Dynamic Spatio-Temporal Specialization
Learning for Fine-Grained Action Recognition
(Supplementary Material)

Tianjiao Li'*, Lin Geng Foo'l, Qiuhong Ke?, Hossein Rahmani®, Anran
Wang?, Jinghua Wang®, and Jun Liu'**

! ISTD Pillar, Singapore University of Technology and Design
{tianjiao_1i,lingeng foo}@mymail.sutd.edu.sg, jun_liu@sutd.edu.sg
2 Department of Data Science & AI, Monash University
qiuhong.ke@monash.edu
3 School of Computing and Communications, Lancaster University
h.rahmani@lancaster.ac.uk
4 ByteDance
anranwangl1991Qgmail.com
5 School of Computer Science and Technology, Harbin Institute of Technology
wangjinghua@hit.edu.cn

1 Implementation Details of Improved SemHash

We follow the implementation details of the Improved Semhash as in [2, 3, 1],
and list the detailed steps below for the sake of reproducibility. We omit the
layer index and show the procedure for a specialized neuron n;. For Improved
Semhash, the inputs are gate parameters g; € R¥in and sampled noise € € RNin |
while the outputs are a binary vector b € {0, 1} for channel-wise architectural
decisions, and a real vector r € R¥in for the purposes of gradient computation.

During training, a noise vector € € R¥i» is first sampled from a Gaussian
distribution with mean 0 and variance 1, and we add this noise to our gate
parameters g; to get 8; 45y € RNin as follows:

gi,noisy =8; +e€ (1)

Then, we generate a real-valued vector r € RVi» and a binary vector b €
{0, 1}Nin:

r= O'/(gi,noisy) (2)
b= 1(gi,noisy > 0) (3)

where 1 is the indicator function, and ¢’ is the saturating sigmoid function

2,3, 1]:
o' (x) = maz(0,min(1,1.20(x) — 0.1)) (4)

* equal contribution

** corresponding author

2 T. Li et al.

with ¢ being the sigmoid function.

b and r are utilized in different ways. b is binary and is more suitable for
the model during inference in Eq. 4 and Eq. 5 of the main paper. However, b is
not suitable during training because most gradients %; are zero as a result of
backpropagating through the indicator function. On the other hand, r is more
suitable during training, and less suitable during inference, as the gradient %
is well-defined, but r is not binary. l

During training, we randomly use b for half of the training samples and use
r for the rest of the samples. When b is used, we follow [2, 3, 1] and define
gradient %’_ to be gg’"_ in the backpropagation step.

At test gime, we do not sample the noise and set € = 0. We also only use the
discretized b during forward propagation.

2 Upstream-Downstream Learning algorithm

An outline of our proposed Upstream-Downstream Learning algorithm is shown
in Algorithm 1.

Algorithm 1 Upstream-Downstream Learning

Requires: Upstream parameters u (scoring kernels and gates) and Downstream
parameters d (spatial and temporal operators)
1: for epoch in max_epoch do

2: for each iteration do

3: {X,Y} < Dirain

4: Freeze Upstream Parameters u

5: Update Downstream Parameters d+d— aVal(u,d; X,Y)
6: {Xv, Yv} <~ Dval

7 Freeze Downstream Parameters d

8: Update Upstream Parameters v < u — aV (4, d; X,,Y,)
9: Update Downstream Parameters d’' < d — aVgl(u',d; X,Y)
10: u+u';d+d
11: end for
12: end for

3 Visualization of Spatial and Temporal Specializations

Ideally, different specialized neurons should optimize their architectures towards
different extents of spatial or temporal specialization, to handle fine-grained
differences over a large range of spatio-temporal variations. We visualize the
proportion of channels that use the spatial or temporal operator for each spe-
cialized neuron in the three layers of our DSTS module in Fig. 1. In each layer,
the specialized neurons are diverse in their specializations, and tend to use differ-
ent proportions of the spatial and temporal operators. Some specialized neurons

