
Continual 3D Convolutional Neural Networks for
Real-time Processing of Videos

Lukas Hedegaard and Alexandros Iosifidis

Department of Electrical and Computer Engineering, Aarhus University, Denmark
{lhm,ai}@ece.au.dk

Abstract. We introduce Continual 3D Convolutional Neural Networks
(Co3D CNNs), a new computational formulation of spatio-temporal 3D
CNNs, in which videos are processed frame-by-frame rather than by clip.
In online tasks demanding frame-wise predictions, Co3D CNNs dispense
with the computational redundancies of regular 3D CNNs, namely the
repeated convolutions over frames, which appear in overlapping clips. We
show that Continual 3D CNNs can reuse preexisting 3D-CNN weights
to reduce the per-prediction floating point operations (FLOPs) in pro-
portion to the temporal receptive field while retaining similar memory
requirements and accuracy. This is validated with multiple models on
Kinetics-400 and Charades with remarkable results: CoX3D models at-
tain state-of-the-art complexity/accuracy trade-offs on Kinetics-400 with
12.1−15.3× reductions of FLOPs and 2.3−3.8% improvements in ac-
curacy compared to regular X3D models while reducing peak memory
consumption by up to 48%. Moreover, we investigate the transient re-
sponse of Co3D CNNs at start-up and perform extensive benchmarks of
on-hardware processing characteristics for publicly available 3D CNNs.

Keywords: 3D CNN, Human Activity Recognition, Efficient, Stream
Processing, Online Inference, Continual Inference Network.

1 Introduction

Through the availability of large-scale open-source datasets such as ImageNet [37]
and Kinetics [25], [4], deep, over-parameterized Convolutional Neural Networks
(CNNs) have achieved impressive results in the field of computer vision. In video
recognition specifically, 3D CNNs have lead to multiple breakthroughs in the
state-of-the-art [3], [43], [11], [10]. Despite their success in competitions and
benchmarks where only prediction quality is evaluated, computational cost and
processing time remains a challenge to the deployment in many real-life use-
cases with energy constraints and/or real-time needs. To combat this general
issue, multiple approaches have been explored. These include computationally
efficient architectures for image [17], [48], [42] and video recognition [28], [10],
[49], pruning of network weights [6], [13], [14], knowledge distillation [16], [47],
[36], and network quantisation [19], [2], [12].

https://orcid.org/0000-0002-2841-864X
https://orcid.org/0000-0003-4807-1345

2 L. Hedegaard and A. Iosifidis

The contribution in this paper is complementary to all of the above. It
exploits the computational redundancies in the application of regular spatio-
temporal 3D CNNs to a continual video stream in a sliding window fashion
(Fig. 2). This redundancy was also explored recently [26], [39] using specialised
architectures. However, these are not weight-compatible with regular 3D CNNs.
We present a weight-compatible reformulation of the 3D CNN and its compo-
nents as a Continual 3D Convolutional Neural Network (Co3D CNN). Co3D
CNNs process input videos frame-by-frame rather than clip-wise and can reuse
the weights of regular 3D CNNs, producing identical outputs for networks with-
out temporal zero-padding. Contrary to most deep learning papers, the work pre-
sented here needed no training; our goal was to validate the efficacy of converting
regular 3D CNNs to Continual CNNs directly, and to explore their characteris-
tics in the online recognition domain. Accordingly, we perform conversions from
five 3D CNNs, each at different points on the accuracy/speed pareto-frontier,
and evaluate their frame-wise performance. While there is a slight reduction in
accuracy after conversion due to zero-padding in the regular 3D CNNs, a simple
network modification of extending the temporal receptive field recovers and im-
proves the accuracy significantly without any fine-tuning at a negligible increase
in computational cost. Furthermore, we measure the transient network response
at start-up, and perform extensive benchmarking on common hardware and em-
bedded devices to gauge the expected inference speeds for real-life scenarios. Full
source code is available at https://github.com/lukashedegaard/co3d.

108 109 1010 1011 1012 1013
FLOPs per frame

108 109 1010 1011 1012 1013

FLOPs per clip

55

60

65

70

75

80

Ki
ne

tic
s t

op
-1

 a
cc

ur
ac

y
(%

)

4

13

16
16

13

64

16

64

16

64

8

64

8

8

4
8

8

8

8

16

128

250
250

250

CoX3D-L
CoX3D-M
CoX3D-S
CoSlow
CoI3D
X3D-L
X3D-M
X3D-S
X3D-XS

RCU
Slow-R50
SlowFast-R50
I3D-R50
R(2+1)D-18
ViViT-L/16x2 FE
VTN-R50
VTN-R101
VTN-ViT-B

Fig. 1: Accuracy/complexity trade-off for Continual 3D CNNs and recent
state-of-the-art methods on Kinetics-400 using 1-clip/frame testing. ■ FLOPs
per clip are noted for regular networks, while • FLOPs per frame are shown for
the Continual 3D CNNs. Frames per clip / global average pool size is noted in
the representative points. Diagonal and vertical arrows indicate a direct weight
transfer from regular to Continual 3D CNN and an extension of receptive field.

https://github.com/lukashedegaard/co3d

Continual 3D Convolutional Neural Networks 3

2 Related Works

2.1 3D CNNs for video recognition

Convolutional Neural Networks with spatio-temporal 3D kernels may be con-
sidered the natural extension of 2D CNNs for image recognition to CNNs for
video recognition. Although they did not surpass their 2D CNN + RNN com-
petitors [7], [21] initially [20], [23], [44], arguably due to a high parameter count
and insufficient dataset size, 3D CNNs have achieved state-of-the-art results on
Human Action Recognition tasks [3], [43], [11] since the Kinetics dataset [25]
was introduced. While recent large-scale Transformer-based methods [1], [32]
have become leaders in terms of accuracy, 3D CNNs still achieve state-of-the-art
accuracy/complexity trade-offs. Nevertheless, competitive accuracy comes with
high computational cost, which is prohibitive to many real-life use cases.

