
Generative Multiplane Images 19

Supplementary Material:

Generative Multiplane Images:

Making a 2D GAN 3D-Aware

This supplementary is structured as follows:

– Sec. A: Details of the differentiable rendering in GMPI;
– Sec. B: Additional quantitative results;
– Sec. C: Implementation details;
– Sec. D: More qualitative results.

A Differentiable Rendering in GMPI

In Sec. 3.3, we obtain the desired image Ivtgt which illustrates the generated MPI
representation M = {C, {↵1, . . . ,↵L}} from the user-specified target view vtgt in
two steps: 1) a warping step transforms the representation M from its canonical
pose vcano to the target pose vtgt; 2) a compositing step combines the planes into
the desired image Ivtgt

. Importantly, both steps entail easy computations which
are end-to-end differentiable such that they can be included into any generator.
Here we provide details.
Warping. We warp the RGB image and the alpha map of the ith plane from
the canonical view to the target view via

(C 0
i,↵

0
i) = Hi,vcano!vtgt(C,↵i, di). (S1)

Here, Hi,vcano!vtgt represents the homography operation. Essentially, the homog-
raphy Hi,vcano!vtgt

specifies a mapping: for each pixel coordinate (p0x, p
0
y) in the

image C 0
i and in the alpha map ↵0

i of the target view vtgt, we obtain correspond-
ing coordinates (px, py) in the image C and in the alpha map ↵i of the canonical
view vcano. Bilinear sampling is applied on (px, py) to obtain values for the pixel
locations (p0x, p

0
y). Concretely,

⇥

px py 1
⇤>

= Kvcano

✓

Rvtgt!vcano
−

tvtgt!vcano
n

>

bi

◆

K�1
vtgt

⇥

p0x p0y 1
⇤>

, (S2)

where n ∈ R
3 is the normal of the plane defined in target camera coordinate

system vtgt, which is identical for all planes. bi is the depth of the plane from
the target camera vtgt. We let Kvcano

∈ R
3⇥3 and Kvtgt

∈ R
3⇥3 refer to the

intrinsic matrices of the canonical view vcano and the target view vtgt. Further,
Rvtgt!vcano

∈ R
3⇥3 and tvtgt!vcano

∈ R
3⇥1 are the rotation and the translation

from vtgt to vcano.
Alpha Compositing. Given the warped image C 0

i and the warped alpha map
↵0
i for each plane i, we compute the final rendered 2D image Ivtgt

via

Ivtgt
=

L
X

i=1

0

@C 0
i · ↵

0
i ·

i�1
Y

j=1

(1− ↵0
j)

1

A . (S3)

20 X. Zhao, F. Ma, D. Güera, Z. Ren, A. G. Schwing, A. Colburn

Table S1: Comparing representations on FFHQ. 1st and 3rd rows are copied
from Tab. 2’s 3rd and 9th rows in the main text. Row 2 and 3 infer with 96 planes.
Row 1: depth to renderer; Row 2: depth to MPI to renderer; Row 3: MPI to renderer.

Row FID↓ KID⇥100 # ID↑ Depth↓ Pose↓

2
5
6
2

1 LiftedGAN [58] 29.8 – 0.58 0.40 0.023

2-1 D2A (✏ = 1/64) 13.4 0.920 0.69 0.60 0.004

2-2 D2A (✏ = 1/128) 13.5 0.867 0.70 0.60 0.004

2-3 D2A (✏ = 1/256) 11.7 0.644 0.70 0.63 0.005
2-4 D2A (✏ = 1/512) 12.6 0.684 0.69 0.62 0.005

3 GMPI 11.4 0.738 0.70 0.53 0.004

Similarly, we approximate depth Dvtgt
via

Dvtgt
=

L
X

i=1

0

@bi · ↵
0
i ·

i�1
Y

j=1

(1− ↵0
j)

1

A , (S4)

where bi is the distance mentioned in Eq. (S2). Notably, the combination of
Eq. (4), Eq. (S1) and Eq. (S3) is end-to-end differentiable and hence straight-
forward to integrate into a generator. Importantly, the computations are also
extremely efficient as only simple matrix multiplications are involved. It is hence
easy to augment an existing generator like the one in StyleGANv2.

