3D-M
X3D-S
X3D-XS
Slow-R50
SlowFast-R50
I3D-R50
R(2+1)D-18

Fig. 7: TX2 inference throughput versus top-1 accuracy on Kinetics-400.

Continual 3D Convolutional Neural Networks 7

100 101 102
Frames per second

100 101 102

Clips per second

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5
Ki

ne
tic

s t
op

-1
 a

cc
ur

ac
y

(%
)

4

13

16

16

13

64

16

64

16

64

8

64

8

4

8
8

8

8

16

CoX3D-L
CoX3D-M
CoX3D-S
CoSlow
CoI3D
X3D-L
X3D-M
X3D-S
X3D-XS
Slow-R50
SlowFast-R50
I3D-R50
R(2+1)D-18

Fig. 8: Xavier inference throughput versus top-1 accuracy on Kinetics-400.

102 103
Frames per second

102 103

Clips per second

45

50

55

60

65

70

75

Ki
ne

tic
s t

op
-1

 a
cc

ur
ac

y
(%

)

4

13

16

16

13

64

16

64

16

64

8

64

8

4
8

8

8

8

16

CoX3D-L
CoX3D-M
CoX3D-S
CoSlow
CoI3D
X3D-L
X3D-M
X3D-S
X3D-XS
Slow-R50
SlowFast-R50
I3D-R50
R(2+1)D-18

Fig. 9: RTX2080Ti inference throughput versus top-1 acc. on Kinetics-400.

8 L. Hedegaard and A. Iosifidis

References

1. Feichtenhofer, C.: X3D: Expanding architectures for efficient video recognition.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2020), https://github.com/facebookresearch/SlowFast. Apache 2.0 Licence.

2. Singh, G., Cuzzolin, F.: Recurrent convolutions for causal 3d cnns. In: 2019
IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). pp.
1456–1465 (2019)

3. Sovrasov, V.: Ptflops, https://github.com/sovrasov/flops-counter.pytorch.
MIT License. Last visited on 2021/03/02

https://github.com/facebookresearch/SlowFast
https://github.com/sovrasov/flops-counter.pytorch

	Continual 3D Convolutional Neural Networks for Real-time Processing of Videos

