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1 Overview

This document provides more details of our DAPatch, organized as follows:
• In Section 2, we describe the whole algorithm of Deformable Adversarial

Patch, corresponding to Section 3.3 of the main body.
• In Section 3, we supplement the description of the experimental setup,

corresponding to Section 4.1 of the main body.
• In Section 4, we show the complete data of white box attacks under different

areas, corresponding to Section 4.2, 4.3 and 4.6 of the main body.
• In Section 5, we add physical attack examples at different angles and light-

ing, corresponding to Section 4.5 of the main body.
• In Section 6, we show the ablation study on some hyper-parameters, in-

cluding the sparsity of activation function, the shape loss Lshape, the number of
rays R, and shape ratio s.

• In Section 7, we provide more visual comparison.

2 Deformable Adversarial Patch

Our proposed Deformable Adversarial Patch is summarized as Algorithm 1.

3 Experimental Setup

3.1 Comparable Methods

We use circular and square shape initialization in both GAP [1] and LaVAN [5].
We use random noise as initialization for both untargeted and targeted attacks.
For all experiments, we set the number of iterations to 100 and γ to 1. u is the
value of 1 pixel value after normalization, α equals to 8u before perturbation
tuning, and α equals to u after perturbation tuning. For PS-GAN [6], we use
PS-GAN with weak constraints. The settings and constraints are the same as [6].

† indicates the corresponding author (libraboli@tencent.com).
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Algorithm 1 Deformable Adversarial Patch (DAPatch)

Input: image x ∈ [xmin, xmax], label y, the center O, the number of rays R, ray length
array r = {r1, r2, ..., rn}, shape ratio s, patch percent pc, perturbation step α, regular
parameter β, ray step γ, the number of iteration T
Output: xT

adv

1: Random sample δ0 from [xmin, xmax]
2: r0 ← r, x0

adv ← x
3: for k ∈ [1, T ] do
4: if k < int(s ∗ T ) then
5: Mk ← DRP(O,R, rk−1)
6: xk

adv ← (I −Mk)⊙ x+Mk ⊙ δk−1

7: zk ← f(xk
adv)

8: l← L
(
zk, y, pc, β

)
9: δk ← Clip

(
δk−1 + α · sign(∇xk

adv
l), xmin, xmax

)
10: rk ← Clip

(
rk−1 + γ · sign(∇rk−1 l), 1, ∞

)
11: else if k == int(s ∗ T ) then
12: M ← Sharpen(Mk−1)
13: else
14: xk

adv ← (I −M)⊙ x+M ⊙ δk−1

15: zk ← f(xk
adv)

16: l← L
(
zk, y, pc, β

)
17: δk ← Clip

(
δk−1 + α · sign(∇xk

adv
l), xmin, xmax

)
18: end if
19: end for
20: return xT

adv

For a image classifier f : x → y, we denote the clean image as x ∈ Rc×h×w

and the adversarial image as xk
adv ∈ Rc×h×w at the k-th iteration. We also denote

the corresponding label as y and the predicted label as ŷ. In Algorithm 1, the
loss function of GAP is expressed as:

L =

{
CE(xk

adv, y), untargeted attack

−CE(xk
adv, ŷ), targeted attack

, (1)

and the loss function of LaVAN is expressed as:

L =

{
CE(xk

adv, y)− CE(xk
adv, ys), untargeted attack

CE(xk
adv, y)− CE(xk

adv, yt), targeted attack
, (2)

where ys is the highest class other than class y and yt is the pre-set target class.

3.2 Adversarial Training

Adversarial training is currently the most mainstream and effective method in
adversarial defense. We choose the most efficient and powerful adversarial train-
ing method as the threat model.
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Fast-AT Fast-AT [11] shows that adversarial training with the fast gradient
sign method (FGSM), when combined with random initialization, is as effective
as PGD-based training but has significantly lower cost. In the experiment, we
choose Fast-AT (ϵ = 4/255) as the benchmark model of the attack.