B Additional Quantitative Results

B.1 Comparisons of Representations

We provide additional ablations of the plane representation. Specifically, we con-
sider the following three ablations:
Depth map to renderer: We let the generator predict a single channel depth
map (instead of multiple-channel alpha maps) and use a differentiable renderer
to supervise the transformed image. LiftedGAN [61] serves as this ablation.
Depth maps to alpha maps to renderer: We compute multiple alpha maps
from a predicted single-channel depth map in two steps: 1) we predict a depth
map Depth ∈ R

H⇥W in normalized coordinates; 2) we generate L alpha maps
from Depth by computing the alpha value for a pixel [x, y] on the i-th alpha map
↵i via:

↵i[x, y] = min

✓

1,max

✓

0,
di − (Depth[x, y]− ✏)

2✏

◆◆

,

where di is ↵i’s depth. Essentially, alpha values linearly increase from 0 to 1
within the range [Depth[x, y]−✏, Depth[x, y]+✏]. Any depth closer than Depth[x, y]−
✏ is set to 0. Any depth further than Depth[x, y] + ✏ is set to 1. We call this rep-
resentation D2A.

Generative Multiplane Images 21

Table S2: Ablation studies on truncation level ψ during inference on FFHQ.

All results use the same checkpoint trained with DPC, plane-specific features F
h

αi
, and

shading-guided training. We evaluate with 96 planes. We show more digits for ‘Depth’
and ‘Pose’ than we use in Tab. 2 to emphasize differences. With lower ψ, GMPI pro-
duces geometries with fewer artifacts (Depth) at the cost of less variety (FID/KID).

ψ
2562 5122 10242

FID↓ KID↓ ID↑ Depth↓ Pose↓ FID↓ KID↓ ID↑ Depth↓ Pose↓ FID↓ KID↓ ID↑ Depth↓ Pose↓

(a) 1.0 11.4 0.738 0.70 0.533 0.0042 8.29 0.454 0.74 0.455 0.0056 7.50 0.407 0.75 0.535 0.0068
(b) 0.9 12.6 0.837 0.70 0.515 0.0037 10.1 0.588 0.74 0.421 0.0047 8.83 0.496 0.75 0.490 0.0058
(c) 0.8 15.4 1.079 0.70 0.497 0.0033 13.7 0.885 0.73 0.386 0.0039 11.5 0.691 0.74 0.449 0.0049
(d) 0.7 20.3 1.510 0.70 0.477 0.0029 19.8 1.391 0.73 0.354 0.0032 16.0 1.024 0.73 0.408 0.0040
(e) 0.6 27.8 2.172 0.70 0.459 0.0026 28.8 2.160 0.73 0.326 0.0025 22.8 1.510 0.73 0.368 0.0031
(f) 0.5 38.5 3.112 0.70 0.445 0.0023 41.1 3.249 0.72 0.304 0.0020 32.0 2.145 0.72 0.333 0.0024

Alpha maps to renderer: We directly predict multiple-channel alpha maps.
Our GMPI serves as this ablation.

In Tab. S1 we report the results. For D2A, we ablate several values of ✏ and
find that GMPI always outperforms on FID and depth metrics, verifying the
fidelity of th texture and the high-quality of the geometry.

B.2 Depth Score Analysis

We inspect GMPI-synthesized images and find two main reasons for our sub-
optimal ‘Depth’ scores in Tab. 2: 1) artifacts produced by StyleGANv2; 2) spec-
ular reflections on images deteriorate geometry generation. We discuss both in
detail below.
1) Artifacts in StyleGANv2. Truncation was introduced in [34, 7] to balance
between variety and fidelity. Specifically, using a truncation level ∈ [0, 1], we
replace the style embedding ω in Eq. (3) with

ω
0 = ω̄ + · (ω − ω̄), (S5)

where ω̄ = Ez[fMapping(z)] represents the style embedding space’s center of mass.
In practice, ω̄ is approximated by computing the moving average of all ω en-
countered during training. Without truncation, i.e., for = 1.0, we find Style-
GANv2 can produce results with significant artifacts as shown in Fig. S1a. This
demonstrates that the generator fails to convert the corresponding ω properly.
Although these artifacts are not being reflected in our 2D GAN metrics, i.e., FID
and KID, they do affect the alpha map generation adversely. Specifically, the al-
pha maps are produced based on feature Fh

↵i
, which is largely determined by the

style embedding ω through Eq. (3) and Eq. (8). Consequently, artifacts cause an
inferior ‘Depth’ score. To understand the effect of the truncation level during
inference, we evaluate GMPI using various truncation levels in Tab. S2. As
can be seen clearly, with smaller , we consistently perform better on geometry
metrics, i.e., lower ‘Depth’ and ‘Pose’ error, while trading in variety, i.e., higher
FID/KID. We provide a qualitative example in Fig. S2. Note, we do not ap-
ply truncation for any other quantitative results reported in this paper. I.e., we
always use = 1.0 for quantitative evaluation results except in Tab. S2.