In image recognition, efficient architectures such as MobileNet [17], Shuf-
fleNet [48], and EfficientNet [42] attained improved accuracy-complexity trade-
offs. These architectures were extended to the 3D-convolutional versions 3D-
MobileNet [28], 3D-ShuffleNet [28] and X3D [10] (≈3D-EfficientNet) with sim-
ilarly improved pareto-frontier in video-recognition tasks. While these efficient
3D CNNs work well for offline processing of videos, they are limited in the con-
text of online processing, where we wish to make updates predictions for each
frame; real-time processing rates can only be achieved with the smallest mod-
els at severely reduced accuracy. 3D CNNs suffer from the restriction that they
must process a whole “clip” (spatio-temporal volume) at a time. When pre-
dictions are needed for each frame, this imposes a significant overhead due to
repeated computations. In our work, we overcome this challenge by introducing
an alternative computational scheme for spatio-temporal convolutions, -pooling,
and -residuals, which lets us compute 3D CNN outputs frame-wise (continually)
and dispose of the redundancies produced by regular 3D CNNs.

2.2 Architectures for online video recognition

A well-explored approach to video-recognition [7], [21], [22], [40] is to let each
frame pass through a 2D CNN trained on ImageNet in one stream alongside
a second stream of Optical Flow [9] and integrate these using a recurrent net-
work. Such architectures requires no network modification for deployment in
online-processing scenarios, lends themselves to caching [46], and are free of the
computational redundancies experienced in 3D CNNs. However, the overhead of
Optical Flow and costly feature-extractors pose a substantial disadvantage.

Another approach is to utilise 3D CNNs for feature extraction. In [31], spatio-
temporal features from non-overlaping clips are used to train a recurrent network
for hand gesture recognition. In [27], a 3D CNN processes a sliding window of
the input to perform spatio-temporal action detection. These 3D CNN-based
methods have the disadvantage of either not producing predictions for each input
frame [31] or suffering from redundant computations from overlapping clips [27].

4 L. Hedegaard and A. Iosifidis

Massively Parallel Video Networks [5] split a DNN into depth-parallel sub-
networks across multiple computational devices to improve online multi-device
parallel processing performance. While their approach treats networks layers as
atomic operations and doesn’t tackle the fundamental redundancy of tempo-
ral convolutions, Continual 3D CNNs reformulate the network layers, remove
redundancy, and accelerate inference on single devices as well.

Exploring modifications of the spatio-temporal 3D convolution, the Recurrent
Convolutional Unit (RCU) [39] replaces the 3D convolution by aggregating a
spatial 2D convolution over the current input with a 1D convolution over the
prior output. Dissected 3D CNNs [26] (D3D) cache the 1×nH ×nW frame-level
features in network residual connections and aggregate them with the current
frame features via 2×3×3 convolutions. Like our proposed Continual 3D CNNs,
both RCU and D3D are causal and operate frame-by-frame. However, they are
speciality architectures, which are incompatible with pre-trained 3D CNNs, and
must be trained from scratch. We reformulate spatio-temporal convolutions in a
one-to-one compatible manner, allowing us to reuse existing model weights.

3 Continual Convolutional Neural Networks

3.1 Regular 3D-convolutions lead to redundancy

Currently, the best performing architectures (e.g., X3D [10] and SlowFast [11])
employ variations on 3D convolutions as their main building block and perform
predictions for a spatio-temporal input volume (video-clip). These architectures
achieve high accuracy with reasonable computational cost for predictions on clips
in the offline setting. They are, however, ill-suited for online video classification,
where the input is a continual stream of video frames and a class prediction is
needed for each frame. For regular 3D CNNs processing clips of mT frames to
be used in this context, prior mT − 1 input frames need to be stored between
temporal time-steps and assembled to form a new video-clip when the next frame
is sampled. This is illustrated in Fig. 2.

Recall the computational complexity for a 3D convolution:

Θ([kH · kW · kT + b] · cI · cO · nH · nW · nT), (1)

where k denotes the kernel size, T , H, and W are time, height, and width
dimension subscripts, b ∈ {0, 1} indicates whether bias is used, and cI and cO
are the number of input and output channels. The size of the output feature map
is n = (m+ 2p− d · (k − 1)− 1)/s+ 1 for an input of size m and a convolution
with padding p, dilation d, and stride s. During online processing, every frame
in the continual video-stream will be processed nT times (once for each position
in the clip), leading to a redundancy proportional with nT − 1. Moreover, the
memory-overhead of storing prior input frames is

Θ(cI ·mH ·mW · [mT − 1])), (2)

and during inference the network has to transiently store feature-maps of size

Θ(cO · nH · nW · nT). (3)

Continual 3D Convolutional Neural Networks 5

t

t + 1

αa
+βb

αb
+βc

αc
+βd

αb
+βc

αc
+βd

αd
+βe

*
Output

MemoryMemoryMemory
RedundantRedundantRedundant

=

=

Input Kernel
a b c d

b c ed

α β

* α β

Fig. 2: Redundant computations for a temporal convolution during online
processing, as illustrated by the repeated convolution of inputs (green b, c,d)
with a kernel (blue α, β) in the temporal dimension. Moreover, prior inputs
(b, c,d) must be stored between time-steps for online processing tasks.