Feature Denoising Feature Denoising [12] is the state-of-the-art defense against
traditional perturbation-based adversarial attacks in a white-box setting, which
contains blocks that denoise the features using non-local means or other filters.
On ImageNet, under 10-iteration PGD white-box attacks, it achieves 55.7%.
Even under extreme 2000-iteration PGD white-box attacks, it secures 42.6% ac-
curacy. In the experiment, we choose its three open source models (Adv-ResNet-
152, ResNet-152-Denoise and Resnext-101-Deniose) as the benchmark models for
the attack.

4 More Experimental Results

We demonstrate the effectiveness of our proposed DAPatch on models of different
architectures. We divide the model architecture into three categories: Convo-
lutional Neural Network (VGG19 [9], Resnet-152 [3], DenseNet-161 [4] and
MobileNet V2 [8]), Vision Transformer (ViT-B/16 [2] and Swin-B [7]), and
Neural Architecture Search (EfficientNet-b7 [10]).

Table 2 illustrates that a particular shape can provide attack performance
when textures are disabled. The area of the DAPatch shape is smaller than its
convex hull, but it achieves a higher ASR. The experimental results in untar-
geted setting under 5 different patch areas on ILSVRC2012 and GTSRB are
summarized in Table 3 and Table 4. For the more challenging targeted setting,
the experimental results on ILSVRC2012 are reported in Table 5. The results of
untargeted attacks on shape and texture bias are shown in Table 6. The results
of untargeted attacks on adversarial training are shown in Table 7. All experi-
ments show that when the patch area is small, DAPatch always obtains a higher
ASR with a smaller area. Furthermore, under different patch areas, DAPatch
can always obtain better attack performance within a smaller area compared
with state-of-the-art methods.

5 Physical Attack

In this section, we provide more visual details about physical attacks. Figure 1
shows the different class example of DAPatch. Figure 2 shows the examples of
DAPatch under different angles and lightning. So please zoom Figure 1 and
Figure 2 to get more clearer shape details.
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Fig. 1. More examples of physical attacks of DAPatch in untargeted setting.

(a) Middle, −30◦ (b) Middle, 0◦ (c) Middle, 30◦ (d) Low, 0◦ (e) High, 0◦

Fig. 2. More examples of DAPatch with different angles and lightning.

6 Ablation Study

6.1 Ablation Study on λ

We review the special activation function Φ, which is expressed as:

Φ(x) =
tanh (λ(x− 1)) + 1

2
. (3)

Table 1. Ablation study on λ.

λ -10 -50 -100 -300 -500

MoblieNet v2 89.9 94.9 97.6 93.6 92.6

Vit-B/16-224 75.5 88.9 95.0 86.1 84.8

ResNet-152 77.1 86.8 93.1 84.0 83.1

The λ controls the sparsity of acti-
vation function. Here, we study the ef-
fect of λ on attack performance in 2%
area under the untargeted setting, as
shown in Table 1. Experiments show
that when λ = −100, the attack per-
formance is better. tanh can better
make the mask close to binarization,
so it is selected as the activation func-
tion.

6.2 Ablation Study on Shape Loss Lshape

The area of patches needs to be controlled by Lshape. We compare the area
variation wrt Lshape in Figure 3. We find that, if there is no Lshape, the area of the
patch will increase indefinitely, but this does not meet the experimental settings.
According to Figure 3, When β = 10, Lshape cannot control the area well. When
the β is large, the patch area can be better constrained to be within the specified
percentage. Note that when β is large, ASR and area are not sensitive to beta,
so in the experiment, to better control the area, we set β = 200.
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(a) (b) (c) (d) (e)

Fig. 3. Ablation study. (a) shows the relationship between β and ASR. Error bars in
(b) represent the standard deviation of the area of DAPatch. We can find when β is
large, ASR and area are not sensitive to β. (c) and (d) are the ASR upper bound
analysis. More rays can model patches with higher ASR and the result is saturated
with 120 rays. The time cost increases as R becomes larger. (e) is the ablation study
on the shape ratio s. It has the best attack performance at about s = 70.

