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Abstract. We propose transferability from Large Geometric Vicinity
(LGV), a new technique to increase the transferability of black-box ad-
versarial attacks. LGV starts from a pretrained surrogate model and col-
lects multiple weight sets from a few additional training epochs with a
constant and high learning rate. LGV exploits two geometric properties
that we relate to transferability. First, models that belong to a wider
weight optimum are better surrogates. Second, we identify a subspace
able to generate an effective surrogate ensemble among this wider opti-
mum. Through extensive experiments, we show that LGV alone outper-
forms all (combinations of) four established test-time transformations by
1.8 to 59.9 percentage points. Our findings shed new light on the impor-
tance of the geometry of the weight space to explain the transferability
of adversarial examples.
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1 Introduction

Deep Neural Networks (DNNs) can effectively solve a board variety of computer
vision tasks [4] but they are vulnerable to adversarial examples, i.e., misclassified
examples that result from slight alterations to an original, well-classified example
[2/24]. This phenomenon leads to real-world security flaws in various computer
vision applications, including road sign classification [6], face recognition [23]
and person detection [30].

Algorithms to produce adversarial examples — the adversarial attacks — typ-
ically work in white-box settings, that is, they assume full access to the target
DNN and its weights. In practice, however, an attacker has limited knowledge of
the target model. In these black-box settings, the attacker executes the adver-
sarial attack on a surrogate model to produce adversarial examples that should
transfer to (i.e., are also misclassified by) the target DNN.

Transferability is challenging to achieve consistently, though, and the fac-
tors behind transferability (or lack thereof) remain an active field of study
BBIT726127029]. This is because adversarial attacks seek the examples that
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maximize the loss function of the surrogate model [8I15], whereas the target
model has a different loss function. Methods to improve transferability typically
rely on building diversity during optimisation [I7/27/29]. While these approaches
typically report significantly higher success rates than a classical surrogate, the
relationships between the properties of the surrogate and transferability remain
obscure. Understanding these relationships would enable the efficient construc-
tion of attacks (which would directly target the properties of interest) that ef-
fectively improve transferability.

In this paper, we propose Transferability from Geometric Vicinity (LGV),
an efficient technique to increase the transferability of black-box adversarial at-
tacks. LGV starts from a pretrained surrogate model and collects multiple weight
samples from a few additional training epochs with a constant and high learning
rate. Through extensive experiments, we show that LGV outperforms competing
techniques by 3.1 to 59.9 percentage points of transfer rate.

We relate this improved transferability to two properties of the weights that
LGV samples. First, LGV samples weights on a wider surface of the loss land-
scape in the weight space, leading to wider adversarial examples in the feature
space. Our observations support our hypothesis that misalignment between sur-
rogate and target alters transferability, which LGV avoids by sampling from
wider optima. Second, the span of LGV weights forms a dense subspace whose
geometry is intrinsically connected to transferability, even when the subspace is
shifted to other local optima.

DNN geometry has been intensively studied from the lens of natural general-
ization [TOITOIT4UT3U7TI28]. However, the literature on the importance of geometry
to improve transferability is scarcer [26/3] and has not yielded actionable insights
that can drive the design of new transferability methods (more in Appendix A).

Our main contribution is, therefore, to shed new light on the importance of
the surrogate loss geometry to explain the transferability of adversarial examples,
and the development of the LGV method that improves over state-of-the-art
transferability techniques.

2 Experimental Settings

Our study uses standard experimental settings to evaluate transfer-based black-
box attacks. The surrogates are trained ResNet-50 models from [I]. The targets
are eight trained models from PyTorch [21I] with a variety of architectures —
including ResNet-50. Therefore, we cover both the intra-architecture and inter-
architecture cases. We craft adversarial examples from a random subset of 2000
ImageNet test images that all eight targets classify correctly. We compare LGV
with four test-time transformations and their combinations, all applied on top of
I-FGSM. We do not consider query-based black-box attacks because the threat
model of transfer attacks does not grant oracle access to the target. To select the
hyperparameters of the attacks, we do cross-validation on an independent subset
of well-classified training examples. We provide results for L., norm bounded
perturbations (results for Ly are in Appendix C.3). We report the average and
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Fig. 1: Representation of the proposed ap-
proach.

standard deviation of the attack success rate, i.e. the misclassification rate of
untargeted adversarial examples, over 3 independent runs. Each run involves
independent sets of examples, different surrogate models, and different random
seeds. All code and models are available on GitHubPl More details are available
in Appendix C.1.