3.2 Continual Convolutions

We can remedy the issue described in Sec. 3.1 by employing an alternative se-
quence of computational steps. In essence, we reformulate the repeated convo-
lution of a (3D) kernel with a (3D) input-clip that continually shifts along the
temporal dimension as a Continual Convolution (CoConv), where all convolution
computations (bar the final sum) for the (3D) kernel with each (2D) input-frame
are performed in one time-step. Intermediary results are stored as states to be
used in subsequent steps, while previous and current results are summed up to
produce the output. The process for a 1D input and kernel, which corresponds to
the regular convolution in Fig. 2, is illustrated in Fig. 3. In general, this scheme
can be applied for online-processing of any ND input, where one dimension is
a temporal continual stream. Continual Convolutions are causal [34] with no
information leaking from future to past and can be efficiently implemented by
zero-padding the input frame along the temporal dimension with p = floor(k/2).
Python-style pseudo-code of the implementation is shown in Listing 1.1.

t

t + 1

αc
+βd

⊕

Memory

αd βd

αe βe αd
+βe

*
OutputInput Kernel

d α β

* α β =

= ⊕

e

Fig. 3: Continual Convolution. An input (green d or e) is convolved with a
kernel (blue α, β). The intermediary feature-maps corresponding to all but the
last temporal position are stored, while the last feature map and prior memory
are summed to produce the resulting output. For a continual stream of inputs,
Continual Convolutions produce identical outputs to regular convolutions.

6 L. Hedegaard and A. Iosifidis

def coconv3d(frame , prev_state = (mem , i)):

frame = spatial_padding(frame)

frame = temporal_padding(frame)

feat = conv3d(frame , weights)

output , rest_feat = feat[0], feat [1:]

mem , i = prev_state or init_state(output)

M = len(mem)

for m in range(M):

output += mem[(i + m) % M, M - m - 1]

output += bias

mem[i] = rest_feat

i = (i + 1) % M

return output , (mem , i)

Listing 1.1: Pseudo-code for Continual Convolution. Ready-to-
use modules are available in the Continual Inference library [15].

In terms of computational cost, we can now perform frame-by-frame compu-
tations much more efficiently than a regular 3D convolution. The complexity of
processing a frame becomes:

Θ([kH · kW · kT + b] · cI · cO · nH · nW). (4)

This reduction in computational complexity comes at the cost of a memory-
overhead in each layer due to the state that is kept between time-steps. The
overhead of storing the partially computed feature-maps for a frame is:

Θ(dT · [kT − 1] · cO · nH · nW). (5)

However, in the context of inference in a deep neural network, the transient
memory usage within each time-step is reduced by a factor of nT to

Θ(cO · nH · nW). (6)

The benefits of Continual Convolutions include the independence of clip
length on the computational complexity, state overhead, and transient mem-
ory consumption. The change from (non-causal) regular convolutions to (causal)
Continual Convolutions has the side-effect of introducing a delay to the output.
This is because some intermediary results of convolving a frame with the kernel
are only added up at a later point in time (see Fig. 3). The delay amounts to

Θ(dT · [kT − pT − 1]). (7)

3.3 Continual Residuals

The delay from Continual Convolutions has an adverse side-effect on residual
connections. Despite their simplicity in regular CNNs, we cannot simply add
the input to a Continual Convolution with its output because the CoConv may
delay the output. Residual connections to a CoConv must therefore be delayed
by an equivalent amount (see Eq. (7)). This produces a memory overhead of

Θ(dT · [kT − 1] · cO ·mH ·mW). (8)

Continual 3D Convolutional Neural Networks 7

3.4 Continual Pooling

The associative property of pooling operations allows for pooling to be decom-
posed across dimensions, i.e. poolT,H,W (X) = poolT (poolH,W (X)). For contin-
ual spatio-temporal pooling, the pooling over spatial dimensions is equivalent
to a regular pooling, while the intermediary pooling results must be stored for
prior temporal frames. For a pooling operation with temporal kernel size kT and
spatial output size nH · nW , the memory consumption and delays are

Θ([kT − 1] · nH · nW), (9)

Θ(kT − pT − 1). (10)

Both memory consumption and delay scale linearly with the temporal kernel
size. Fortunately, the memory consumed by temporal pooling layers is relatively
modest for most CNN architectures (1.5% for CoX3D-M, see Appendix A).
Hence, the delay rather than memory consumption may be of primary concern
for real-life applications. For some network modules it may even make sense to
skip the pooling in the conversion to a Continual CNN. One such example is the
3D Squeeze-and-Excitation (SE) block [18] in X3D, where global spatio-temporal
average-pooling is used in the computation of channel-wise self-attention. Dis-
carding the temporal pooling component (making it a 2D SE block) shifts the
attention slightly (assuming the frame contents change slowly relative to the
sampling rate) but avoids a considerable temporal delay.

