
Supplementary Material: A Large-scale
Multiple-objective Method for Black-box Attack

against Object Detection

Siyuan Liang1,2, Longkang Li3, Yanbo Fan4, Xiaojun Jia1,2, Jingzhi Li1,2,
⋆
,

Baoyuan Wu3,⋆, and Xiaochun Cao5

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China

3 School of Data Science, Secure Computing Lab of Big Data, The Chinese
University of Hong Kong, Shenzhen, China

4 Tencent AI Lab, Shenzhen, China
5 School of Cyber Science and Technology, Shenzhen Campus, Sun Yat-sen

University, Shenzhen, China
{liangsiyuan, jiaxiaojun, lijingzhi}@iie.ac.cn; {lilongkang,

wubaoyuan}@cuhk.edu.cn; fanyanbo0124@gmail.com;
caoxiaochun@mail.sysu.edu.cn

Organization of the Supplementary Material

In Section A, we show the algorithm flow of GARSDC, which attacks against
object detection. In Section B, we add the specific proof for the lower bound(Eq.
(8)) of the P values of the best bj . Section C gives the approximation guarantee
of GARSDC(Eq. (9)).

A The Algorithm Flow of GARSDC

Algorithm 1 Adversarial Examples Generation with GARSDC Attack

Require: victim detector H1, gradient-prior detectors H2,H3, clean image x ∈
Rw×h×c, ground-truth boxes O, maximum number of iterations Tmax, the
size of a sample patch a, maximum iterations Tdc of divide-and-conquer, the
flag of divide-and-conquer flag, numbers of divide-and-conquer i, crossover
rate cr, mutation rate mr.

Ensure: adversarial image x̂ ∈ Rw×h×c with ||δ||∞ ≤ 0.05, x̂ = x+ δ
1: δbest1 , δbest2 ← INIT(x, H2, H3)(see Alg. 2 for the initial population in Section

3.3)
2: fbest ← max{F (H1(x),x + δm)},m = 1, 2 in Eq. (3) with ground-truth

boxes O
3: Sbest = {∞}ij=1

⋆ Coressponding Author

2 Siyuan Liang, et al.

4: Best individual’s index is m← argmax
δm

{F (H1(x),x+ δm)},m = 1, 2

5: t← 2, f lag ← 0, a(2) ← 0.05 ∗min(w, h)
6: while t < Tmax and x̂ is not adversarial do
7: a(t) ←side length of the sample patch (according to some schedule)
8: δnew1 , δnew2 , s = RS(w, h, c, δbest1 , δbest2 , a(t))(see Alg. 3 for Section 3.4)
9: Partition s into i sets s1, s2, ..., si evenly so that each sj is a square with

equal sides
10: fnew

m , Sm
new ← F (H1(x),x+ δnewm), S(δnewm [s])

11: t← t+ 1
12: if ∃sj ∈ Snew, sj ̸=∞ then flag = 1
13: end if
14: if flag == 1 then
15: while j < i do
16: // Run Alg. 4 with T = Tdc − 1 on each sj
17: δ1[uj], δ2[uj], f(δ1j), f(δ2j) = DC(δnew1 , δnew2 , Tdc−1, H1,O,mr, cr, sj ,x)
18: end while
19: Merge the i resulting subsets into a set U =

⋃i
j=1 uj

20: // Run Alg. 4 with T = 1 on each U
21: δ1[ui+1], δ2[ui+1], f(δ1(i+1)), f(δ2(i+1)) = DC(δnew1 , δnew2 , 1, H1,O,mr, cr, U,x)
22: The best sub-component is δ[ubest] = argmax

δ[uj]
{f(δ[uj])}, j = 1, ..., i+1

23: Update δnew1 , δnew2 with the best sub-component δ1[ubest], δ2[ubest]
24: Update individual’s fitness fnew