Notation In the following, we denote (z,y) an example in X x ) with X € R?, w
a vector of p DNN weights in R?, and £(z; y,w) the loss function at input z of a
DNN parametrised by w. The weights of a regularly trained DNN are noted wy.
Our LGV approach samples K weights wy, -+ ,wg. We name LGV-SWA the
model parametrised by the empirical average of weights collected by LGV, i.e.
WswA = = Zszl wg. The dot product between two vectors u, v is noted (u,v).

3 LGV: Transferability from Large Geometric Vicinity

Preliminaries. We aim to show the importance of the geometry of the surrogate
loss in improving transferability. As a first step to motivate our approach, we
experimentally demonstrate that adding random directions in the weight space to
a regularly trained DNN increases its transferability, whereas random directions
in the feature space applied on gradients do not. We build a surrogate called RD
(see Table|l)) by adding Gaussian white noise to a DNN with weight wy:

{wo + e | ex ~N(0, 0l,), k € [1,K]}. (1)

This boils down to structuring the covariance matrix of the Gaussian noise
added to input gradients from local variations in the weight space (at the first or-
der approximation, see Appendix B.1). These preliminary experiments and their

3 https://github.com/Framartin/lgv-geometric-transferability
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results are detailed in Appendix C.2. These findings reveal that exploiting local
variations in the weight space is a promising avenue to increase transferability.
However, this success is sensitive to the length of the applied random vectors,
and only a narrow range of o values increase the success rate.

Based on these insights, we develop LGV (Transferability from Geometric
Vicinity), our approach to efficiently build a surrogate from the vicinity of a
regularly trained DNN. Despite its simplicity, it beats the combinations of four
state of the art competitive techniques. The effectiveness of LGV confirms that
the weight space of the surrogate is of first importance to increase transferability.

3.1 Algorithm

Our LGV approach performs in two steps: weight collection (Algorithm [1)) and
iterative attack (Algorithm [2)).

First, LGV performs a few additional training epochs from a regularly trained
model with weights wg. LGV collects weights in a single run along the SGD
trajectory at regular interval (4 per epoch). The high constant learning rate is
key for LGV to sample in a sufficiently large vicinity. On the ResNet-50 surrogate
we use in our experiments, we run SGD with half the learning rate at the start of
the regular training (Figure . It allows SGD to escape the basin of attraction
of the initial local minimum. Appendix D.1 includes an in-depth discussion on
the type of high learning rates used by LGV. Compared to adding white noise to
the weights, running SGD with a high constant learning rate changes the shape
of the Gaussian covariance matrix to a non-trivial one [I9]. As Table [1| shows,
LGV improves over random directions (RD).

Second, LGV iteratively attacks the collected models (Algorithm [2)). At each
iteration k, the attack computes the gradient of one collected model with weights
wy, randomly sampled without replacement. If the number of iterations is greater
than the number of collected models, we cycle on the models. Because the at-
tack computes the gradient of a single model at each iteration, this step has a
negligible computational overhead compared to attacking a single model.

LGYV offers multiple benefits. It is efficient (requires 5 to 10 additional training
epochs from a pretrained model — see Appendix D.2), and it requires only minor
modifications to training algorithms and adversarial attacks. In case memory is
limited, we can approximate the collected set of LGV weights by their empirical
average (see Appendix B.2). The most important hyperparameter is the learn-
ing rate. In Appendix D.1, we show that LGV provides reliable transferability
improvements for a wide range of learning rate.