6.3 Ablation Study on the Number of Rays R

It plays a fundamental role in the DAPatch and explicitly affects the shape
modeling ability of the patch. From Figure 3 (c), more rays show higher upper
bound and better ASR. For example, 36 rays improve by 6.0% ASR compared
to 20 rays in 0.5% patch percentage. The 120 rays also saturate the performance
since it depicts the patches well already and the rays are not the only constraint.
Note that according to Figure 3 (d), the performance of 120 rays is not much
improved compared to 36 rays, which is higher than other baseline methods, but
it brings more than double the training time. In practice, considering for the
efficiency, we set R = 36.

6.4 Ablation Study on Shape Ratio s

The shape ratio s is an important parameter to perturbation tune in DAPatch.
Therefore, we evaluate the untargeted attack performance concerning different
shape ratios s on MobileNet v2 in Figure 3 (e). When the patch area is small, s
will greatly affect the attack effect. When the patch area is large, the effect of s
is not very obvious. In practice, we choose s = 70.

7 More Visual Comparison

In this section, we provide more visual details. Figure 4 shows the visualiza-
tion of DAPatch and other patch attacks. Single represents the single-anchor
deformable patch representation and Multi represents the multi-anchor de-
formable patch representation. Figure 5 shows the deformation process of DA-
Patch in untargeted attacks under 5% area. Disabling texture means we just
deform the shape and keep perturbations as white. The patches are generated on
Mobilenet v2. The patches generated by multi-anchor deformable patch repre-
sentation have more complex shapes, and there are cases where rays and contours
intersect multiple times and the interior is hollowed out. So please zoom Figure 4
and Figure 5 to get more clearer shape details.
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Table 2. The area of the convex hull is larger than DAPtach, but the attack perfor-
mance is not as good as it, which shows that having a specific shape can improve the
attack performance.

Network Shape
0.5% 1% 2% 3% 5%

ASR Area ASR Area ASR Area ASR Area ASR Area

MoblieNet v2

Circle 1.5 0.510 2.2 0.964 4.5 2.040 6.8 3.031 10.2 4.982
Square 1.4 0.504 1.7 1.054 3.3 2.010 4.4 3.023 5.9 4.888
Ours 8.9 0.377 13.4 0.790 21.0 1.648 25.8 2.496 35.7 4.340

Convex hull 2.4 0.902 4.0 2.143 6.4 4.090 9.1 5.676 12.4 8.296

Vit-B/16-224

Circle 0.9 0.510 1.4 0.964 2.2 2.040 2.2 3.031 2.7 4.982
Square 0.5 0.504 0.7 1.054 1.1 2.010 1.6 3.023 2.0 4.888
Ours 8.6 0.355 12.0 0.789 16.3 1.563 20.7 2.507 27.2 4.247

Convex hull 1.3 0.720 2.4 1.874 3.4 3.644 4.4 5.149 5.5 7.643

ResNet-152

Circle 0.9 0.510 1.2 0.964 2.6 2.040 3.3 3.031 4.6 4.982
Square 0.5 0.504 0.6 1.054 0.8 2.010 1.3 3.023 2.0 4.888
Ours 5.8 0.371 10.3 0.776 18.4 1.618 23.6 2.449 27.2 4.251

Convex hull 1.0 0.880 1.5 2.102 3.6 4.110 5.0 5.745 6.7 8.271
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Table 3. Untargeted attacks of various network architectures on ILSVRC2012.