1 and fnew
2

25: Update best individual’s index m← argmax(fnew
1 , fnew

2)
26: flag ← 0, t = t+ Tdc

27: end if
28: if fnew

m > fbest then δbestm ← δnewm , fbest ← fnew
m

29: end if
30: end while
31: return adversarial perturbation δbestm

We show the overall algorithm of GARSDC in Alg. 1. In line 1, we use gradient-
prior detectors consisting of Faster r-cnn H2 and SSD H3 to generate skip-based
and chain-based perturbations as initial population, which is called mixed initial
population in Section 3.3. In line 8, we randomly sample subsets across the full
image using a strategy similar to PRFA. However, we do not need a prior-guided
dimension reduction, which can circumvent the risk that the prior is terrible. In
lines 12-13, we can use the sub-component fitness to help judge whether the
sub-components of random search are helpful for optimization and decide search
perturbation locally. In line 15, we simultaneously run Alg. 4 on i sets. In the
first round (line 17), it evenly distributes the ground set s over i machines,
and then each machine runs DC to find a subset sj in parallel. In the second
round, we merge the i resulting subsets are merged on one machine (line 19),
and then DS to find another si+1 (line 21). We update δnew1 , δnew2 with the best
sub-component and record individual fitness fnew

1 , fnew
2 at the same time.

GARSDC 3

Algorithm 2 Mixed Initial Population Based on Gradient-prior

Require: gradient-prior detectors H2,H3, clean image x ∈ Rw×h×c.
Ensure: adversarial image x̂ ∈ Rw×h×c with ||δ||∞ ≤ 0.05, x̂ = x+ δ

1: δ
(0)
1 ← 0, δ

(0)
2 ← 0, t← 0

2: while t < 20 do
3: // skip-based perturbation for Eq. (5)

4: Input x+δ
(t)
1 to detector H2 and obtaion the gradient W ∗∇xH2(x+δ

(t)
1)

5:

6: Update δ
(t+1)
1 by 0.05 · sign(W ∗ ∇xH3(x+ δ

(t)
1))

7: // chain-based perturbation for Eq. (5)

8: Input x+δ
(t)
2 to detector H3 and obtaion the gradient W ∗∇xH3(x+δ

(t)
2)

9: Update δ
(t+1)
2 by 0.05 · sign(W ∗ ∇xH3(x+ δ

(t)
2))

10: end while
11: return perturbations δ

(19)
1 , δ

(19)
2

We take the TIFGSM attack method as an example, and in Alg. 2, we show
the process that TIFGSM iterates 20 times on the detectors to generate the
initialization perturbation. In Alg. 2, W denotes the kernel matrix in TIFGSM
attack. We can return results skip-based δ1 and chain-based perturbations δ2 as
the mixed initial population with gradient-prior.

Algorithm 3 Random Subset Selection

Require: image width w, height h, channels c, skip-based perturbation δ1,
chain-based perturbation δ2, random subset’s size a

1: s← array of zeros of size w × h× c
2: sample uniformly r ∈ {0, ..., w − a}, s ∈ {0, ..., h− a}
3: sr+1:r+a,s+1:s+a = 1
4: while i < c do
5: ρ1 ← Uniform({−1, 1}), ρ2 ← Uniform({−1, 1})
6: δ1r+1:r+a,s+1:s+a ← (ρ1 · δ1)r+1:r+a,s+1:s+a

7: δ2r+1:r+a,s+1:s+a ← (ρ2 · δ2)r+1:r+a,s+1:s+a

8: end while
9: return new perturbations δ1, δ2, and subset s

In Alg. 3, we show random subset selection. In the first round, we sample
subset in the search space via random search (line 2). In the second round, we
record the sample subset (line 3) and alter perturbations δ1, δ2 (lines 6-7).

Algorithm 4 Divide-and-Conquer Algorithm

Require: skip-based perturbation δ01 , chain-based perturbation δ02 , maximum
iterations T, victim detector H1, ground-truth boxes O, crossover rate cr,
mutation rate mr, sub-component s, clean image x

Ensure: adversarial image x̂ ∈ Rw×h×c with ||δ||∞ ≤ 0.05, x̂ = x+ δ
1: // genetic algorithm

4 Siyuan Liang, et al.

2: f
(0)
1 , f

(0)
2 , s

(0)
1 , s

(0)
2 ← F (H1(x),x + δ1), F (H1(x),x + δ2), S(δ1[s]), S(δ2[s])

with ground-truth boxes O in Eq. (3) and Eq. (7).
3: f bset

1 , f best
2 , δbest1 [s], δbest1 [s]← f0

1 , f
0
2 , δ

0
1 [s], δ

0
1 [s]

4: t← 0
5: while t < T do
6: if max{s(t)1 , s

(t)
2 } =∞ then

7: break
8: end if
9: loser,winner = sort by fitness(δ

(t)
1 [s], δ

(t)
2 [s], s

(t)
1 , s

(t)
2)

10: δ
(t)
1 [s], δ

(t)
2 [s] = crossover(cr, loser,winner)

11: δ
(t)
1 [s], δ

(t)
2 [s] = mutation(mr, loser,winner)

12: t← t+ 1
13: f

(t)
1 , f

(t)
2 , s

(t)
1 , s

(t)
2 ← F (H1(x),x+δ

(t)
1), F (H1(x),x+δ

(t)
2), S(δ

(t)
1 [s]), S(δ

(t)
2 [s])

with ground-truth boxes O in Eq. (3) and Eq. (7).