3.2 Comparison with the State of the Art

We evaluate the transferability of LGV and compare it with four state-of-the-art
techniques.

MI [5] adds momentum to the attack gradients to stabilize them and escape
from local maxima with poor transferability. Ghost Networks (GN) [I7] use
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dropout or skip connection erosion to efficiently generate diverse surrogate en-
sembles. DI [29] applies transformations to inputs to increase input diversity at
each attack iteration. Skip Gradient Method (SGM) [27] favours the gradients
from skip connections rather than residual modules, and claims that the formers
are of first importance to generate highly transferable adversarial examples. We
discuss these techniques more deeply in Appendix A.

Table [1|reports the success rates of the co-norm attack (2-norm in Appendix
C.3). We see that LGV alone improves over all (combinations of) other tech-
niques (simple underline). Compared to individual techniques, LGV raises suc-
cess rate by 10.1 to 59.9 percentage points, with an average of 35.6. When the
techniques are combined, LGV still outperforms them by 1.8 to 55.4 percentage
points, and 26.6 on average.

We also see that combining LGV with test-time techniques does not always
improve the results and can even drastically decrease success rate. Still, LGV
combined with input diversity (DI) and momentum (MI) generally outperforms
LGV alone (by up to 20.5%) and ranks the best or close to the best. Indeed, both
techniques tackle properties of transferability not covered by LGV: DI captures
some input invariances learned by different architectures, and MI smooths the
attack optimization updates in a moving average way.

The incompatibility of GN and SGM with LGV leads us to believe that
their feature perturbations are cheap and bad proxies for local weight geometry.
Eroding randomly skip connection, applying dropout on all layers, or backprop-
agating more linearly, may (poorly) approximate sampling in the weight space
vicinity. LGV does this sampling explicitly.

Overall, our observations lessen both the importance of skip connections
to explain transferability claimed by [27], and what was believed to hurt most



6 M. Gubri et al.

Table 1: Success rates of baselines, state-of-the-art and LGV under the Loo at-
tack. Simple underline is best without LGV combinations, double is best overall.
Gray is LGV-based techniques worse than vanilla LGV. “RD” stands for random
directions in the weight space. In %.

Target
Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1 IncV3
Baselines (1 DNN)
1 DNN 45.3+2.4 29.6+0.9 28.8+0.2 31.5+1.6 17.5+0.6 16.6+0.9 10.4+05 5.3+1.0
MI 53.0+2.2 36.3+1.5 34.7+0.a 38.1+2.0 22.0+0.1 21.1+0.3 13.9+0.4 7.3x028
GN 63.942.4 43.842.4 43.3+1.3 47.440.9 24.8+0.3 24.1+1.0 14.6+0.3 6.8+1.2
GN+MI 68.4+2.3 49.3+2.5 47.9+1.2 52.1+1.7 28.4+0.8 28.0+0.7 17.5+05 8.7+05
DI 75.0+0.2 56.4+1.9 59.6+1.5 61.6+2.4 41.6+1.1 39.7+0.0 27.7+1.0 15.2+1.0
DI+MI 81.2+0.3 63.8+1.9 67.6+0.9 68.9+1.5 49.3+0.7 46.7+0.4 33.0+1.0 19.410.9
SGM 64.4+0.8 49.1+3.1 48.9+0.6 51.7+2.8 30.7+0.9 33.6+1.3 22.5+1.5 10.7+0.9
SGM-+MI 66.0+0.6 51.3+3.5 50.9+0.9 54.3+2.3 32.5+1.3 35.8+0.7 24.1+1.0 12. 1412
SGM+DI 76.8+0.5 62.3+2.7 63.6+1.7 65.3+1.4 45.5+0.9 49.9+0.8 36.0+0.7 19.2+1.7