3.5 The issue with temporal padding

Zero-padding of convolutional layers is a popular strategy for retaining the
spatio-temporal dimension of feature-maps in consecutive CNN layers. For Con-
tinual CNNs, however, temporal zero-padding poses a problem, as illustrated
in Fig. 4. Consider a 2-layer 1D CNN where each layer has a kernel size of 3
and zero padding of 1. For each new frame in a continual stream of inputs, the
first layer l should produce two output feature-maps: One by the convolution of
the two prior frames and the new frame, and another by convolving with one
prior frame, the new frame, and a zero-pad. The next layer l + 1 thus receives
two inputs and produces three outputs which are dependent on the new input
frame of the first layer (one for each input and another from zero-padding). In
effect, each zero padding in a convolution forces the next layer to retrospectively
update its output for a previous time-step in a non-causal manner. Thus, there
is a considerable downside to the use of padding. This questions the necessity of
zero padding along the temporal dimension. In regular CNNs, zero padding has
two benefits: It helps to avoid spatio-temporal shrinkage of feature-maps when
propagated through a deep CNN, and it prevents information at the boarders
from “washing away” [24]. The use of zero-padding, however, has the downside
that it alters the input-distribution along the boarders significantly [29], [33]. For
input data which is a continual stream of frames, a shrinkage of the feature-size
in the temporal dimension is not a concern, and an input frame (which may be

8 L. Hedegaard and A. Iosifidis

l

l + 1

Input … x

…

…

(a) No padding

l

l + 1

Input … x 0

… 0

… 0

(b) Zero padding

Fig. 4: Issue with temporal padding: The latest frame x is propagated
through a CNN with (purple) temporal kernels of size 3 (a) without or (b)
with zero padding. Highlighted cubes can be produced only in the latest frame,
with yellow boarder indicating independence of padded zero and red boarders
dependence. In the zero-padded case (b), the number of frame features depen-
dent on x following a layer l increases with the number of padded zeros.

considered a border frame in a regular 3D CNN) has no risk of “washing away”
because it is a middle frame in subsequent time steps. Temporal padding is thus
omitted in Continual CNNs. As can be seen in the experimental evaluations pre-
sented in the following, this constitutes a “model shift” in the conversion from
regular to Continual 3D CNN if the former was trained with temporal padding.

3.6 Initialisation

Before a Continual CNN reaches a steady state of operation, it must have pro-
cessed rT −pT −1 frames where rT and pT are the aggregated temporal receptive
field and padding of the network. For example, Continual X3D-{S, M, L} models
have receptive fields of size {69, 72, 130}, aggregated padding {28, 28, 57}, and
hence need to process {40, 43, 72} frames prior to normal operation. The initial
response depends on how internal state variables are initialised. In Sec. 4.2, we
explore this further with two initialisation variants: 1) Initialisation with ze-
ros and 2) by repeating a replicate of the features corresponding to the first
input-frame. The latter corresponds to operating in a steady state for a “boring
video” [3] which has one frame repeated in the entire clip.

3.7 Design considerations

Disregarding the storage requirement of model weights (which is identical be-
tween for regular and continual 3D CNNs), X3D-M has a worst-case total memory-
consumption of 7,074,816 floats when prior frames and the transient feature-
maps are taken into account. Its continual counterpart, CoX3D-M, has a worst
case memory only 5,072,688 floats. How can this be? Since Continual 3D CNNs
do not store prior input frames and have smaller transient feature maps, memory
savings outweigh the cost of caching features in each continual layer. Had the

Continual 3D Convolutional Neural Networks 9

clip size been four instead of sixteen, X3D-M4 would have had a worst-case mem-
ory consumption of 1,655,808 floats and CoX3D-M4 of 5,067,504 floats. For clip
size 64, X3D-M64 consumes 28,449,792 floats and CoX3D-M64 uses 5,093,424
floats. The memory load of regular 3D CNNs is thus highly dependent on clip
size, while that of Co3D CNNs is not. Continual CNNs utilise longer receptive
fields much more efficiently than regular CNNs in online processing scenarios. In
networks intended for embedded systems or online processing, we may increase
the clip size to achieve higher accuracy with minimal penalty in computational
complexity and worst-case memory.

Another consideration, which influences memory consumption is the tem-
poral kernel size and dilation of CoConv layers. Fortunately, the trend to em-
ploy small kernel sizes leaves the memory consumption reasonable for recent 3D
CNNs [3], [43], [11], [10]. A larger temporal kernel size would not only affect
the memory growth through the CoConv filter, but also for co-occuring resid-
ual connections. These consume a significant fraction of the total state-memory
for real-life networks: in a Continual X3D-M model (CoX3D-M) the memory of
residuals constitutes 20.5% of the total model state memory (see Appendix A).

3.8 Training

Co3D CNNs are trained with back-propagation like other neural networks. How-
ever, special care must be taken in the estimation of data statistics in normali-
sation layers: 1) Momentum should be adjusted to momstep = 2/(1+ timesteps ·
(2/momclip − 1)) to match the exponential moving average dynamics of clip-
based training, where T is the clip size; 2) statistics should not be tracked for the
transient response. Alternatively, they can be trained offline in their “unrolled”
regular 3D-CNN form with no temporal padding. This is similar to utilising
pre-trained weights from a regular 3D CNN, as we do in our experiments.

