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1 Mutual Information Maximization

Theorem 1 Let f be a function that maps a point cloud to the feature space, and Q be
the distribution of clean point clouds. S is sampled from Q. Qk(S, ϵ) is the distribution
of noisy point clouds, in which each element Sk is perturbed from S with an additional
noise ϵ, and the difference of numbers of points between S and Sk is smaller than a
constant k, i.e., −k ≤ |Sk| − |S| ≤ k. Then for every S ∼ Q and Sk ∼ Qk(S, ϵ), the
mutual information I(Sk, f(S)) has a lower bound, which is negatively correlated with
the k-measurement Mk(f, S, Sk).

Proof. According to the definition of mutual information, we have the following equa-
tion:

I(Sk, f(S)) = H(f(S))−H(f(S)|Sk) =

−
|Q|∑
1

1

|Q|
log f(S)−H(f(S)|Sk).

We use B(S, ϵ) to denote a hyper-sphere whose center is S and radius is ∥ϵ∥. So the
second term of the above expression can be rewritten as follows:

−H(f(S)|Sk) =
∑
k

∑
Sk∼Qk(S,ϵ)

Pr[f(S), Sk] logPr[f(S)|Sk]

≥
∑
k

∫
ϵ

∫
Sk∼B(S,ϵ)

1

Mk(f, S, Sk)
log

|Q|
Mk(f, S, Sk)

.

The mutual information can be further derived as follows:

I(Sk, f(S)) ≥ −
|Q|∑
1

1

|Q|
log f(S)+

∑
k

∫
ϵ

∫
Sk∼B(S,ϵ)

1

Mk(f, S, Sk)
log

|Q|
Mk(f, S, Sk)

.

This means the lower bound of I(Sk, f(S)) is increased when Mk(f, S, Sk) is smaller.
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Works & Venue Type Models Datasets Attacks Attack Type
ICCV’19 [13] Defense PointNet, PointNet++, DGCNN ModelNet40 AIC, AIH, APP, SMA P, A, D

ICCV’19 [12] Attack PointNet, PointNet++, DGCNN
3DMNIST,

ModelNet40
SMA D

ICIP’19 [3] Defense & Attack PointNet, PointNet++ ModelNet40 FGSM, I-FGSM, JSMA P
CVPR’19 [9] Attack PointNet, PointNet++, DGCNN ModelNet40 AIC, AIH, APP P, A
MM’20 [5] Attack PointNet, PointNet++, DGCNN ModelNet40 FGSM, PGD, CW P

AAAI’20 [7] Attack PointNet++ ModelNet40 kNN P
CVPR’20 [1] Defense PointNet, PointNet++ ModelNet40 FGSM, I-FGSM, PGD, MI-PGD P
ECCV’20 [2] Attack PointNet, PointNet++, DGCNN ModelNet40 AdvPC P
ICCV’21 [4] Defense PointNet ModelNet40 FGSM, PGD P
TPAMI [8] Attack PointNet, PointNet++, DGCNN ModelNet40 GeoA3 P
ArXiv [11] Defense & Attack PointNet ModelNet40 PG, PD, PA P, A, D
ArXiv [6] Defense & Attack PointNet++, GvG-P, DUP-Net ModelNet40 FGSM, BIM, MIM P

ArXiv [10] Defense
PointNet, PointNet++, DGCNN,

RS-CNN
ModelNet10,
ModelNet40

APP, kNN, SMA P, D, B

Ours Defense
PointNet, PointNet++, DGCNN,

DUP-Net
ModelNet10,
ModelNet40

AIC, AIH, APP, SMA, BIM, AdvPC P, A, D, B

Table 1: Summary of evaluations in prior works and this paper. For attack type: P - point
perturbing; A - point adding; D - point dropping; B - blackbox attack

2 Comparison With Previous Works

Table 1 summarizes the models, datasets and attacks adopted in our experiments, as
well as comparisons with prior works. We claim that our evaluations are more compre-
hensive than existing studies about point cloud robustness.