SGM+DI+MI  80.9+0.7 66.9+2.5 68.7+1.2 70.0+1.7 50.9+0.6 56.0+1.4 42.1+1.4 23.6+1.6

Our techniques
RD 60.6+1.5 40.5+3.0 39.9+0.2 44.4+3.2 22.9+08 22.7+0.5 13.9+0.2 6.6+0.7
LGV-SWA 84.9+1.2 63.9+3.7 62.1+0.4 61.14+2.0 44.2+0.4 42.44+1.3 31.5+0.8 12.2403s
LGV-SWA+RD 90.2+0.5 71.7+3.4 69.9+1.2 69.1+3.3 49.9+1.0 47.4+2.0 34.9+0.3 13.5+0.9
LGV (ours) 95.4+0.1 85.542.3 83.7+1.2 82.142.4 69.321.0 67.8+1.2 58.1+0.5 25.3+1.9

LGV combined with other techniques

MI 97.1+0.3 88.7+2.3 87.0+1.0 86.6+2.1 73.2+1.4 71.6+1.4 60.7+0.6 27.4+0.8
GN 94.2+0.2 83.0+2.2 80.8+0.7 79.5+2.4 66.9+0.7 66.6+0.7 56.2+0.5 24.4+1.4
GN+MI 96.4+0.1 87.2+2.0 85.3+0.8 84.4+2.3 70.4+1.0 71.2+0.8 59.2+0.5 26.5+0.4
DI 93.840.1 84.4+1.6 84.1+0.6 81.8+1.6 74.9+0.2 76.2+0.7 71.5+1.3 38.9+1.1
DI+MI 96.9+0.0 89.6+1.7 89.6+0.4 88.4+1.1 82.3+0.9 82.2+0.90 78.6+0.8 45.4+0.5
SGM 86.9+07 7T4.8426 73.5+12 72.84+2.4 60.6+0.9 69.0+1.8 61.5+1.7 31.7+1.8
SGM-+MI 89.1+0.5 77. 1428 76.7+1.1 75.6+2.1 62.7+1.1 72.3+1.0 64.7+2.2 34.2+1.7
SGM+DI 84.340.6 725424 72.8407 707418 62. 1400 71.8+1.4 67.0+1.8 37.7T+1.8

SGM-+DI+MI  87.7+0.6 76.442.5 77.2+08 75.6+1.1 66.4+1.0 76.6+0.7 72.1+1.4 42.941.7
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transferability, i.e., the optimization algorithm [5] and lack of input diversity [29].
Our results demonstrate that the diversity of surrogate models (one model per
iteration) is at most importance to avoid adversarial examples overfitting to their
surrogate model. LGV does so more effectively than [I7].

We show that LGV consistently increases transfer-based attacks success.
However, it is not trivial why sampling surrogate weights in the vicinity of a
local minimum helps adversarial examples to be successful against a model from
another local minimum. In the following, we analyse the LGV success with a
geometrical perspective.

4 Investigating LGV Properties: On the Importance of
the Loss Geometry

In the following, we relate the increased transferability of LGV to two geomet-
rical properties of the weight space. First, we show that LGV collects weights
on flatter regions of the loss landscape than where it started (the initial, pre-
trained surrogate). These flatter surrogates produce wider adversarial examples
in feature space, and improve transferability in case of misalignment between
the surrogate loss (optimized function) and the target loss (objective function).
Second, the span of LGV weights forms a dense subspace whose geometry is
intrinsically connected to transferability, even when the subspace is shifted to
other independent solutions. The geometry plays a different role depending on
the functional similarity between the target and the surrogate architectures.

4.1 Loss Flatness: the Surrogate-Target Misalignment Hypothesis

We first explain why LGV is a good surrogate through the surrogate-target mis-
alignment hypothesis. We show that LGV samples from flatter regions in the
weight space and, as a result, produces adversarial examples flatter in the feature
space. This leads to surrogates that are more robust to misalignment between
the surrogate and target prediction functions.

Sharp and flat minima have been discussed extensively in machine learning
(see Appendix A). A sharp minimum is one where the variations of the objective
function in a neighbourhood are important, whereas a flat minimum shows low
variations [I1]. Multiple studies [I3II4] correlate (natural) generalization with
the width of the solution in the weight space: if the train loss is shifted w.r.t. the
test loss in the weight space, wide optima are desirable to keep the difference
between train and test losses small.

