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1 Proof of Relation Between Condition Number and
Output Error

We recall the general linear transformation:

y = Wx, (1)

with x, y, W being an input signal, the output response, and the corresponding
linear transformation matrix. The corresponding norm ofW measures how much
the mapping induced by that matrix can stretch vectors,

∥W ∥ = max
x

∥Wx∥
∥x∥

⇒ ∥W ∥∥x∥ ≥ ∥Wx∥ = ∥y∥, (2)
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It is also important to consider how much a matrix can shrink vectors. The
reciprocal of the minimum stretching is the norm of the inverse,

∥W−1∥ = max
y

∥W−1y∥
∥y∥

=
1

min
y

∥y∥
∥W−1y∥

=
1

min
x

∥Wx∥
∥x∥

,

(3)

An definition of the condition number equivalent to Definition 2 of submitted
manuscript is

k(W ) = ∥W ∥∥W−1∥. (4)

It is usually used to measure the sensitivity of the output of a linear system to
input changes or errors, i.e. robustness. In other words, robustness measures the
noise immunity of a linear system.

Now, we consider the effect of adversarial noises added to the input signal on
the output of the linear system. Let δx be the perturbations added to the input
signal x and δy be the resulting error in output response y,

y + δy = W (x+ δx), (5)

considering Eq.(1), we get:

δy = W δx

∥δy∥ = ∥W δx∥,
(6)

similar to Eq.(2),
∥W ∥∥δx∥ ≥ ∥W δx∥ = ∥δy∥. (7)

Combining Eq.(1) and Eq.(5),

y = Wx ⇒ x = W−1y

⇒ x+ δx = W−1(y + δy),
(8)

then we have
∥x∥ = ∥W−1y∥
δx = W−1δy

∥δx∥ = ∥W−1δy∥.
(9)

Similar to Eq. (2),
∥W−1∥∥y∥ ≥ ∥W−1y∥ = ∥x∥, (10)

∥W−1∥∥δy∥ ≥ ∥W−1δy∥ = ∥δx∥, (11)
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by combining Eq.(2) and Eq.(11), we can finally derive a lower bound on the
error δy of the output response affected by the input perturbation δx,

∥W ∥∥W−1∥∥δy∥∥x∥ ≥ ∥δx∥∥y∥

⇒ ∥δy∥
∥y∥

≥ 1

k(W )

∥δx∥
∥x∥

.
(12)

Likewise, the corresponding upper bound can be obtained by combining Eq.(7)
and Eq.(10),

∥W ∥∥W−1∥∥y∥∥δx∥ ≥ ∥δy∥∥x∥

⇒ k(W )
∥δx∥
∥x∥

≥ ∥δy∥
∥y∥

.
(13)

By combining Eq.(12) and Eq.(13), we finally get

1

k(W )

∥δx∥
∥x∥

≤ ∥δy∥
∥y∥

≤ k(W )
∥δx∥
∥x∥

. (14)

Therefore, improving the condition number k(W ) of weight space of the linear
system will limit the variation of the corresponding output response, which can
be seen from Eq.(14). That is, improving the condition number promotes the
robustness of the system to adversarial noise.

2 An Example of Replacing Fully-connected Layers with
Separable Linear Transformations

Generally, the 3D tensor (height, width, number of filters) output from convo-
lutional layers need to be flattened before being fed into fully-connected layers.
Differently, tensor products used in the work can operate directly on tensors
without Flatten layers. It is worth noticing that the tensor product is adapted
to the structures of input tensor without flattening, which is different from the
work in [9]. The latter used tensor product of sub-matrices to approximate weight
matricx of fully-connected layer after the flatten layer. These similar methods
based on tensor decomposition are also shown in [1–3, 7], which are computa-
tionally expensive when dealing with high-dimensional input tensors.

If we read W = A(1) ⊗A(2) with K1K2 = d and I1I2 = m, the number of
parameters is reduced from K1K2I1I2 to K1I1 +K2I2. The ratio of the number
of parameters between two models is calculated by

η1 =
K1I1 +K2I2
K1I1K2I2

=
1

K1I1
+

1

K2I2
. (15)

And the computational complexity is also significantly reduced from O(Wx) =

O(K1 ×K2 × I1 × I2) to O(A(2)XA(1)⊤) = O(K2 × I2 × I1 +K2 × I1 ×K1),
and the ratio of them is computed as

η2 =
K2 × I2 × I1 +K2 × I1 ×K1

K1 ×K2 × I1 × I2
=

1

K1
+

1

I2
. (16)
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Fig. 1. Tensor product of separable sub-matrices replaces fully-connected layers.

For the convenience of referencing, we adopt the following fashion to name
the algorithms in comparison: for example, the VGG-16 under the framework
of ARLST algorithm is referred to as the VGG-16-ARLST. Taking VGG−16
trained on the CIFAR−10 dataset as an example, we follow its basic architecture
and construct VGG−16-ARLST network. The size of 3D tensor before flatten is
2×2×512. We then remove the flatten layer and reshape the 3D tensor as 64×32.
Thus, each following FC layer could be constructed by two separable transfor-
mations, i.e., T = 2. For example, in the first fully-connected layer, VGG−16-
ARLST replaces original linear transformation matrix W ∈ R4096×2048 with the
tensor product of A ∈ R64×32 and B ∈ R64×64. An intuitive example is shown
in Fig. 1. The first FC layers of VGG−16 have 8.39M parameters, while that of
VGG−16-ARLST only has 0.006M parameters.