22 X. Zhao, F. Ma, D. Güera, Z. Ren, A. G. Schwing, A. Colburn

2) Specular reflections. Our rendering model is not designed to handle spec-
ular reflections. Strong specular reflections in the training data tend to degrade
geometry generation, producing artifacts such as concave foreheads. We provide
a qualitative example in Fig. S3. Specular reflections are a common failure mode
of geometry generation. For instance, see Sec. 5 and Fig. 8 in StyleSDF [55]. We
leave addressing of this issue to future work.

(a) = 1.0.

(b) = 0.7.

(c) = 0.5.

Fig. S1: Effects of truncation level ψ for StyleGANv2. Images are gen-
erated with the officially-released code and checkpoints.6 Without trunca-
tion, i.e., for ψ = 1.0, StyleGANv2 generates images with significant artifacts.
This degrades alpha map generation. The images can be generated by running
the command python generate.py --outdir=out --trunc=1.0 --seeds=10,56,88

--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/

pretrained/ffhq.pkl while setting --trunc to 1.0, 0.7, and 0.5 respectively.

Generative Multiplane Images 23

(a) = 1.0, Depth score = 1.44.

(b) = 0.5, Depth score = 0.83. The large difference in depth predic-
tion appearing on the cheek is primarily due to hair. The parametric
facial model does not reconstruct hair and accessories such as glasses
(see Fig. 2 in [17]).

Fig. S2: Truncation level ψ affects geometry generation. GMPI generated scenes
with the same latent variable z using two different truncation levels. Each scene is
rendered with the same pose where the ‘Depth’ score is computed. For each subplot,
from top to bottom, left to right, we show 1) rendered image; 2) corresponding ge-
ometry; 3) predicted face model [17]; 4) normalized pseudo ground-truth depth map;
5) normalized GMPI generated depth map (the smaller value indicates closer distance
to the camera); and 6) difference between normalized depth maps 4) and 5). Smaller
truncation levels ψ benefit ‘Depth’ scores at the cost of increased FID/KID values.

24 X. Zhao, F. Ma, D. Güera, Z. Ren, A. G. Schwing, A. Colburn

Fig. S3: Specular reflection deteriorates geometry generation. For this example,
the depth score is 1.26. The strong lighting effect on the forehead breaks the Lambertian
assumption and degrades alpha map generation.

Table S3: Ablation studies on #planes during training. No truncation is ap-
plied. We evaluate at a resolution of 5122. DPC refers to discriminator pose conditioning
(Sec. 3.4), Fh

αi
refers to the plane-specific feature introduced in Eq. (8), and Shading

indicates the shading-guided training discussed in Sec. 3.5. #planes denotes the num-
ber of planes we used during training. During inference, we use 32 planes. We observe,
the more planes we provide during training, the better the results of GMPI. Please
see Fig. S5 for qualitative examples.

#planes DPC F
h

αi
Shading

FFHQ AFHQv2-Cat

FID↓ KID↓ ID↑ Depth↓ Pose↓ FID↓ KID↓

(a) 32 3 3 3 7.40 0.337 0.74 0.457 0.006 7.93 0.489
(b) 16 3 3 3 9.83 0.575 0.74 0.574 0.007 6.82 0.358

(c) 8 3 3 3 11.4 0.657 0.72 0.778 0.008 7.26 0.384
(d) 4 3 3 3 16.4 1.043 0.65 0.992 0.007 8.53 0.467

B.3 More Ablations

#Planes During Training. We ablate the #planes during training in Tab. S3
and Fig. S5. We observe: the more planes we can provide during training, the
better the results of GMPI.
Robustness to inaccurate camera poses. To understand the robustness to
inaccurate camera poses, we add noise to the observer’s camera pose. Specif-
ically, we follow [9] to first compute per-element standard deviation � of the
estimated camera pose matrices for real images. During training, we add noise
of {1�, 2�, 3�, 4�} to each element of the camera pose matrix. We report results
in Tab. S4 and Fig. S4. We want to emphasize, the estimated camera poses for
real images are not perfect. Therefore, 0� does not indicate fully-accurate camera
pose information. Fig. S4 verifies that the more noise we add, the less photo-
realistic the geometry we obtain. This is aligned with the trend of the Depth

Generative Multiplane Images 25

Table S4: Ablation study on camera pose accuracy. No truncation is applied.
We evaluate at a resolution of 5122. Noise indicates the level of noise we added to
the camera poses during training. Specifically, 1σ denotes camera poses are corrupted
with one standard deviation of the estimated camera pose matrices for images from
the corresponding dataset (see Sec. B.3). All results are trained with DPC, plane-specific
features Fh

αi
, and shading-guided training with 32 planes during training.