We conjecture that a similar misalignment occurs between the surrogate
model and the target model in the feature space. See Figure [2] for an illustration
of the phenomenon. Under this hypothesis, adversarial examples at wider max-
ima of the surrogate loss would transfer better than sharp ones. The assumption
that surrogate and target models are shifted with respect to each other seems
particularly reasonable when both are the same function parametrised differently
(intra-architecture transferability), or are functionally similar (same architecture
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family). We do not expect all types of loss flatness to increase transferability,
since entirely vanished gradients would be the flatter loss surface possible and
annihilate gradient-based attacks.

Table 2: Sharpness metrics in Natural Loss on ResNet-50 Surrogate

the weight space, i.e., the largest 61
eigenvalue and the rank of the 4.
Hessian, computed on three
types of surrogate and 10,000

o 04 Surrogate
training examples. 2 1DNN
S Adversarial Loss on ResNet-50 Target LGV indiv.
LGV-SWA
Hessian 61
Model Max EV  Trace 1
P
1 DNN 558 157 16258 L725
LGV indiv. 168 +127 4295 +s17 0+ p = o = s
LGV-SWA 30 +: 1837 +70 Distance along Random Directions

Fig.3: L, attack crafted on surrogate with
natural loss (up), evaluated on target (down)
with respect to the 2-norm distance along 10
random directions in the weight space from the
LGV-SWA solution (orange), random LGV
weights (purple), and the initial DNN (green).

We provide two empirical evidences for this hypothesis. First, LGV flattens
weights compared to the initial DNN. Second, LGV similarly flattens adversarial
examples in the feature space.

Flatness in the Weight Space We establish that LGV weights and their
mean (LGV-SWA) are in a flatter region of the loss than the initial DNN. The
reason we consider LGV-SWA is that this model lies at the center of the loss
surface explored by LGV and attacking this model yields a good first-order ap-
proximation of attacking the ensemble of LGV weights (cf. Appendix B.2). First,
we compute Hessian-based sharpness metrics. Second, we study the variations
of the loss in the weight space along random directions from the solutions.

First, Table [2| reports two sharpness metrics in the weight space: the largest
eigenvalue of the Hessian which estimates the sharpness of the sharpest direction,
and the trace of the Hessian which estimates the sharpness of all directions. Both
metrics conclude that the initial DNN is significantly sharper than the LGV and
LGV-SWA weights.

Second, like [I3], we sample a random direction vector d on the unit sphere,
d = 5 with e ~ NV(0, I,) and we study the following rays,

llell2
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wo(a,d) = wo + ad, wi(a,d) =wg +ad, wswa(a,d) =wswa + ad, (2)

with @ € R*. That is, we follow the same direction d for the three studied
solutions. Figure [3|reports the intra-architecture results for 10 random directions
(see Appendix C.4 for other settings). The natural loss in the weight space is
wider at the individual LGV weights and at LGV-SWA than it is at the initial
model weights (upper plot). When adding the random vector ad, the natural
loss of LGV-SWA barely increases, while that of the initial model wq reaches
high values: 0.40 vs. 6.67 for ||a - d||2 from 0 to 100. The individual LGV models
are in between, with an 1.12 increase on average. As Figure [3] also reveals, the
increased flatness of LGV-SWA in the weight space comes with an increased
transferability. We investigate this phenomenon deeper in what follows.

Flatness in the Feature Space Knowing that LGV (approximated via LGV-
SWA) yields loss flatness in the weight space, we now connect this observation to
the width of basins of attractions in the feature space when we craft adversarial
examples. That is, we aim to show that flat surrogates in the weight space
produce flatter adversarial examples in the feature space.