4 Experiments

The experiments in this section aim to show the characteristics and advantages
of Continual 3D CNNs as compared with regular 3D CNNs. One of the main
benefits of Co3D CNNs is their ability to reuse the network weights of regular 3D
CNNs. As such, all Co3D CNNs in these experiments use publicly available pre-
trained network weights of regular 3D CNNs [11], [10], [8] without further fine-
tuning. Data pre-processing follows the respective procedures associated with
the originating weights unless stated otherwise. The section is laid out as fol-
lows: First, we showcase the network performance following weight transfer from
regular to Continual 3D on multiple datasets for Human Activity Recognition.
This is followed by a study on the transient response of Co3D CNNs at startup.
Subsequently, we show how the computational advantages of Co3D CNNs can
be exploited to improve accuracy by extending the temporal receptive field. Fi-
nally, we perform an extensive on-hardware benchmark of prior methods and
Continual 3D CNNs, measuring the 1-clip/frame accuracy of publicly available
models, as well as their inference throughput on various computational devices.

10 L. Hedegaard and A. Iosifidis

Model
Acc. Par. Mem. FLOPs Throughput (preds/s)
(%) (M) (MB) (G) CPU TX2 Xavier 2080Ti

C
li
p

I3D-R50 63.98 28.04 191.59 28.61 0.93 2.54 9.20 77.15
R(2+1)D-188 53.52 31.51 168.87 20.35 1.75 3.19 6.82 130.88
R(2+1)D-1816 59.29 31.51 215.44 40.71 0.83 1.82 3.77 75.81
Slow-8×8-R50 67.42 32.45 266.04 54.87 0.38 1.34 4.31 61.92
SlowFast-8×8-R50 68.45 66.25 344.84 66.25 0.34 0.87 2.72 30.72
SlowFast-4×16-R50 67.06 34.48 260.51 36.46 0.55 1.33 3.43 41.28
X3D-L 69.29 6.15 240.66 19.17 0.25 0.19 4.78 36.37
X3D-M 67.24 3.79 126.29 4.97 0.83 1.47 17.47 116.07
X3D-S 64.71 3.79 61.29 2.06 2.23 2.68 42.02 276.45
X3D-XS 59.37 3.79 28.79 0.64 8.26 8.20 135.39 819.87

F
ra
m
e

RCU8 [39]† 53.40 12.80 - 4.71 - - - -
CoI3D8 59.58 28.04 235.87 5.68 3.00 2.41 14.88 125.59
CoI3D64 56.86 28.04 236.08 5.68 3.15 2.41 14.89 126.32
CoSlow8 65.90 32.45 175.98 6.90 2.80 1.60 6.18 113.77
CoSlow64 73.05 32.45 176.41 6.90 2.92 1.60 6.19 102.00
CoX3D-L16 63.03 6.15 184.29 1.25 2.30 0.99 25.17 206.65
CoX3D-L64 71.61 6.15 184.37 1.25 2.30 0.99 27.56 217.53
CoX3D-M16 62.80 3.79 68.88 0.33 7.57 7.26 88.79 844.73
CoX3D-M64 71.03 3.79 68.96 0.33 7.51 7.04 86.42 796.32
CoX3D-S13 60.18 3.79 41.91 0.17 13.16 11.06 219.64 939.72
CoX3D-S64 67.33 3.79 41.99 0.17 13.19 11.13 213.65 942.97

Table 1: Kinetics-400 benchmark. The noted accuracy is the single clip or
frame top-1 score using RGB as the only input-modality. The performance was
evaluated using publicly available pre-trained models without any further fine-
tuning. For speed comparison, predictions per second denote frames per sec-
ond for the CoX3D models and clips per second for the remaining models.
Throughput results are the mean of 100 measurements. Pareto-optimal models
are marked with bold. Mem. is the maximum allocated memory during inference
noted in megabytes. †Approximate FLOPs derived from paper (see Appendix C).

4.1 Transfer from regular to Continual CNNs

To gauge direct transferability of 3D CNN weights, we implement continual ver-
sions of various 3D CNNs and initialise them with their publicly available weights
for Kinetics-400 [25] and Charades [38]. While it is common to use an ensemble
prediction from multiple clips to boost video-level accuracy on these benchmarks,
we abstain from this, as it doesn’t apply to online-scenarios. Instead, we report
the single-clip/frame model performance.

Kinetics-400. We evaluate the X3D network variants XS, S, M, and L on the test
set using one temporally centred clip from each video. The XS network is omitted
in the transfer to CoX3D, given that it is architecturally equivalent to S, but
with fewer frames per clip. In evaluation on Kinetics-400, we faced the challenge
that videos were limited to 10 seconds. Due to the longer transient response of
Continual CNNs (see Sec. 4.2) and low frame-rate used for training X3D models

Continual 3D Convolutional Neural Networks 11

Model FLOPs (G) × views mAP (%)

C
li
p

Slow-8×8 [11] 54.9× 30 39.0

Slow-8×8 [11]† 54.9× 1 21.4
Slow-8×8 (ours) 54.9× 1 24.1

F
r. CoSlow8 6.9× 1 21.5

CoSlow64 6.9× 1 25.2

Table 2: Charades benchmark. Noted are the FLOPs × views and video-level
mean average precision (mAP) on the validation set using pre-trained model
weights. †Results achieved using the publicly available SlowFast code [11].

(5.0, 6.0, 6.0 FPS for S, M, and L), the video-length was insufficient to reach
steady-state for some models. As a practical measure to evaluate near steady-
state, we repeated the last video-frame for a padded video length of ≈ 80% of
the network receptive field as a heuristic choice. The Continual CNNs were thus
tested on the last frame of the padded video and initialised with the prior frames.
The results of the X3D transfer are shown in Tab. 1 and Fig. 1.