Noise
FFHQ AFHQv2-Cat

FID↓ KID↓ ID↑ Depth↓ Pose↓ FID↓ KID↓

(a) 0σ 8.29 0.454 0.74 0.46 0.006 7.79 0.474
(b) 1σ 6.02 0.269 0.81 0.81 0.017 5.95 0.296
(c) 2σ 5.38 0.221 0.86 1.00 0.027 5.51 0.266
(d) 3σ 5.26 0.191 0.89 1.37 0.038 7.05 0.397
(e) 4σ 4.72 0.176 0.90 1.68 0.046 6.92 0.393

(a) 0�. (b) 1�. (c) 2�. (d) 3�. (e) 4�.

Fig. S4: Ablate robustness to inaccurate camera poses. Panels (a)-(e) correspond
to Tab. S4’s rows (a)-(e). All results are generated from the same latent code z. Within
expectation, the more inaccurate camera poses the model is trained with, the less 3D
geometry we can obtain.

and Pose metrics in Tab. S4. Note, FID, KID, and ID metrics are misleading as
we do not observe much difference. This verifies again that 2D metrics lack the
ability to capture 3D errors.

C Implementation Details

Hyperparameters. Tab. S5 summarizes the hyperparameters we used for train-
ing GMPI. We perform all training on 8 Tesla V100 GPUs using 5000 iterations.
For all experiments except FFHQ256, we use a batch size of 32. This exposes
the discriminator to 0.16 million real images. FFHQ256 is trained on 0.32 mil-
lion real images since it uses a larger batch size of 64. We apply the minibatch

6
https://github.com/NVlabs/stylegan2-ada-pytorch

https://github.com/NVlabs/stylegan2-ada-pytorch

26 X. Zhao, F. Ma, D. Güera, Z. Ren, A. G. Schwing, A. Colburn

(a) 32 planes.

(b) 16 planes.

(c) 8 planes.

(d) 4 planes.

Fig. S5: Ablate #planes during training. For each subplot, from left to right, we
show two views and the 32 alpha maps that GMPI produces during inference. Each
subplot’s caption indicates the number of planes used during training. We observe: the
more planes we can provide during training, the better the results of GMPI.

standard deviation layer [31] independently on each image. We apply x-flip data
augmentation on AFHQv2 and MetFaces. To determine the channel number
dimh of Fh (Eq. (2)) and Fh

↵i
(Eq. (8)), we follow [32]’s official implementation7

using:

dimh = min(
215

h
, 512), (S6)

where 215 is the channel base number. The only exception is FFHQ256, where
we use a channel base number of 214 following the official implementation. All
experiments utilize R1 penalties [46] with weight 10.0 and learning rate 2×10�3.
We use Adam [36] as the optimizer. In all experiments, we use 32 planes during
training.
Mixed precision. We follow StyleGANv2’s official code and use half precision
for both generator and discriminator layers corresponding to the four highest
resolutions.
Near/far depths. We set the near and far depths of MPI for each dataset as
0.95/1.12 (FFHQ and MetFaces), 2.55/2.8 (AFHQv2-Cat).
Depth normalization. The depth di ∀i is normalized to the range [0, 1] before
being used in the embedding function fEmbed in Eq. (8). Specifically, we use d0i =
di�d1

dL�d1

.
Shading-guided training. As mentioned in Sec. 3.5, we utilize Eq. (10) to
apply shading. For the first 1000 iterations, we set ka = 1.0 and kd = 0.0. We

7
https://github.com/NVlabs/stylegan2-ada-pytorch

https://github.com/NVlabs/stylegan2-ada-pytorch

Generative Multiplane Images 27

Table S5: Hyperparameters used for training GMPI.