To study flatness of adversarial examples in the feature space, we consider the
plane containing 3 points: the original example x, a LGV adversarial example
239, and an adversarial example crafted against the initial DNN z&kv . We
build an orthonormal basis (u/,v') = (ﬁ, ﬁ) using the first two steps of the
Gram—Schmidt process,

(ol — 7, ) ). 5

_ adv adv _
(Uav)—(xLGV z, (THNN — ) (u, )

We focus our analysis on the 2-norm attack. It constrains adversarial per-
turbations inside the Ls-ball centred on x of radius €. This has the convenient
property that the intersection of this ball with our previously defined plane
(containing z) is a disk of radius €.

Figure [4 shows the loss of the ensemble of LGV weights and the loss of the
initial DNN in the (u/,v’) coordinate system. We report the average losses over
500 disks, each one centred on a randomly picked test example. It appears that
LGV has a much smoother loss surface than its initial model. LGV adversarial
examples are in a wide region of the LGV ensemble’s loss. The maxima of the
initial DNN loss is highly sharp and much more attractive for gradient ascent
than the ones found by LGV — the reason why adversarial examples crafted from
the initial DNN overfit.

Flatness and Transferability Figure [4] also shows the losses of two target
models in the (u/,v") coordinate system. The LGV loss appears particularly well
aligned with the one of the ResNet-50 target (intra-architecture transferability).
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Fig. 4: Surrogate (left) and target (right) losses in the plane containing the orig-
inal example (circle), an adversarial example against LGV (square) and one
against the initial DNN (triangle), in the (u’,v") coordinate system. Colours are
in log-scale, contours in natural scale. The white circle represents the intersec-
tion of the 2-norm ball with the plane.
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We observe a shift between the contour of both models, with the same functional
form. These observations are valid for other targets and on planes defined by ad-
versarial examples of other surrogates (see Appendix C.6). All these observations
corroborate our surrogate-target misalignment hypothesis.

In Appendix C.5, we provide results of another experiment that corrobo-
rates our findings. We interpolate the weights between LGV-SWA and the initial
model, i.e. moving along a non-random direction, and confirm that (i) the surro-
gate loss is flatter at LGV-SWA than at the initial model weights, (ii) that the
adversarial loss of target models gets higher as we move from the initial model
to LGV-SWA.

~
Section [4.1]— Conclusion. LGV weights lie in flatter regions of the loss

landscape than the initial DNN weights. Flatness in the weight space cor-
relates with flatness in the feature space: LGV adversarial examples are
wider maxima than sharp adversarial examples crafted against the ini-
tial DNN. These conclusions support our surrogate-target misalignment
hypothesis: if surrogate and target losses are shifted with respect to each
other, a wide optimum is more robust to this shift than a sharp optimum.

\_

4.2 On the Importance of LGV Weight Subspace Geometry

Although we have demonstrated the link between the better transferability that
LGV-SWA (and in extenso, the LGV ensemble) achieves and the flatness of
this surrogate’s loss, additional experiments have revealed that the LGV models
— taken individually — achieve lower transferability, although they also have a
flatter loss than the initial model (see Appendix C.7 for details). This indicates
that other factors are in play to explain LGV transferability.

In what follows, we show the importance of the geometry of the subspace
formed by LGV models in increasing transferability. More precisely, deviations
of LGV weights from their average spans a weight subspace which is (i) densely
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related to transferability (i.e., it is useful), (ii) composed of directions whose
relative importance depends on the functional similarity between surrogate and
target (i.e., its geometry is relevant), (iii) remains useful when shifted to other
solutions (i.e., its geometry captures generic properties). Similarly to [12], the
K-dimensional subspace of interest is defined as,

S={w|w=wswa +Pz}, (4)

where wgwa is called the shift vector, P = (w; —wswa, - .., wx —wswa )T is the
projection matrix of LGV weights deviations from their mean, and z € RX.

A Subspace Useful for Transferability First, we show that the subspace
has importance for transferability. Similarly to our previous RD surrogate, we
build a new surrogate “LGV-SWA + RD” by sampling random directions in the
full weight space around LGV-SWA. It is defined as:

{'LUSWA Jre;g | e;c NN(Oa U/IP)a ke ﬂvi]]}v (5)

where the standard deviation o’ is selected by cross-validation in Appendix C.8.