14: if f
(t)
1 > f

(t−1)
1 then

15: f best
1 ← f t

1, δ
best
1 [s]← δt1[s]

16: end if
17: if f

(t)
2 > f

(t−1)
2 then

18: f best
2 ← f t

2, δ
best
2 [s]← δt2[s]

19: end if
20: end while
21: return best sub-components δbest1 [s], δbest2 [s] and individual’s fitness f best

1 , f best
2

In Alg. 4, we show the genetic algorithm based on the divide-and-conquer algo-
rithm. In line 6, it denotes there are no true positive or false positive objects in
s. Thus, the sub-component do not need to be improved. We sort the fitness of
sub-components in line 9 and alter sub-components by crossover and mutation
in lines 10-11. Since object detection is holistic, we return the best fitness of
individuals and corresponding sub-components over the entire process.

B Proof A Lower Bound on The P Value

In Section 3.2, we set the p-th individual fitness P (x+ δp) = F (x+ δp). Thus,
proof a lower bound on the P value is same as on the F value. We firstly give
two notions of ‘approximate submodularity’, which measure to the extent of a
set function F has the submodular property. The γ- and α-submodularity as
follows:

Definition 1 γ-Submodularity Ratio [1]. The submodularity ratio of a set
function F : 2s → R with respect to a set u ⊆ s and a paremeter l ≥ 1 is

γu,l(F) = min
l⊆u,m:|m|≤l,m∩l=∅

∑
v∈m(F (l ∪ v)− F (l))

F (l ∪m)− F (l)
(10)

GARSDC 5

Definition 2 α-Submodularity Ratio [2]. The submodularity ratio of a set
function F : 2s → R is

αF = min
u⊆m⊆s,v /∈m

F (s ∪ v)− F (s)

F (m ∪ v)− F (m)
(11)

The subset selection problem as follows:

Definition 3 Subset Selection. Given all items s = {s1, ..., sn}, an objective
function F and a budget z. we aim to find a subset of most z items maximizing
F , i.e.,

argmaxu⊆s F (u), s.t.|u| ≤ z (12)

where | · | denotes the size of a set.

Now, we will proof the Eq. (8). We first prove that max{P (δ[bj])|1 ≤ j ≤
i} ≥ α

i OPT . The b denotes an optimal subset of s, i.e., P (δ[b]) = OPT . For
1 ≤ j ≤ i, Let aj = b ∩ sj . Thus, ∪ij=1aj = b and for any j ̸= m, aj ∩ am = ∅.
Then, we have

P (δ[b]) = P (δ[∪ij=1aj]) =

i∑
j=1

P (δ[∪jm=1am])− P (δ[∪j−1
m=1am]) (13)

The set {sj1, ..., s
j
|aj |} denotes the items in aj . Then, for any 1 ≤ j ≤ i, it holds

that

P (δ[∪jm=1am])− P (δ[∪j−1
m=1am])

=

|aj |∑
l=1

P (δ[∪j−1
m=1am ∪ {sj1, ..., s

j
l }])− P (δ[∪j−1

m=1am ∪ {sj1, ..., s
j
l−1}])

≤ 1

α

|aj |∑
l=1

P (δ[{sj1, ..., s
j
l }])− P (δ[{sj1, ..., s

j
l−1}]) =

P (δ[aj])

α
,

(14)
where the inequality is by the definition of α-submodularity ratio since {sj1, ..., s

j
l−1} ⊆

∪j−1
m=1am ∪ {sj1, ..., s

j
l−1}. Note that for any 1 ≤ j ≤ i, P (δ[bj]) ≥ P (δ[aj]), since

aj ⊆ sj and |aj | ≤ |b| ≤ z. Thus we get

OPT = P (a[b]) ≤ 1

α

i∑
j=1

P (aj) ≤
1

α

i∑
j=1

P (bj) (15)

which leads to max{P (δ[bj])|1 ≤ j ≤ i} ≥ α
i OPT .