3 PointNet++ under attacks

Network
Structure

Training
Strategy Clean Attacks

SMA−40 APP AIC AIH AAUA LAUA

PointNet++ (MSG)
Normal 89.77 62.18 0.00 0.00 0.00 15.55 0.00

PointCutMix-R 92.57 85.92 0.00 0.16 2.15 22.06 0.00
AT-BIM 88.47 64.00 0.00 0.00 0.00 16.00 0.00

PointNet++ (SSG)
Normal 89.85 56.45 0.00 0.00 0.00 14.11 0.00

PointCutMix-R 92.78 86.57 0.00 1.83 2.88 22.82 0.00
AT-BIM 89.53 71.51 0.00 0.00 0.00 17.88 0.00

Table 1: Accuracy of PointNet++ under untargeted attacks (%). All results are running
results.

We further compare the accuracy of two types of PointNet++ under attacks. The re-
sults are shown in Table 1. For both types of PointNet++, training models with mix-up
samples can significantly improve the accuracy under the dropping point attack, as mix-
up samples can be seen as clean points dropped a lot of original points. However, Point-
Net++ cannot defend against adding perturbation attacks and adding additional points
attacks. As we analyzed before, PointNet++ uses each point and its neighbors sam-
pled based on distances coordinates to generate local features directly. When sampling
neighbors on perturbed point clouds or point clouds with additional points, PointNet++
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will use more noisy points to generate local features causing noise accumulating. Com-
paring with previous works, we find when using targeted attacks to attack PointNet++,
the accuracy under attacks are significantly higher than results in Table 1. It is easy to
understand that untargeted attacks are more powerful, and PointNet++ does not always
predict adversarial examples as labels the adversary wants. For an adversary who wants
the model to give wrong labels instead of specific labels, attacking PointNet++ is un-
complicated. Since the structure of PointNet++ is fragile under attacks, we do not apply
our AMS on it.

4 Experiments of AMS

When comparing normally trained models and models trained with AT-BIM, we find
that DGCNN achieves the highest clean accuracy. However, the DGCNN does not out-
perform our CCN under all four white-box attacks. On the other hand, the PointNet
shows the worst performance. When comparing models trained with AT-BIM and our
AMS, we can clearly notice that the AMS generalizes well to other model structures.
Our CCN outperforms other baselines on clean accuracy and many white-box attacks.
It achieves not only the highest AAUA but also the highest LAUA. It means that our
CCN can work with the AMS together in harmony. In summary, for each architecture,
AMS gives the best performance compared to Normal or AT-BIM training. To sum up,
the integration of CCN and AMS is the most robust solution.

Network
Structure

Training
Strategy

Clean
Sample

Adversarial Examples
SMA−40 APP AIC AIH AAUA LAUA

PointNet
Normal 88.76 41.88 55.64 49.68 43.43 47.66 41.88
AT-BIM 88.23 45.41 85.39 84.98 86.36 75.54 45.41
AMS 89.45 48.99 87.01 86.49 87.26 77.44 48.99

DGCNN
Normal 91.03 65.87 46.10 54.06 48.78 53.70 46.10
AT-BIM 91.27 66.68 89.98 81.37 76.99 78.76 66.68
AMS 92.21 75.41 90.83 85.47 83.93 83.91 75.41

CCN
Normal 90.87 67.94 57.47 61.04 53.37 59.96 53.37
AT-BIM 90.05 67.37 88.80 83.77 79.75 79.92 67.37
AMS 92.41 77.72 90.50 86.09 84.05 84.74 77.72

Table 2: Model accuracy for different solutions under the white-box attacks (%).

5 t-SNE Results Zoom Out

We plot all 40 classes (represented with different colors), and each class contains 50
point clouds from ModelNet40. Circles and triangles denote the clean and perturbed
point clouds, respectively. From the Fig. 1, the DGCNN is not as robust as CCN. When
we add perturbation to point clouds from a class, the features scatter in the feature
space. However, our CCN will not be influenced by the perturbation significantly, which
indicates that our CCMs in CCN can efficiently decrease the noise in the inputs.
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(a) DGCNN (b) CCN
Fig. 1: Feature map visualization.

6 Robustness under Different Attack Budgets

Furthermore, we show the accuracy of models trained with our AMS under SMA−k and
BIM−k with different k in Fig. 2. When models are attacked by SMA−k, the PointNet
is more fragile than other two models, resulting it has the lowest accuracy. The CCN
outperforms the DGCNN with the k increasing becoming more clearly. When we attack
models with BIM−k, we find that when the k is small, the accuracy of three models are
very close. With the k increasing, the accuracy of the PointNet drops very quickly. As
for CCN and DGCNN, the accuracy of DGCNN is higher than the accuracy of CCN
at the start. However, when the k is higher than 60, the CCN starts to outperform the
DGCNN. Both of them achieve higher accuracy than the PointNet. Overall, our CCN is
the most robust one.