Table 1| reports the transferability of this surrogate for the L., attack (see
Appendix C.3 for Ly). We observe that random deviations drawn in the entire
weight space do improve the transferability of LGV-SWA (increase of 1.32 to
10.18 percentage points, with an average of 6.90). However, the LGV surrogate
systematically outperforms “LGV-SWA + RD”. The differences range from 4.33
to 29.15 percentage points, and average to 16.10. Therefore, the subspace S has
specific geometric properties related to transferability that make this ensemble
outperforms the ensemble formed by random directions around LGV-SWA.

In Appendix C.9, we also show that the subspace is densely connected to
transferability by evaluating the transferability of surrogates built from S by
sampling z ~ N (0, Ik).

Decomposition of the LGV Projection Matrix Second, we analyse the
contribution of subspace basis vectors to transferability through a decomposition
of their projection matrix. Doing so, we build alternative LGV surrogates with an
increasingly reduced dimensionality, and we assess the impact of this reduction
on transferability.

We decompose the matrix of LGV weights deviations P into orthogonal di-
rections, using principal component analysis (PCA) since the PCA coordinate
transformation diagonalises this matrix. Following [12], we apply PCA based on
exact full SV]jﬂ to obtain a new orthonormal basis of the LGV weight subspace.
We exploit the orthogonality of the components to change the basis of each wy

1 As [12] we use the PCA implementation of sklearn[22], but here we select the full
SVD solver instead of randomized SVD to keep all the singular vectors.
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with the PCA linear transformation and project onto the first C principal com-
ponents. We then apply the inverse map, with wgwa as shift vector, to obtain a
new weight vector w}'). We repeat the process with different value of C', which
enables us to control the amount of explained weights variance and to build LGV
ensembles with a reduced dimensionality.

The eigenvalues of the LGV weights deviation matrix equal the variance of
the weights along the corresponding eigenvectors. We use the ratio of explained
weights variance to measure the relative loss of information that would result
from removing a given direction. From an information theory perspective, if
a direction in the weight space is informative of transferability, we expect the
success rate to decrease with the loss of information due to dimensionality re-
duction. Note that the surrogate projected on the PCA zero space (i.e. C = 0)
is LGV-SWA | whereas C' = K means we consider the full surrogate ensemble.

Figure [p| shows, for each dimensionality reduced LGV surrogates, the ex-
plained variance ratio of its lower dimensional weight subspace and the success
rate that this ensemble achieves on the ResNet-50 and Inception v3 targets.
To observe the trends, we add the hypothetical cases of proportionality to the
variance (solid line) and equal contributions of all dimensions (dashed line).

For both targets, explained variance correlates positively with transferability.
This means that our approach improves transferability more, as it samples along
directions (from SWA) with higher variance. Especially in the intra-architecture
case (Figure , there is an almost-linear correlation between the importance
of a direction in the weight space and its contribution to transferability. This
conclusion can be loosely extended to the targets that belong to the same archi-
tecture family as the surrogate, i.e. ResNet-like models (Appendix C.10).

In some inter-architecture cases, we do not observe this linear trend, although
the correlation remains positive. In Figure [Fb, we see that the real variance
ratio/transfer rate curve is close to the hypothetical case where each direction
would equally improve transferability on the Inception v3 target. This means
that, in this inter-architecture case, each direction contributes almost-equally
to transferability regardless of their contribution to the subspace variance. In
supplementary materials, we show other inter-architecture cases (e.g., DenseNet-
201 and VGG19) that are intermediate between linear correlation and almost-
equal dimensional contributions (Appendix C.10).

Taking together the above results, we explain the better transferability of
LGV with the variance of the subspace it forms. However, this correlation is
stronger as the surrogate and target architectures are more functionally similar.