For all networks, the transfer from regular to Continual 3D CNN results in
significant computational savings. For the S, M, and L networks the reduction in
FLOPs is 12.1×, 15.1×, and 15.3× respectively. The savings do not quite reach
the clip sizes since the final pooling and prediction layers are active for each
frame. As a side-effect of the transfer from zero-padded regular CNN to Continual
CNN without zero-padding, we see a notable reduction in accuracy. This is easily
improved by using an extended pooling size for the network (discussed in Sec. 3.7
and in Sec. 4.2). Using a global average pooling with temporal kernel size 64,
we improve the accuracy of X3D by 2.6%, 3.8%, and 2.3% in the Continual S,
M, and L network variants. As noted, Kinetics dataset did not have sufficient
frames to fill the temporal receptive field of all models in these tests. We explore
this further in Sections 4.2 and 4.2.

Charades. To showcase the generality of the approach, we repeat the above
described procedure with another 3D CNN, the CoSlow network [11]. We report
the video-level mean average precision (mAP) of the validation split alongside the
FLOPs per prediction in Tab. 2. Note the accuracy discrepancy between 30 view
(10 temporal positions with 3 spatial positions each) and 1 view (spatially and
temporally centred) evaluation. As observed on Kinetics, the CoSlow network
reduces the FLOPs per prediction proportionally with the original clip size (8
frames), and can recover accuracy by extending the global average pool size.

4.2 Ablation Experiments

As described in Sec. 3.6, Continual CNNs exhibit a transient response during
their up-start. In order to gauge this response, we perform ablations on the

12 L. Hedegaard and A. Iosifidis

Kinetics-400 validation set, this time sampled at 15 FPS to have a sufficient
number of frames available. This corresponds to a data domain shift [45] relative
to the pre-trained weights, where time advances slower.

Transient response of Continual CNNs. Our expected upper bound is given
by the baseline X3D network 1-clip accuracy at 15 FPS. The transient response
is measured by varying the number of prior frames used for initialisation before
evaluating a frame using the CoX3D model. Note that temporal center-crops
of size Tinit + 1, where Tinit is the number of initialisation frames, are used in
each evaluation to ensure that the frames seen by the network come from the
centre. This precaution counters a data-bias, we noticed in Kinetics-400, namely
that the start and end of a video are less informative and contribute to worse
predictions than the central part. We found results to vary up to 8% for a X3D-S
network evaluated at different video positions. The experiment is repeated for
two initialisation schemes, “zeros” (used in other experiments) and “replicate”,
and two model sizes, S and M. The transient responses are shown in Fig. 5.

For all responses, the first ≈25 frames produce near-random predictions,
before rapidly increasing at 25−30 frames until a steady-state is reached at 49.2%
and 56.2% accuracy for S and M. Relative to the regular X3D, this constitutes
a steady-state error of −1.7% and −5.8%. Comparing initialisation schemes, we
see that the “replicate” scheme results in a slightly earlier rise. The rise sets in
later for the “zeros” scheme, but exhibits a sharper slope, topping with peaks
of 51.6% and 57.6% at 41 and 44 frames seen as discussed in Sec. 3.6. This

10 20 30 40 50 60 70
Frames seen

0

20

40

To
p-

1
ac

cu
ra

cy
 (%

) X3D-S

Replicate
Zeros

(a) CoX3D-S

10 20 30 40 50 60 70
Frames seen

0

20

40

60

To
p-

1
ac

cu
ra

cy
 (%

) X3D-M

Replicate
Zeros

(b) CoX3D-M

Fig. 5: Transient response for Continual X3D-{S,M} on the Kinetics-400 val
at 15 FPS. Dotted horizontal lines denote X3D validation accuracy for 1-clip pre-
dictions. Black circles highlight the theoretically required initialisation frames.

Continual 3D Convolutional Neural Networks 13

makes sense considering that the original network weights were trained with
this exact amount of zero-padding. Adding more frames effectively replaces the
padded zeros and causes a slight drop of accuracy in the steady state, where the
accuracy settles at the same values as for the “replication” scheme.

Extended receptive field. Continual CNNs experience a negligible increase in
computational cost when larger temporal receptive field are used (see Sec. 3.7).
For CoX3D networks, this extension can be trivially implemented by increasing
the temporal kernel size of the last pooling layer. In this set of experiments, we
extend CoX3D-{S,M,L} to have temporal pooling sizes 32, 64, and 96, and eval-
uate them on the Kinetics-400 validation set sampled at 15 FPS. The Continual
CNNs are evaluated at frames corresponding to the steady state.

Tab. 3 shows the measured accuracy and floating point operations per frame
(CoX3D) / clip (X3D) as well as the pool size for the penultimate network
layer (global average pooling) and the total receptive field of the network in the
temporal dimension. As found in Sec. 4.1, each transfer results in significant
computational savings alongside a drop in accuracy. Extending the kernel size of
the global average pooling layer increases the accuracy of the Continual CNNs
by 11.0−13.3% for 96 frames relative the original 13−16 frames, surpassing that
of the regular CNNs. Lying at 0.017−0.009%, the corresponding computational
increases can be considered negligible.

Model Size Pool Acc. FLOPs (K) Rec. Field

X3D
S 13 51.0 2,061,366 13
M 16 62.1 4,970,008 16
L 16 64.1 19,166,052 16

S

13 49.2 166,565 69
16 50.1 166,567 72
32 54.7 166,574 88
64 59.8 166,587 120
96 61.8 166,601 152

CoX3D M

16 56.3 325,456 72
32 60.7 325,463 88
64 64.9 325,477 120
96 67.3 325,491 152

L

16 53.0 1,245,549 130
32 58.5 1,245,556 146
64 64.3 1,245,570 178
96 66.3 1,245,584 210

Table 3: Effect of extending pool size. Note that the model weights were
trained at different sampling rates than evaluated at (15 FPS), resulting in a
lower top-1 val. accuracy. Italic numbers denote measurement taken within the
transient response due to a lack of frames in the video-clip.