DSTS for Fine-Grained Action Recognition 3

mmm Temporal Operator

% B Spatial Operator
c 1.0

=

2

o 0.5

G

8‘ 0.0 -

& 1 2 3 4 5 6 7 8 9 10
0 Neurons in Layerl

g

€ 1.0

£

Y 0.5 A

G

2 0.0 -

& 1 2 3 4 5 6 7 8 9 10
" Neurons in Layer2

@

= 1.0

2

o 0.5

bS]

g 0.0-

& 1 2 3 4 5 6 7 8 9 10

Neurons in Layer3

Fig. 1. Visualization of the proportion of channels that use the spatial or temporal
operator for each specialized neuron. This visualization is taken from the DSTS module
with a TPN backbone, trained on Diving48. Here, we visualize all 10 specialized neurons
(N = 10) across 3 layers (L = 3). In each layer, we observe that there is a diversity of
spatio-temporal specializations among the specialized neurons. For example, in layer
2, specialized neurons 7 and 10 use a lot more of the spatial operator and specialize in
the spatial aspects, while specialized neurons 1, 6 and 9 use a lot more of the temporal
operator and specialize in the temporal aspects. The others (specialized neurons 2, 3,
4, 5, 8) use both operators to a moderate extent.

4 T. Li et al.

focus more on the spatial aspect, some focus on the temporal aspect, while
others are somewhat mixed. This shows that our spatio-temporal specialization
provides our set of specialized neurons with diversified architectures and special-
izations, which collectively are capable of handling a large variety of spatial and
temporal fine-grained differences.

"Back”,
"15s0m",
“NoTwis",
"PIKE"

Frame 14 ————— Fframe20 —— Frame 26

<] L
60 20 i a0 Neuron 8
3

Neurona *° Neuron
atlayerl atlayer2 atlayer

Frame 76 ———— Fframe82 ——— Frame 87 —

— Frame 94 ~——— Frame98 ———— Frame 102

Layerl:

Frame83 ——— Fframe87 —— Frame 98

Layers: [-

Frame31 ——— Frame4l —— Frame49

Layer3:

Fig. 2. Visualization of specialized neuron activation patterns by similar samples. The
neurons depicted in this visualization have the same spatio-temporal specializations as
those depicted in Fig. 1. (Left) Between these samples, observers have to distinguish
between the shapes of the legs of the divers (“Pike” vs “Tuck”) that have been indicated
in red rectangles, which can be quite subtle. These similar samples activate the same
specialized neurons in the first two layers (4 and 7 in layers 1 and 2 respectively),
that correspond to the “spatial-specialized” neurons in Fig. 1. (Right) Between these
samples, observers have to distinguish between the number of twists the divers do
(“15Twis” vs “05Twis”), which can be discerned using the duration of the diver’s
twist. To visualize the duration aspect here, we show 6 key frames for the longer twist,
and only 3 key frames for the shorter twist. These similar samples activate the same
specialized neurons in the first two layers (2 and 6 in layers 1 and 2 respectively),
that correspond to the “temporal-specialized” neurons in Fig. 1. Between both sets
of samples, we can qualitatively observe the spatio-temporal specialization at work,
where specialized neurons adjust their specializations to handle spatial and temporal
fine-grained differences among similar subsets of samples.

DSTS for Fine-Grained Action Recognition 5

4 Visualization of Activation of Neurons

We visualize the activation patterns of specialized neurons by similar samples
in Fig. 2. We observe that similar samples tend to activate the same specialized
neurons. For these similar samples, the same specialized neurons were activated
in layer 1 and layer 2. This shows qualitatively that similar samples tend to
activate the same specialized neurons via the synapse mechanism, which pushes
the specialized neurons to learn to handle the fine-grained information relevant
to these similar samples, instead of learning more common discriminative cues
that are applicable to the more common samples. Moreover, we observe that
samples on the left side tend to activate neurons that focus more on the spatial
aspects, while the samples on the right side tend to activate the specialized
neurons which focus more on the temporal aspects. This shows that our spatio-
temporal specialization method is capable of dealing with spatial and temporal
fine-grained differences by adaptively adjusting the proportion of spatial and
temporal operators for each specialized neuron.

5 Skip Connection

We investigate whether the skip connection (as shown in Fig. 2 of the main
paper illustrating our DSTS module) leads to better performance. Results are
shown in Table 1. We remove the skip connection in the setting DSTS w/o
Skip Connection, while keeping our design in DSTS w/ Skip Connection.
We observe that adding the skip connection leads to slight improvement in per-
formance. This shows that adding the output of the DSTS module (which are
more specialized) to the output of the backbone (which are more general) leads
to performance gains.