Network Method
≈0.5% ≈1% ≈2% ≈3% ≈5%

ASR Area ASR Area ASR Area ASR Area ASR Area

VGG-19

GAP s 73.4 0.510 92.6 0.964 98.4 2.040 99.3 3.031 99.7 4.982
GAP c 72.4 0.504 94.5 1.054 98.7 2.010 99.3 3.023 99.8 4.888

LaVAN s 76.9 0.510 92.6 0.964 98.9 2.040 99.5 3.031 100.0 4.982
LaVAN c 78.5 0.504 95.1 1.054 99.0 2.010 99.5 3.023 100.0 4.888
PS-GAN 74.5 0.510 94.2 0.964 97.4 2.040 99.2 3.031 100.0 4.982
Ours 78.6 0.449 95.6 0.868 99.1 1.744 99.5 2.759 100.0 4.598

ResNet-152

GAP s 44.3 0.510 71.0 0.964 89.5 2.040 96.5 3.031 99.5 4.982
GAP c 44.8 0.504 74.4 1.054 91.2 2.010 97.8 3.023 99.7 4.888

LaVAN s 43.7 0.510 67.5 0.964 88.3 2.040 95.9 3.031 99.6 4.982
LaVAN c 43.5 0.504 71.2 1.054 90.4 2.010 96.8 3.023 99.8 4.888
PS-GAN 44.5 0.510 68.9 0.964 91.3 2.040 97.4 3.031 99.7 4.982
Ours 52.2 0.409 78.8 0.845 93.1 1.699 97.9 2.623 99.8 4.546

DenseNet-161

GAP s 48.6 0.510 74.4 0.964 94.6 2.040 97.9 3.031 99.8 4.982
GAP c 49.6 0.504 79.8 1.054 94.5 2.010 98.6 3.023 99.6 4.888

LaVAN s 46.3 0.510 73.6 0.964 93.5 2.040 97.6 3.031 99.8 4.982
LaVAN c 48.0 0.504 78.1 1.054 93.5 2.010 98.0 3.023 100.0 4.888
PS-GAN 47.5 0.510 77.7 0.964 93.7 2.040 98.5 3.031 99.9 4.982
Ours 55.5 0.417 83.2 0.851 96.4 1.718 99.0 2.656 100.0 4.546

MoblieNet v2

GAP s 57.9 0.510 83.6 0.964 96.2 2.040 98.6 3.031 99.9 4.982
GAP c 57.8 0.504 86.7 1.054 97.2 2.010 99.2 3.023 100.0 4.888

LaVAN s 56.6 0.510 81.8 0.964 95.6 2.040 98.9 3.031 99.9 4.982
LaVAN c 58.0 0.504 84.3 1.054 96.6 2.010 98.7 3.023 99.8 4.888
PS-GAN 54.5 0.510 84.2 0.964 95.5 2.040 99.3 3.031 99.9 4.982
Ours 65.8 0.423 88.9 0.847 97.6 1.735 99.4 2.684 100.0 4.578

Efficientnet-b7

GAP s 43.3 0.510 63.5 0.964 85.5 2.040 91.5 3.031 97.2 4.982
GAP c 42.5 0.504 68.8 1.054 88.0 2.010 94.4 3.023 97.5 4.888

LaVAN s 42.3 0.510 64.7 0.964 89.5 2.040 95.9 3.031 98.3 4.982
LaVAN c 41.2 0.504 69.2 1.054 89.2 2.010 95.9 3.023 98.1 4.888
PS-GAN 40.9 0.510 65.8 0.964 89.3 2.040 95.2 3.031 97.9 4.982
Ours 45.7 0.442 71.1 0.956 89.6 2.003 95.9 3.014 98.3 4.824

Vit-B/16-224

GAP s 47.0 0.510 72.0 0.964 92.4 2.040 97.2 3.031 99.8 4.982
GAP c 45.6 0.504 77.2 1.054 93.0 2.010 97.8 3.023 99.7 4.888

LaVAN s 44.8 0.510 71.8 0.964 93.5 2.040 98.3 3.031 99.9 4.982
LaVAN c 46.9 0.504 74.9 1.054 93.5 2.010 98.3 3.023 99.9 4.888
PS-GAN 45.9 0.510 71.9 0.964 90.2 2.040 97.4 3.031 99.8 4.982
Ours 56.9 0.417 80.9 0.849 95.0 1.717 98.3 2.676 99.9 4.528

