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In this supplementary material, we provide: (A) theoretical proof of our pro-
posed method, (B) discussion on hyper-parameters for our proposed S2I-FGSM,
(D) discussion on spatial domain transformation analysis and visualizations for
spectrum transformation images.

A Proof

Proposition 1. Our proposed spectrum transformation can generate diverse
spectrum saliency maps and thus simulate diverse substitute models.
Proof . According to Lagrange’s mean value theorem:

∂J(x1, y;ϕ)

∂x1
=

∂J(x2, y;ϕ)

∂x2
+K, (1)

where K = ∂2J(ζ,y;ϕ)
∂ζ2 (x1 − x2), ζ ∈ [x2,x1].

Without spectrum transformation function T (·), spectrum saliency map:

Sϕ =
∂J(DI(D(x)), y;ϕ)

∂D(x)
, (2)

after applying our proposed spectrum transformation function T (·), the resulting
spectrum saliency map:

S′
ϕ =

∂J(T (x), y;ϕ)

∂D(x)
, (3)

where T (x) = DI((D(x) +D(ξ))⊙M)

LetD1 denotes ∂J(DI(D(x)),y;ϕ)
∂DI(D(x)) andD2 denotes ∂DI(D(x))

∂D(x) , then Sϕ = D1D2

(according to chain rule). After applying T (·) to x, resulting spectrum saliency
map S′

ϕ can be expressed as:

S′
ϕ = D′

1D
′
2 ⊙M , (4)
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where

D′
1 =

∂J(DI(D(x+ ξ)⊙M), y;ϕ)

∂DI(D(x+ ξ)⊙M)
, (5)

D′
2 =

∂DI(D(x+ ξ)⊙M)

∂(D(x+ ξ)⊙M))
. (6)

Based on Eq. 1, we can formally formulate S′
ϕ to be:

S′
ϕ = (D1 +K1)(D2 +K2)⊙M ,

= (Sϕ +K′)⊙M ,
(7)

where K1 and K2 are two specific matrices, and K′ = D1K2+D2K1+K1K2.
Eq. 7 clearly demonstrates that our proposed transformation T (·) is capable of
simulating a different spectrum saliency map.

B On the Hyper-Parameters Settings

We first study the influence of the hyper-parameters(i.e., standard deviation
(std) σ of noise ξ, tuning factor ρ of matrix M , number N of spectrum trans-
formations) for the proposed Spectrum Simulation Attack method.

B.1 On the Standard Deviation σ of Noise ξ

In Figure 1, we report the attack success rates of S2I-FGSM for different std σ.
Adversarial examples are crafted via Inc-v3 with N = 20 and ρ = 0.5. Partic-
ularly, σ = 0 means no noise is added to the input. A first glance shows that
for normally trained models, the attack success rates increase gradually as σ
increases and then tend to decrease when σ exceeds 16. Also when σ = 16, the
defense models can achieve relatively high attack success rates. Therefore, we
set σ = 16 in our paper.

B.2 On the Tuning Factor ρ of Matrix M

In this section, we study the effect of tuning factor ρ for our S2I-FGSM in Fig-
ure 2. Adversarial examples are crafted via Inc-v3 with N = 20 and σ = 16.
Particularly, ρ = 0 means there is no tuning on the spectrum. Similarly, as ρ in-
creases, the degree of spectrum transformation becomes stronger and the attack
success rates gradually increase and peak at ρ = 0.5. If we continue to increase
ρ (i.e. ρ > 0.5), the attack success rates will decrease which may be attributed
to the excessive spectrum transformation. To achieve better transferability, we
choose ρ = 0.5 in our paper.
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Fig. 1: The attack success rates (%) of S2I-FGSM on normally trained and de-
fense models w.r.t. the std σ of ξ. Adversarial examples are generated via Inc-v3.
Left: The results for fooling normally trained models. Right: The results for
fooling defense models.