Shift of LGV Subspace to Other Local Minima Third, we demonstrate
that the benefits of the LGV subspace geometry are shared across solutions in
the weight space. This indicates that there are generic geometry properties that
relate to transferability.

We apply LGV to another independently trained DNN wy(,. We collect K new
weights wj,, which we average to obtain wiy, . We construct a new surrogate by
adding the new deviations to wswa,
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Fig.5: Success rate of the LGV surrogate projected on an increasing number
of dimensions with the corresponding ratio of explained variance in the weight
space. Hypothetical average cases of proportionality to variance (solid) and equal
contributions of all subspace dimensions (dashed). Scales not shared.

{wswa + (w), — wiwa) | k € [1, K]}, (6)

and we call this new shifted surrogate “LGV-SWA + (LGV’ - LGV-SWA’)”.

Shifting a LGV subspace to another flat solution (i.e., another LGV-SWA)
yields a significantly better surrogate than sampling random directions from
this solution. The difference between “LGV-SWA + (LGV’ - LGV-SWA”)” and
“LGV-SWA + RD” varies from 3.27 to 12.32 percentage points, with a mean
of 8.61 (see Appendix C.11 for detailed results). The fact that the subspace
still improves transferability (compared to a random subspace) when applied to
another vicinity reveals that subspace geometry has generic properties related
to transferability.

Yet, we also find a degradation of success rate between this translated surro-
gate and our original LGV surrogate (-7.49 percentage points on average, with
values between -1.02 and -16.80). It indicates that, though the geometric prop-
erties are shared across vicinities, the subspace is optimal (w.r.t. transferability)
when applied onto its original solution.

The subspace is not solely relevant for solutions found by LGV: LGV devi-
ations are also relevant when applied to regularly trained DNNs. For that, we
build a new surrogate “1 DNN + v (LGV’ - LGV-SWA’)” centred on the DNN
Wo,

{wo + y(wy, —wswa) | k € [1, K]}, (7)

where the LGV deviations are scaled by a factor v € R. Scaling is essential here
because DNNs are sharper than LGV-SWA. Unscaled LGV deviations exit the



14 M. Gubri et al.

vicinity of low loss, which drops the success rate by 32.8 percentage points on
average compared to the optimal ~ value of 0.5 (see Appendix C.11 for detailed
results). When properly scaled and applied to an independently and regularly
trained DNN, LGV deviations improve upon random directions by 10.0 percent-
age points in average (2.87—13.88).

With all these results, we exhibit generic properties of the LGV subspace.
It benefits solutions independently obtained. Applying LGV deviations on a
solution of a different nature may require to scale them according to the new
local flatness.

~\
Section — Conclusion. Taking together all our results, we conclude

that the improved transferability of LGV comes from the geometry of
the subspace formed by LGV weights in a flatter region of the loss. The
LGV deviations spans a weight subspace whose geometry is densely and
generically relevant for transferability. This subspace is key, as a single
flat LGV model is not enough to succeed. This entire subspace enables
to benefit from the flatness of this region, overcoming potential misalign-
ment between the loss functions of the surrogate and that of the target
model. That is, it increases the probability that adversarial examples
maximizing the surrogate loss will also (near-)maximize the target loss —
and thus successfully transfer.

. J

5 Conclusion and Future Work

We show that random directions in the weight space sampled at each attack it-
eration increase transferability, unlike random directions in feature space. Based
on this insight, we propose LGV, our approach to build a surrogate by collecting
weights along the SGD trajectory with a high constant learning rate, starting
from a regularly trained DNN. LGV alone beats all combinations of four state-
of-the-art techniques. We analyse LGV extensively to conclude that (i) flatness
in the weight space produces flatter adversarial examples which are more ro-
bust to surrogate-target misalignment; (ii) LGV weights spans a dense subspace
whose geometry is intrinsically connected to transferability. Overall, we open
new directions to understand and improve transferability from the geometry of
the loss in the weight space. Future work may, based on the insights of [32] on
natural generalization, study transferability with the perspective of volume in
the weight space that leads to similar predictive function.
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