3 More Details of Eq.(15) in the Manuscript

Liu et al. [5] show that a family of regularizers are ineffective at penalizing the
intrinsic norms of weights for networks with positively homogeneous activation
functions, such as ReLU. For other activation functions, including Swish, GELU
and SoftPlus, which are smooth approximation of Relu. Due to the positive
homogeneity (σ(ax) = aσ(x) when a > 0), we can get σ(W̃lxl−1 + b̃l) = µl ·
σ(Wlxl−1 + bl), where W̃l = µlWl, b̃l = µlbl. This operation can recurse from
the first layer to the output, yielding an equivalent network under the condition
that the

∏L+1
l=1 µl = 1 holds,

y =

(
L+1∏
l=1

µl

)
· W̃lxl−1. (17)

An equivalent network with completely different weights is obtained, but the
final output is the same as in Eq.(3) of manuscript. In other words, the weight
scale can be shifted between layers while keeping the network mapping func-
tion unchanged. However, these equivalent networks have different regularization
penalties,

L∑
l=1

∥W̃l∥22 =

L∑
l=1

µ2
l ∥Wl∥22 ̸=

L∑
l=1

∥Wl∥22. (18)
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The result of Eq. (18) shows that even if the L2 regularization works, the two
networks are completely equivalent due to the invariance of the weight scale shift.
Considering that there is only gradient flow during gradient back-propagation,
the regularization is equivalent if the following formula holds,

∂W̃l

∂w
=

∂(µlWl)

∂w
=

∂Wl

∂w
. (19)

Obviously, ϕ(w) = log(w) allows the Eq. (19) to hold. Let {σi}ki=1, k = min{a, b}
denote the singular values of a separable matrix A(t) ∈ Ra×b arranged in de-
scending order. Furthermore, A(t) is expected to be full rank, and the Gram

matrix A(t)⊤A(t) is positive definite, which implies det(A(t)⊤A(t)) > 0. It is

known that det(A(t)⊤A(t)) =
∏

σ2
i . Thus, we propose the following scale shift

invariant condition number regularization term to prevent σmax(A
(t)) from be-

ing too large or to avoid the worst case of σmin(A
(t)) being exponentially small,

h(A) =
1

4Tk log(k)

T∑
t=1

(
log

[
ν +

1

k
det(A(t)⊤A(t))

])2

(20)

with 0 < ν ≪ 1 being a small smoothing parameter.

4 More Details and Experiments of ARLST with VGG-16

In the numerical experiment section of the manuscript, we incorporated the un-
structured pruning algorithm into the ARLST framework for pruning of con-
volutional layers of VGG-16. More specifically, we only replaced the original
fully-connected layer with Separable Linear Transformations (without sparsity
constraint) at low-ratio compression. At high ratio compression, we pruned con-
volutional layers based on HYDRA [8], and further compressed Separable Linear
Transformations by unstructured pruning after pre-training with sparsity con-
straint.

In the manuscript, we showed the gains up achieved by ARLST on CIFAR-
10 dataset. And for SVHN dataset, this comprehensive advantage is even more
obvious. As shown in Table. 1, also at 200×, the ARLST outperformed HYDRA,
ADMM, ATMC by 11.6, 12.2, and 4.0 percentage points in robust accuracy,
respectively.

5 More Experiments of ARLST with Vision Transformer

The original Vision Transformers (ViT) [4] has a large enough redundancy. We
conducted a simple set of experiments based on ViT-B/16, and compared our
method with HYDRA, ADMM, and ATMC on small datasets, such as Yale−B
and MNIST. In this experiment, we only replaced the fully-connected layer in
Feed-Forward Network (FFN) with Separable Linear Transformations. The ad-
versarial examples was generated by FGSM attack. We set the perturbation
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Table 1. Comparison of our approach with other pruning-based baseline methods.
We use CIFAR-10, SVHN and ImageNet dataset with VGG-16 networks, iterative
adversarial training from [6] for this experiment.

Method HYDRA ADMM ATMC ARLST

CR NA/RA NA/RA NA/RA NA/RA

10× 89.2/52.4 88.2/51.6 88.6/51.7 89.6/52.9
SV HN 20× 85.5/51.7 85.1/50.9 85.4/50.8 87.5/52.8

100× 84.3/46.8 83.9/45.6 80.5/46.8 84.6/51.6
200× 32.9/23.1 30.1/22.5 70.0/30.7 73.1/34.7

Table 2. Comparison of our approach with other pruning-based baseline methods.
We use MNIST and Yale-B dataset and Vision Transformer for this experiment.

Method HYDRA ADMM ATMC ARLST

CR NA/RA NA/RA NA/RA NA/RA

1×(pretrain) 97.98/90.94
MNIST 3× 92.60/81.12 91.98/81.08 94.30/83.34 94.65/83.96

1×(pretrain) 96.65/92.93
Y ale−B 3× 93.68/89.86 93.35/89.05 94.65/90.89 95.83/92.74

magnitude ϵ = 0.3 for MNIST and ϵ = 0.03 for Yale−B. All models are trained
on MNIST dataset for 100 epochs and Yale−B dataset for 300 epochs.

As shown in Table. 2, our ARLST achieves the best natural and robust
accuracy on both datasets with the same compression ratio. Especially on the
Yale-B dataset, our model has only one third of parameters of original ViT,
but has almost no loss of accuracy. This is probably because we only reduced
the number of parameters of FFN in the self-attention module, and hence the
learning ability of compressed model does not decrease.
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