B.3 On the Number N of Spectrum Transformations.

In this section, we study the effect of number N of spectrum transformations
for our S2I-FGSM in Figure 3. Adversarial examples are crafted via Inc-v3 with
ρ = 0.5 and σ = 16. As shown in Figure 3, when N = 1, our method performs
only one spectrum transformation and achieves the lowest transferability. As N
increases, the transferability of adversarial examples is significantly enhanced at
first, and turns to increase slowly after N exceeds 20. It also demonstrates that
our spectrum transformation can effectively narrow the gap between the substi-
tute model and victim model. It is worth noting that larger N implies expensive
computational overhead, as we need more forward and backward propagation
for gradient computation at each iteration. To balance the transferability and
computational overhead, we choose N = 20 in our paper.

C Time Analysis of DCT/IDCT

In our experiments, we directly apply DCT/IDCT on the full image which is a
time-consuming operation. Therefore, in this section we analyze the time con-
sumption of DCT/IDCT. In Tab.1 we show the average time of an adversarial
example generated by S2I-FGSM and the average time of DCT/IDCT among it.
For example, let IncRes-v2 be the substitute model, S2I-FGSM takes an average
of 3.78s to produce an adversarial example, of which DCT/IDCT takes up 0.58s
(only accounts for 15.3% of all overheads). The experiment is conducted on RTX
3090 GPUs.
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Fig. 2: The attack success rates (%) of S2I-FGSM on normally trained and de-
fense models w.r.t. the tuning factor ρ. Adversarial examples are generated via
Inc-v3. Left: The results for fooling normally trained models. Right: The results
for fooling defense models.
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Fig. 3: The attack success rates (%) of S2I-FGSM on normally trained and de-
fense models w.r.t. the number N of spectrum transformations. Adversarial ex-
amples are generated via Inc-v3. Left: The results for fooling normally trained
models. Right: The results for fooling defense models.

Table 1: The average time (s) of generating an adversarial example on Inc-v3,
Inc-v4, IncRes-v2 and Res-152, respectively. The left side of slash indicates the
time of DCT/IDCT and right side indicates the time of S2I-FGSM.

Inc-v3 Inc-v4 IncRes-v2 Res-152

Time 0.60/1.89 0.61/2.85 0.58/3.78 0.61/3.05
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D Additional Results

D.1 Spatial Domain Transformation Analysis

In this section, we further validate our point that analysis on spatial domain
cannot well reflect the gap between models. To support our point, we first define
spatial saliency map Ŝϕ as:

Ŝϕ =
∂J(x, y;ϕ)

∂x
, (8)

which is similar to our proposed spectrum saliency map Sϕ in Eq. 4. Then we flip
the image horizontally (spatial domain transformation) and analyze their spatial
saliency map and frequency saliency map. As shown in Figure 4, although spatial
saliency maps between raw image and fliped image vary greatly, the changes in
frequency spectrum and frequency saliency map (an indicator reflecting the char-
acteristics of models) are small. Thus, analysis on spatial domain is unreliable
and can hardly reflect the gap between models.

frequency spectrum spatial saliency map frequency saliency map

Fig. 4: Visualization for frequency spectrum, spatial saliency map, and frequency
saliency map. Top raw corresponds to raw image, and bottom row corresponds
to spatial domain transformed image. This result demonstrates that analysis on
spatial domain is unreliable.

D.2 Spectrum Transformation Images

To better understand the process of our method, we visualize the outputs of
spectrum transformation. Specifically, we perform several spectrum transforma-
tions on input images and show the resulting spectrum transformation outputs
in Figure 5. This figure shows that spectrum transformation just modifies colors
of image and does not change its semantic information.
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Fig. 5: Visualization for the spectrum transformation outputs (right columns)
w.r.t. raw input images (left column). This result shows that spectrum transfor-
mation just modifies colors of image and does not change its semantic informa-
tion.
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