Swin-B-224

GAP s 32.4 0.510 68.2 0.964 91.8 2.040 97.6 3.031 99.7 4.982
GAP c 34.4 0.504 77.7 1.054 94.5 2.010 98.6 3.023 99.6 4.888

LaVAN s 35.3 0.510 68.6 0.964 95.8 2.040 99.0 3.031 99.9 4.982
LaVAN c 37.2 0.504 75.8 1.054 96.6 2.010 99.4 3.023 100.0 4.888
PS-GAN 31.2 0.510 66.4 0.964 91.2 2.040 97.6 3.031 99.7 4.982
Ours 39.7 0.395 79.6 0.818 97.1 1.668 99.5 2.545 100.0 4.354
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Table 4. Untargeted attacks of various network architectures on GTSRB.

Network Method
≈0.5% ≈1% ≈2% ≈3% ≈5%

ASR Area ASR Area ASR Area ASR Area ASR Area

ResNet-152

GAP s 13.6 0.510 21.4 0.964 37.8 2.040 56.0 3.031 76.0 4.982
GAP c 13.0 0.504 22.6 1.054 38.0 2.010 57.6 3.023 80.0 4.888

LaVAN s 14.6 0.510 22.8 0.964 41.6 2.040 60.4 3.031 83.8 4.982
LaVAN c 14.8 0.504 26.0 1.054 41.8 2.010 58.4 3.023 83.2 4.888
PS-GAN 13.7 0.510 23.4 0.964 39.4 2.040 59.5 3.031 82.3 4.982
Ours 15.0 0.477 27.1 0.831 42.3 1.932 61.5 2.873 85.6 4.722

Efficientnet-b7

GAP s 20.4 0.510 45.0 0.964 68.0 2.040 84.0 3.031 94.4 4.982
GAP c 20.6 0.504 39.4 1.054 66.6 2.010 82.6 3.023 94.4 4.888

LaVAN s 22.2 0.510 46.2 0.964 74.0 2.040 89.2 3.031 95.6 4.982
LaVAN c 22.8 0.504 51.4 1.054 74.0 2.010 89.0 3.023 97.2 4.888
PS-GAN 21.5 0.510 46.2 0.964 71.2 2.040 85.6 3.031 96.2 4.982
Ours 23.6 0.469 53.1 0.893 75.2 1.873 89.5 2.934 98.7 4.825

Vit-B/16-224

GAP s 28.6 0.510 61.2 0.964 90.0 2.040 97.6 3.031 99.8 4.982
GAP c 28.4 0.504 68.0 1.054 90.2 2.010 98.2 3.023 99.0 4.888

LaVAN s 28.2 0.510 61.6 0.964 91.8 2.040 98.2 3.031 99.8 4.982
LaVAN c 26.2 0.504 65.4 1.054 92.0 2.010 97.4 3.023 99.6 4.888
PS-GAN 27.4 0.510 64.2 0.964 90.2 2.040 98.1 3.031 99.7 4.982
Ours 30.1 0.483 68.1 0.896 93.5 1.783 98.9 2.892 100.0 4.732
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Table 5. Targeted attacks of various network architectures on ILSVRC2012.

Network Method
≈1% ≈3% ≈5% ≈7% ≈10%

ASR Area ASR Area ASR Area ASR Area ASR Area

VGG-19

GAP s 16.60 0.964 59.1 3.031 81.0 4.982 93.9 6.938 96.7 10.046
GAP c 21.40 1.054 58.5 3.023 77.3 4.888 90.0 6.794 98.1 10.002

LaVAN s 5.60 0.964 24.3 3.031 37.4 4.982 52.0 6.938 63.0 10.046
LaVAN c 5.20 1.054 22.8 3.023 36.3 4.888 47.0 6.794 58.4 10.002
PS-GAN 20.60 0.964 59.4 3.031 81.4 4.982 94.2 6.938 97.2 10.046
Ours 21.40 0.864 61.7 2.676 82.8 4.560 94.6 6.521 98.3 9.225