14 L. Hedegaard and A. Iosifidis

4.3 Inference benchmarks

Despite their high status in activity recognition leader-boards [35], it is unclear
how recent 3D CNNs methods perform in the online setting, where speed and
accuracy constitute a necessary trade-off. To the best of our knowledge, there has
not yet been a systematic evaluation of throughput for these video-recognition
models on real-life hardware. In this set of experiments, we benchmark the
FLOPs, parameter count, maximum allocated memory and 1-clip/frame accu-
racy of I3D [3], R(2+1)D [43], SlowFast[41], X3D [10], CoI3D, CoSlow, and
CoX3D. To gauge achievable throughputs at different computational budgets,
networks were tested on four hardware platforms as described in Appendix B.

As seen in the benchmark results found in Tab. 1, the limitation to one clip
markedly lowers accuracy compared with the multi-clip evaluation published in
the respective works [3], [43], [11], [10]. Nontheless, the Continual models with
extended receptive fields attain the best accuracy/speed trade-off by a large mar-
gin. For example, CoX3D-L64 on the Nvidia Jetson Xavier achieves an accuracy
of 71.3% at 27.6 predictions per second compared to 67.2% accuracy at 17.5 pre-
dictions per second for X3D-M while reducing maximum allocated memory by
48%! Confirming the observation in [30], we find that the relation between model
FLOPs and throughput varies between models, with better ratios attained for
simpler models (e.g., I3D) than for complicated ones (e.g., X3D). This relates
to different memory access needs and their cost. Tailor-made hardware could
plausibly reduce these differences. Supplementary visualisation of the results in
Tab. 1 are found in Appendix C.

5 Conclusion

We have introduced Continual 3D Convolutional Neural Networks (Co3D CNNs),
a new computational model for spatio-temporal 3D CNNs, which performs com-
putations frame-wise rather than clip-wise while being weight-compatible with
regular 3D CNNs. In doing so, we are able dispose of the computational re-
dundancies faced by 3D CNNs in continual online processing, giving up to a
15.1× reduction of floating point operations, a 9.2× real-life inference speed-up
on CPU, 48% peak memory reduction, and an accuracy improvement of 5.6%
on Kinetics-400 through an extension in the global average pooling kernel size.

While this constitutes a substantial leap in the processing efficiency of energy-
constrained and real-time video recognition systems, there are still unanswered
questions pertaining to the dynamics of Co3D CNNs. Specifically, the impact
of extended receptive fields on the networks ability to change predictions in
response to changing contents in the input video is untested. We leave these as
important directions for future work.

Acknowledgement

This work has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 871449 (OpenDR).

Continual 3D Convolutional Neural Networks 15

References

1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: A
video vision transformer. In: IEEE/CVF International Conference on Computer
Vision (ICCV). pp. 6836–6846 (2021)

2. Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by half-
wave gaussian quantization. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 5406–5414 (2017)

3. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the ki-
netics dataset. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 4724–4733 (2017)

4. Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., Zisserman, A.: A short
note about kinetics-600. preprint, arXiv:1808.01340 (2018)

5. Carreira, J., Pătrăucean, V., Mazare, L., Zisserman, A., Osindero, S.: Massively
parallel video networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y.
(eds.) Proceedings of the European Conference on Computer Vision (ECCV). pp.
680–697 (2018)

6. Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y.: Compressing neural
networks with the hashing trick. In: International Conference on International
Conference on Machine Learning (ICML). p. 2285–2294 (2015)

7. Donahue, J., Hendricks, L.A., Guadarrama, S., Rohrbach, M., Venugopalan, S.,
Darrell, T., Saenko, K.: Long-term recurrent convolutional networks for visual
recognition and description. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 2625–2634 (2015)

8. Fan, H., Murrell, T., Wang, H., Alwala, K.V., Li, Y., Li, Y., Xiong, B., Ravi,
N., Li, M., Yang, H., Malik, J., Girshick, R., Feiszli, M., Adcock, A., Lo, W.Y.,
Feichtenhofer, C.: PyTorchVideo: A deep learning library for video understanding.
In: ACM International Conference on Multimedia (2021)

9. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In:
Image Analysis. pp. 363–370. Springer Berlin Heidelberg (2003)

10. Feichtenhofer, C.: X3D: Expanding architectures for efficient video recognition.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2020)

11. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recogni-
tion. In: IEEE/CVF International Conference on Computer Vision (ICCV) (Oc-
tober 2019)

12. Floropoulos, N., Tefas, A.: Complete vector quantization of feedforward neural
networks. Neurocomputing 367, 55–63 (2019)

13. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huffman coding. In: International
Conference on Learning Representations (ICLR) (2016)

14. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: 2017 IEEE International Conference on Computer Vision (ICCV).
pp. 1398–1406 (2017)

15. Hedegaard, L., Iosifidis, A.: Continual inference: A library for efficient online in-
ference with deep neural networks in pytorch. preprint, arXiv:2204.03418 (2022)

16. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
NIPS Deep Learning and Representation Learning Workshop (2015)

17. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. preprint, arXiv:1704.04861 abs/1704.04861 (2017)