Table 1. Evaluation results (%) on the impact of the skip connection on Diving48.

lMethod [Top—l[Class—Wise Accl
DSTS w/o Skip Connection| 88.1 77.9
DSTS w/ Skip Connection | 88.4 78.2

6 Scoring Kernel Shape

We evaluate the impact of using different shapes for the scoring kernel m, with
results shown in Table 2. We design the scoring kernel to be of shape Ny,; X
N;p, x 1 x1x 1, for the best and most efficient performance.

6 T. Li et al.

Table 2. Evaluation results (%) for different shapes of scoring kernel m on Diving48.

lScoring Kernel Shape [Top—l[Class—Wise Acc

Nout X Niy x 1 x 1 x1 | 88.4 78.2
Nout X Ny x 1 x 3 x 3 | 88.3 78.0
2Nout X Nijp X 1 x 1 x 1| 88.2 707

7 1 X1 X1 Convolution

We evaluate the impact of using alternative shapes other than the 1 x 1 x 1
convolution for processing the output Z to obtain Z’ (as shown in the Fig. 3 of
the main paper). Results are shown in Table 3. We choose the shape of Ny, X
Nyt X 1 x 1 x 1 as it provides the best and most efficient performance.

Table 3. Evaluation results (%) for alternative shapes of the kernel used to process
the output Z to obtain Z’ on Diving48.

lKernel Shape [Top—l[Class—Wise Accl
Nout X Nour X 1 x1x 1| 88.4 78.2
Nout X Nour X 1 x 3 x 3| 88.1 77.5
Nout X Nout X 3 x 1 x 1| 88.0 77.8

8 Training Cost

We compare the overall training time of our method against the backbone on
Diving48 dataset in Table 4. The experiments are conducted on Nvidia V100
GPU. We observe that, compared to the training of the backbone TPN, the
overall training time increase brought by our method is not high, because our
DSTS module is relatively small compared to the backbone TPN.

Table 4. Training cost and evaluation accuracy on Diving48 using TPN backbone.
Note that performance using the backbone TPN is 86.2%, while applying our method
onto those backbones achieves 88.4%, bringing performance gains of 2.2%.

Method [Training Time (hrs)[Acc. (%)]
Backbone 9 86.2
Backbone w/ our DSTS 12 88.4

DSTS for Fine-Grained Action Recognition 7

9 Computational Cost of Inference

We compare the computational cost of conducting inference with DSTS on the
Diving48 dataset using TPN as the backbone network. The results are shown in
Table 5. Computational cost of inference for both Backbone and Backbone w/
DSTS refers to the time required to process a batch of samples. The experiments
are conducted on Nvidia V100 GPU and the batch size is set to 8. Though using
our proposed DSTS module leads to significant improvements in performance
(see results in Table 1 and 2 of our main paper), the cost of inference only
increases slightly.

Table 5. Computation cost of inference on Diving48 with TPN backbone. Note that,
our method can bring obvious performance improvement (see Table 1 and 2 of our
main paper).

l Method |Computation cost (ms)]
Backbone 741
Backbone w/ our DSTS 870

10 Details of Input Features of DSTS Module.

In our implementation, the feature maps before the last classification layer in
TPN or Swin-B Transformer are used as the input of DSTS module. Specifically,
for TPN backbone, the shape of input features for DSTS is 1024 x 8 x 16 x 16,
and for the Swin-B Transformer, the shape of input features for DSTS is
1024 x 16 x 7 x 7.

8 T. Li et al.

References

1. Chen, Z., Li, Y., Bengio, S., Si, S.: You look twice: Gaternet for dynamic filter
selection in cnns. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 9172-9180 (2019) 1, 2

2. Kaiser, L., Bengio, S.: Discrete autoencoders for sequence models. arXiv preprint
arXiv:1801.09797 (2018) 1, 2

3. Kaiser, L., Bengio, S., Roy, A., Vaswani, A., Parmar, N., Uszkoreit, J., Shazeer, N.:
Fast decoding in sequence models using discrete latent variables. In: International
Conference on Machine Learning. pp. 2390-2399. PMLR (2018) 1, 2

	Dynamic Spatio-Temporal Specialization Learning for Fine-Grained Action Recognition (Supplementary Material)