ResNet-152

GAP s 5.30 0.964 41.1 3.031 68.8 4.982 87.3 6.938 95.0 10.046
GAP c 8.80 1.054 44.3 3.023 72.8 4.888 88.3 6.794 97.4 10.002

LaVAN s 3.50 0.964 22.6 3.031 45.1 4.982 61.8 6.938 78.0 10.046
LaVAN c 6.00 1.054 23.9 3.023 47.7 4.888 64.7 6.794 81.1 10.002
PS-GAN 8.90 0.964 46.2 3.031 73.8 4.982 87.4 6.938 96.4 10.046
Ours 9.10 0.849 48.7 2.668 78.1 4.553 90.2 6.439 97.6 9.232

DenseNet-161

GAP s 9.20 0.964 45.0 3.031 73.3 4.982 92.2 6.938 96.9 10.046
GAP c 11.50 1.054 44.9 3.023 73.1 4.888 90.4 6.794 98.3 10.002

LaVAN s 4.60 0.964 21.6 3.031 35.9 4.982 51.0 6.938 67.9 10.046
LaVAN c 5.90 1.054 24.1 3.023 38.2 4.888 54.0 6.794 72.4 10.002
PS-GAN 10.30 0.964 49.2 3.031 74.5 4.982 92.3 6.938 97.5 10.046
Ours 13.70 0.858 55.3 2.682 77.8 4.569 92.6 6.472 98.6 9.315

MoblieNet v2

GAP s 4.50 0.964 51.3 3.031 81.1 4.982 93.7 6.938 97.3 10.046
GAP c 5.80 1.054 51.6 3.023 81.7 4.888 94.8 6.794 99.3 10.002

LaVAN s 1.60 0.964 30.0 3.031 51.7 4.982 71.8 6.938 86.2 10.046
LaVAN c 2.60 1.054 31.8 3.023 52.8 4.888 72.5 6.794 88.1 10.002
PS-GAN 5.90 0.964 52.4 3.031 82.3 4.982 93.9 6.938 99.5 10.046
Ours 7.60 0.869 54.8 2.271 84.9 4.593 94.8 6.481 99.7 9.433

Efficientnet-b7

GAP s 4.40 0.964 52.1 3.031 81.9 4.982 93.7 6.938 97.2 10.046
GAP c 6.20 1.054 53.6 3.023 81.4 4.888 93.4 6.794 99.0 10.002

LaVAN s 1.50 0.964 33.1 3.031 65.0 4.982 82.2 6.938 91.6 10.046
LaVAN c 2.30 1.054 34.0 3.023 62.1 4.888 83.6 6.794 95.1 10.002
PS-GAN 4.90 0.964 53.6 3.031 81.5 4.982 93.2 6.938 99.1 10.046
Ours 7.60 0.869 53.6 2.953 82.0 4.851 93.7 6.713 99.3 10.000

Vit-B/16-224

GAP s 6.20 0.964 48.8 3.031 85.4 4.982 97.3 6.938 97.9 10.046
GAP c 7.90 1.054 50.6 3.023 85.7 4.888 97.2 6.794 100.0 10.002

LaVAN s 3.10 0.964 25.4 3.031 52.8 4.982 78.3 6.938 93.4 10.046
LaVAN c 4.20 1.054 24.7 3.023 54.9 4.888 78.4 6.794 96.6 10.002
PS-GAN 5.30 0.964 49.3 3.031 85.8 4.982 97.1 6.938 98.1 10.046
Ours 9.60 0.850 50.7 2.697 86.2 4.688 97.4 6.727 100.0 9.322

Swin-B-224

GAP s 18.50 0.964 91.2 3.031 99.5 4.982 100.0 6.938 100.0 10.046
GAP c 27.80 1.054 94.4 3.023 99.5 4.888 99.9 6.794 100.0 10.002