16 L. Hedegaard and A. Iosifidis

18. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 7132–7141 (2018)

19. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.)
Advances in Neural Information Processing Systems. vol. 29. Curran Associates,
Inc. (2016)

20. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human ac-
tion recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 35(1), 221–231 (2013)

21. Joe Yue-Hei Ng, Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R.,
Toderici, G.: Beyond short snippets: Deep networks for video classification. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4694–
4702 (2015)

22. Kalogeiton, V., Weinzaepfel, P., Ferrari, V., Schmid, C.: Action tubelet detector
for spatio-temporal action localization. In: 2017 IEEE International Conference on
Computer Vision (ICCV). pp. 4415–4423 (2017)

23. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.:
Large-scale video classification with convolutional neural networks. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). pp. 1725–1732
(2014)

24. Karpathy, A.: CS231n convolutional neural networks for visual recognition, https:
//cs231n.github.io/convolutional-networks/. Last visited on 2021/01/26

25. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan,
S., Viola, F., Green, T., Back, T., Natsev, P., Suleyman, M., Zisserman, A.: The
kinetics human action video dataset. preprint, arXiv:1705.06950 (2017)

26. Köpüklü, O., Hörmann, S., Herzog, F., Cevikalp, H., Rigoll, G.: Dissected 3d
cnns: Temporal skip connections for efficient online video processing. preprint,
arXiv:2009.14639 (2020)

27. Köpüklü, O., Wei, X., Rigoll, G.: You only watch once: A unified cnn architecture
for real-time spatiotemporal action localization. preprint, arXiv:1911.06644 (2019)

28. Köpüklü, O., Kose, N., Gunduz, A., Rigoll, G.: Resource efficient 3d convolutional
neural networks. In: IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW). pp. 1910–1919 (2019)

29. Liu, G., Shih, K.J., Wang, T.C., Reda, F.A., Sapra, K., Yu, Z., Tao, A., Catanzaro,
B.: Partial convolution based padding. preprint, arXiv:1811.11718 pp. 1–11 (2018)

30. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: Proceedings of the European Conference on
Computer Vision (ECCV) (September 2018)

31. Molchanov, P., Yang, X., Gupta, S., Kim, K., Tyree, S., Kautz, J.: Online detection
and classification of dynamic hand gestures with recurrent 3d convolutional neural
networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 4207–4215 (2016)

32. Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video transformer network. In:
2021 IEEE/CVF International Conference on Computer Vision Workshops (IC-
CVW). pp. 3156–3165 (2021)

33. Nguyen, A., Choi, S., Kim, W., Ahn, S., Kim, J., Lee, S.: Distribution padding in
convolutional neural networks. In: International Conference on Image Processing
(ICIP). pp. 4275–4279 (2019)

34. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A generative model for
raw audio. preprint, arXiv:1609.03499 (2016)

https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/

Continual 3D Convolutional Neural Networks 17

35. Papers with Code: Kinetics-400 leaderboard, https://paperswithcode.com/

sota/action-classification-on-kinetics-400. Last visited on 2021/02/03.
36. Passalis, N., Tefas, A.: Learning deep representations with probabilistic knowledge

transfer. In: Proceedings of the European Conference on Computer Vision (ECCV)
(2018)

37. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet
large scale visual recognition challenge. International Journal of Computer Vision
(ICCV) 115(3), 211–252 (2015)

38. Sigurdsson, G.A., Varol, G., Wang, X., Farhadi, A., Laptev, I., Gupta, A.: Hol-
lywood in homes: Crowdsourcing data collection for activity understanding. In:
Proceedings of the European Conference on Computer Vision (ECCV) (2016)

39. Singh, G., Cuzzolin, F.: Recurrent convolutions for causal 3d cnns. In: 2019
IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).
pp. 1456–1465 (2019)

40. Singh, G., Saha, S., Sapienza, M., Torr, P., Cuzzolin, F.: Online real-time multi-
ple spatiotemporal action localisation and prediction. In: 2017 IEEE International
Conference on Computer Vision (ICCV). pp. 3657–3666 (2017)

41. Sovrasov, V.: Ptflops, https://github.com/sovrasov/flops-counter.pytorch.
MIT License. Last visited on 2021/03/02

42. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural
networks. In: Proceedings of Machine Learning Research. vol. 97, pp. 6105–6114
(2019)

43. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at
spatiotemporal convolutions for action recognition. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 6450–6459 (2018)

44. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: IEEE International Conference
on Computer Vision (ICCV). pp. 4489–4497 (2015)

45. Wang, M., Deng, W.: Deep visual domain adaptation: A survey. Neurocomputing
312, 135–153 (2018)

46. Xu, M., Zhu, M., Liu, Y., Lin, F., Liu, X.: Deepcache: Principled cache for mobile
deep vision. International Conference on Mobile Computing and Networking (2018)

47. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: Fast opti-
mization, network minimization and transfer learning. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 7130–7138 (2017)

48. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 6848–6856 (2018)

49. Zhu, L., Sevilla-Lara, L., Yang, Y., Feiszli, M., Wang, H.: Faster recurrent networks
for efficient video classification. Proceedings of the AAAI Conference on Artificial
Intelligence 34, 13098–13105 (2020)

https://paperswithcode.com/sota/action-classification-on-kinetics-400
https://paperswithcode.com/sota/action-classification-on-kinetics-400
https://github.com/sovrasov/flops-counter.pytorch

	Continual 3D Convolutional Neural Networks for Real-time Processing of Videos