(a) Accuracy under SMA attack with differ-
ent K

(b) Accuracy under BIM attack with differ-
ent K

Fig. 2: Accuracy of models under SMA-K and BIM-K. All models are trained with our
AMS.
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7 Feature Distances under Different Perturbation Budgets

In Figs. 3 to 7, we compare feature distances under different perturbation strength. We
adjust perturbation based on its variance. For each trail, we run 10 times and calculate
the average distance. The results indicate that the scale of perturbation only has trivial
influence of the feature distances. Our CCN can reduce the distances with the layer
going deeper. Models trained with AMS can obtain smaller distance under all cases.
Combining the above two phenomena, we can claim that our CCN and AMS can reduce
feature distances and achieve higher mutual information. So both of them can improve
model’s robustness and be harmonious with our theoretical analysis.

Fig. 3: Cosine distance of features between clean and perturbed samples from different
layers. The perturbation is generated from a Gaussian distribution with µ = 0 and
σ = 0.01.

8 Model Size

Table 3 compares the model size and number of parameters for different point cloud
models. We observe that CCN is slightly bigger than DGCNN due to the introduction
of the CCM. Its size is still smaller than PointNet++. Nevertheless, CCN gives the best
robustness among these models.

9 Comparing AT with multiple types of attacks.

We consider a stronger baseline method, “Multiple Types of Attacks” (MTA), where
the robust model is trained with two types of AEs (BIM-20 attack and SMA-20 attack)
together. Table 4 compares AMS with this MTA strategy. We have the following ob-
servations. (1) For the clean accuracy, CCN is better than MTA, as it uses the mix-up
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Fig. 4: Cosine distance of features between clean and perturbed samples from different
layers. The perturbation is generated from a Gaussian distribution with µ = 0 and
σ = 0.03.

Fig. 5: Cosine distance of features between clean and perturbed samples from different
layers. The perturbation is generated from a Gaussian distribution with µ = 0 and
σ = 0.05.
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Fig. 6: Cosine distance of features between clean and perturbed samples from different
layers. The perturbation is generated from a Gaussian distribution with µ = 0 and
σ = 0.07.

Fig. 7: Cosine distance of features between clean and perturbed samples from different
layers. The perturbation is generated from a Gaussian distribution with µ = 0 and
σ = 0.1.
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Model Model size (MB) # of Para (million).
PointNet 9.4 0.80

PointNet++ 12.0 1.02
DGCNN 11.0 0.94
CCN 11.6 0.98

Table 3: The numbers of model parameters and model sizes for different point cloud
models.

samples in the training process. (2) For the robustness, MTA only performs better than
CCN for the SMA-20 attack, since it adopts this attack for adversarial training, and the
robustness is overfitted on these samples, while AMS uses SMA-10. For other attacks,
AMS outperforms MTA. AMS also gives the best AAUA and LAUA. This indicates AMS
is still the better training strategy.

Model Strategy Clean
Sample

Adversarial Examples
SMA-20 APP AIC AIH AAUA LAUA

PointNet
MTA 87.70 76.54 86.97 85.63 86.44 83.90 76.54
AMS 89.45 69.03 87.01 86.49 87.26 82.46 69.03

DGCNN
MTA 90.79 85.71 87.95 82.35 76.95 83.24 76.95
AMS 92.21 84.09 90.83 85.47 83.93 88.58 83.93

Table 4: Comparison of more baselines.

10 Results on ModelNet10

Defense Solutions Clean
Sample

Adversarial Examples
SMA-40 APP AIC AIH AAUA LAUA

PointNet + AMS 84.82 45.98 75.22 73.33 69.53 66.02 45.98
DGCNN + AMS 93.64 81.36 75.89 63.84 57.25 69.59 57.25
CCN + AMS 92.75 72.10 78.01 70.65 61.72 70.62 61.72

Table 5: Results on ModelNet10.

We verify the effectiveness of our CCN and AMS on ModelNet10 in Table 5. As
ModelNet10 can be seen as a toy dataset, we do not fine-tune our training hyperparam-
eters and only verify our proposed methods. The results verify that our methods can still
work on other dataset. Because ModelNet10 is a small dataset, models heavily overfit
the AEs and the robustness is not as high as on the ModelNet40.
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