LaVAN s 19.00 0.964 85.1 3.031 97.0 4.982 99.4 6.938 98.0 10.046
LaVAN c 25.20 1.054 86.5 3.023 96.9 4.888 99.3 6.794 100.0 10.002
PS-GAN 29.60 0.964 95.1 3.031 98.9 4.982 99.4 6.938 100.0 10.046
Ours 38.20 0.848 98.5 2.587 99.7 4.371 100.0 6.216 100.0 8.912
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Table 6. Untargeted attacks of shape and texture bias on ILSVRC2012.

Network Method
≈0.5% ≈1% ≈2% ≈3% ≈5%

ASR Area ASR Area ASR Area ASR Area ASR Area

ResNet50-SIN

GAP s 70.4 0.510 87.3 0.964 96.9 2.040 99.1 3.031 99.8 4.982
GAP c 70.1 0.504 88.5 1.054 96.9 2.010 99.6 3.023 99.8 4.888

LaVAN s 66.2 0.510 82.2 0.964 95.1 2.040 98.1 3.031 99.8 4.982
LaVAN c 65.6 0.504 84.2 1.054 96.0 2.010 98.7 3.023 99.7 4.888
PS-GAN 70.0 0.510 85.3 0.964 96.8 2.040 99.5 3.031 99.8 4.982
Ours 74.1 0.446 90.3 0.893 98.7 1.764 99.6 2.724 99.9 4.620

ResNet50-SIN+IN

GAP s 44.3 0.510 68.3 0.964 90.6 2.040 95.7 3.031 98.5 4.982
GAP c 44.7 0.504 72.4 1.054 90.9 2.010 96.3 3.023 99.1 4.888

LaVAN s 41.2 0.510 64.9 0.964 88.8 2.040 94.6 3.031 98.7 4.982
LaVAN c 42.4 0.504 69.4 1.054 89.4 2.010 96.1 3.023 98.9 4.888
PS-GAN 44.5 0.510 68.9 0.964 90.6 2.040 95.2 3.031 98.2 4.982
Ours 48.1 0.426 75.6 0.860 91.5 1.750 96.3 2.669 99.1 4.587

ResNet50-SIN+IN-IN

GAP s 41.6 0.510 62.2 0.964 85.6 2.040 93.0 3.031 98.0 4.982
GAP c 44.3 0.504 68.6 1.054 87.4 2.010 94.2 3.023 98.3 4.888

LaVAN s 38.7 0.510 58.2 0.964 83.1 2.040 92.8 3.031 98.2 4.982
LaVAN c 39.6 0.504 65.3 1.054 84.7 2.010 93.4 3.023 98.2 4.888
PS-GAN 39.2 0.510 62.7 0.964 85.2 2.040 94.7 3.031 98.6 4.982
Ours 44.3 0.420 70.1 0.845 88.9 1.729 95.1 2.651 99.0 4.562

ResNet50-Debiased

GAP s 42.5 0.510 64.2 0.964 85.8 2.040 93.1 3.031 98.4 4.982
GAP c 44.0 0.504 68.6 1.054 87.9 2.010 94.3 3.023 98.4 4.888

LaVAN s 38.2 0.510 59.7 0.964 83.3 2.040 90.9 3.031 97.9 4.982
LaVAN c 38.8 0.504 64.2 1.054 84.3 2.010 93.2 3.023 98.6 4.888
PS-GAN 43.2 0.510 67.6 0.964 88.0 2.040 93.4 3.031 98.0 4.982
Ours 46.6 0.438 68.6 0.852 88.1 1.744 94.7 2.665 98.6 4.593

ResNet152-Debiased

GAP s 33.3 0.510 53.0 0.964 81.4 2.040 91.0 3.031 98.3 4.982
GAP c 34.1 0.504 58.9 1.054 84.1 2.010 93.0 3.023 98.4 4.888

LaVAN s 30.6 0.510 49.8 0.964 77.0 2.040 88.8 3.031 98.1 4.982
LaVAN c 29.8 0.504 52.1 1.054 77.5 2.010 90.1 3.023 98.4 4.888
PS-GAN 32.3 0.510 53.4 0.964 83.0 2.040 93.2 3.031 98.3 4.982
Ours 37.4 0.422 61.8 0.850 85.3 1.735 94.5 2.626 98.5 4.532
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Table 7. Untargeted attacks on networks with adversarial training.