We then prove that max{P (δ[bj])|1 ≤ j ≤ i} ≥ γ∅,z
z OPT . By the definition of

γ-submodularity ratio, P (δ[b]) ≤
∑

s∈b F (δ[s])/γ∅,z. Let s
∗ ∈ argmaxs∈b P (δ[s]),

and {s1, ..., si} is a partition set of s, s∗ must belong to one of the j-th sets.
Thus max{P (δ[bj])|1 ≤ j ≤ i} ≥ γ∅,z

z OPT . We put z into the above equation
and Eq. (15) and proof the Eq. (8)

6 Siyuan Liang, et al.

C Proof Approximation Guarantee

For any u ⊆ sj(1 ≤ j ≤ i), there exits one item s ∈ sj/u such that [1]

P (δ[u ∪ s])− P (δ[s]) ≥ (γu,z/z) ∗ (P (δ[bj])− P (δ[s])) (16)

In above section, we analyze the maximum number of iterations on each
machine until P (δ[u]) ≥ (1− e−γmin) ·P (δ[oj]). For the machine running DS on
sj , let J

j
max denote the maximum value of m ∈ {1, ..., z} such that in the archive

Ω, there exists a solution u with u ≤ j and P (δ[u]) ≥ (1− (1− γmin

z)) ·P (δ[oj]).
That is,

Jj
max = max{m ∈ {1, ..., k}|∃u ∈ R, |u| < k∧P (δ[u]) ≥ (1−(1−γmin

z
))·P (δ[oj])}

(17)
Then, we only need to analyze the maximum iterations until min{Jj

max|1 ≤ j ≤
i} = z. For GA running on sj , let zj be a corresponding solution with the
value Jj

max. Because zj is weakly dominated by the newly generated solution,
the Jj

max can not decrease. In Eq. (16), we know that for any 1 ≤ j ≤ i,
change specific bit of zj can generate a new solution snewj and satisfy that

P (δ[snewj])− P (δ[zj]) ≥
γzj ,z

z (P (δ[bj])− P (δ[zj])). Then, if J
j
max < z, we have

P (δ[snewj]) ≥ (1− (1− γmin/z)
Jj
max+1) · P (δ[bj]) (17)

where γzj ,z > γmin. Since |snewj | = |zj | + 1 ≤ Jj
max + 1, snewj will be included

into Ω. If snewj may be dominated by one solution in Ω, which are contradictory

with the Jj
max. Due to that snewj , Jj

max increases by at least 1 and the Ωmax

denotes the largest size of Ω in the Alg. 4, the Jj
max can increase by at least

1 in one iteration with probability 1
enjΩmax

. The 1
Ωmax

is a lower bound on the

crossover probability of selecting zj and nj is the mutation rate. Because that
solution limitation, we have Ωmax ≤ 2z. We the get that after one iteration in
the first around DC, l can decrease by at least 1 with probability as least

1−
∏

j:Jj
max=m

(1− 1

2eznm
) ≥ 1− (1− 1

2eznmax
)l (18)

since it is sufficient that at least one of those Jj
max = m increases. Thus, the

expected number of iterations until m increases

i∑
l=1

1

1− (1− 1
2eznmax

)l
≤ i+ (2eznmax − 1)Hi (19)

where Hi is the j-th harmonic number. Then the complexity is O(z2nmax(1 +
log i)). Since min{Jj

max|1 ≤ j ≤ i} = z implies that P (δ[u]) ≥ (1 − e−γmin) ·
P (δ[oj]) for any 1 ≤ j ≤ i, the P value of the final output subset satisfies that
max{P (δ[uj])|1 ≤ j ≤ i} ≥ (1− e−γmin) ∗max{P (δ[bj])|1 ≤ j ≤ i}. By Lemma
1, Eq. (9) holds.

GARSDC 7

References

1. Das, A., Kempe, D.: Submodular meets spectral: Greedy algorithms for subset selec-
tion, sparse approximation and dictionary selection. arXiv preprint arXiv:1102.3975
(2011)

2. Qian, C., Shi, J.C., Yu, Y., Tang, K., Zhou, Z.H.: Parallel pareto optimization for
subset selection. In: IJCAI. pp. 1939–1945 (2016)