Network Method
≈0.5% ≈1% ≈2% ≈3% ≈5%

ASR Area ASR Area ASR Area ASR Area ASR Area

Adv-ResNet-152

GAP s 61.0 0.510 74.5 0.964 86.6 2.040 90.3 3.031 94.4 4.982
GAP c 60.6 0.504 77.4 1.054 87.2 2.010 91.7 3.023 95.1 4.888

LaVAN s 58.4 0.510 71.1 0.964 83.9 2.040 88.8 3.031 93.8 4.982
LaVAN c 57.2 0.504 72.6 1.054 83.9 2.010 89.3 3.023 94.8 4.888
PS-GAN 59.2 0.510 77.7 0.964 84.3 2.040 89.7 3.031 95.2 4.982
Ours 62.5 0.472 78.4 0.948 88.2 1.921 92.4 2.791 96.6 4.703

ResNet-152-Denoise

GAP s 59.3 0.510 74.5 0.964 86.5 2.040 92.6 3.031 96.4 4.982
GAP c 59.0 0.504 77.3 1.054 87.8 2.010 92.9 3.023 96.4 4.888

LaVAN s 59.6 0.510 72.6 0.964 84.7 2.040 91.8 3.031 96.9 4.982
LaVAN c 60.7 0.504 75.1 1.054 85.5 2.010 92.7 3.023 96.5 4.888
PS-GAN 61.7 0.510 75.1 0.964 86.2 2.040 92.2 3.031 96.3 4.982
Ours 62.3 0.464 77.4 0.959 88.0 1.835 92.9 2.853 98.3 4.619

Resnext-101-Deniose

GAP s 50.4 0.510 66.3 0.964 83.8 2.040 90.2 3.031 95.0 4.982
GAP c 51.1 0.504 70.5 1.054 84.2 2.010 89.9 3.023 95.7 4.888

LaVAN s 49.7 0.510 65.0 0.964 80.6 2.040 87.6 3.031 94.9 4.982
LaVAN c 49.5 0.504 67.9 1.054 81.2 2.010 88.4 3.023 95.2 4.888
PS-GAN 51.2 0.510 68.1 0.964 80.9 2.040 89.9 3.031 94.7 4.982
Ours 52.9 0.471 68.9 0.949 85.5 1.928 90.2 2.814 95.7 4.706

Fast AT

GAP s 50.4 0.510 62.3 0.964 80.4 2.040 88.5 3.031 95.0 4.982
GAP c 50.6 0.504 65.5 1.054 80.3 2.010 88.8 3.023 94.9 4.888

LaVAN s 48.7 0.510 60.2 0.964 77.5 2.040 84.7 3.031 92.9 4.982
LaVAN c 48.7 0.504 62.6 1.054 78.0 2.010 85.3 3.023 93.1 4.888
PS-GAN 48.9 0.510 63.4 0.964 79.1 2.040 85.2 3.031 93.2 4.982
Ours 51.3 0.473 65.6 0.944 82.0 1.890 90.0 2.963 95.4 4.772
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GAP_s GAP_c LaVAN_s LaVAN_c DAPatch (Single)Image DAPatch (Multi)PS-GAN

Fig. 4. Visualization of DAPatch and other patch attacks under 5% area. Please zoom
images for better shape details.
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Fig. 5. Deformation process of DAPatch in untargeted attacks under 5% area. Please
zoom images for better shape details.
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