FFHQ256 FFHQ512 FFHQ1024 AFHQv2 MetFaces

Resolution 2562 5122 10242 5122 10242

#GPUs 8 8 8 8 8
Training length (iters) 5k 5k 5k 5k 5k
Training length (#imgs) 0.32M 0.16M 0.16M 0.16M 0.16M
Batch size 64 32 32 32 32
Minibatch stddev [31] 1 1 1 1 1
Dataset x-flips 7 7 7 3 3

Channel base 1

2
× 1× 1× 1× 1×

Learning rate (×10−3) 2 2 2 2 2
R1 penalty weight [46] 10 10 10 10 10
Mixed-precision 3 3 3 3 3

linearly reduce ka to 0.9 and linearly increase kd to 0.1 during iteration 1001 to
2000. Starting from the 2001st iteration, we fix ka = 0.9 and kd = 0.1. Meanwhile,
lighting direction l is randomly sampled. We follow [56] to use lh ∼ N (0.0, 0.2)
and lv ∼ N (0.2, 0.05), where lh and lv represent horizontal and vertical angles
for lighting directions respectively.
Structure of fEmbed (Eq. (8)). For each resolution h × h, we utilize three
modulated-convolutional layers [35] to construct fEmbed, whose channel numbers
are dimh/4, dimh/2, dimh respectively.
Alternative representation of fEmbed (Eq. (8)). Besides conditioning fEmbed
on specific depth di, we also studied use of a learnable token. Concretely, fEmbed
was represented using a tensor of shape h×h×dimh. This resulted in reasonable
geometry but we find conditioning of alpha maps on depth to provide better
results. We leave further exploration of learnable tokens to future work.
Background plane.We treat the last plane of the MPI-like representation, i.e.,
the Lth plane, as the background plane. To color this plane, we treat the left-
most and right-most 5% pixels of the synthesized image C as the left and right
boundary. RGB values of all remaining pixels on this plane are linearly interpo-
lated between the left and the right boundary. We find this simple procedure to
work well in our experiments.
Mesh generation. We utilize the marching cube algorithm [45] implemented
in PyMCubes for generating meshes.8 We also utilize its smoothing function for
better visualization.

D Additional Qualitative Results

D.1 Uncurated Results

We provide uncurated results on FFHQ (Fig. S6), AFHQv2 (Fig. S7), and Met-
Faces (Fig. S8). We observe GMPI to generate high-quality geometry.

8
https://github.com/pmneila/PyMCubes

https://github.com/pmneila/PyMCubes

28 X. Zhao, F. Ma, D. Güera, Z. Ren, A. G. Schwing, A. Colburn

(a) Renderings for corresponding geometries in Fig. S6b.

(b) Geometries for corresponding renderings in Fig. S6a.

Fig. S6: Uncurated results on FFHQ. From top to bottom, left to right, we show
generations with seed 1-32. Results are generated with truncation ψ = 0.5 [34].

D.2 Style Mixing

We illustrate style mixing [34] results on FFHQ (Fig. S9), AFHQv2 (Fig. S10),
and MetFaces (Fig. S11). GMPI successfully disentangles coarse and fine levels
of generations.

D.3 More Results

This supplementary material also includes an interactive viewer for the generated
MPI representations and an HTML page with videos to illustrate generations
from GMPI.

Generative Multiplane Images 29

(a) Renderings for corresponding geometries in Fig. S7b.

(b) Geometries for corresponding renderings in Fig. S7a.

Fig. S7: Uncurated results on AFHQv2. From top to bottom, left to right, we show
generations with seed 1-32. Results are generated with truncation ψ = 0.7 [34].

30 X. Zhao, F. Ma, D. Güera, Z. Ren, A. G. Schwing, A. Colburn

(a) Renderings for corresponding geometries in Fig. S8b.

(b) Geometries for corresponding renderings in Fig. S8a.

Fig. S8: Uncurated results on MetFaces. From top to bottom, left to right, we
show generations with seed 1-32. Results are generated with truncation ψ = 0.7 [34].

Generative Multiplane Images 31

C
o
a
rs
e

Fine

(a) Renderings for corresponding geometries in Fig. S9b.

C
o
a
rs
e

Fine

(b) Geometries for corresponding renderings in Fig. S9a.

Fig. S9: Style mixing on FFHQ. Results don’t use truncation, i.e., ψ = 1.0. To
obtain each cell in the bottom right grid, we replace lower-level style embeddings ω

(Eq. (3)) in the Fine column with the corresponding ω from the Coarse row. We
observe, GMPI enables semantic editing: lower-level ω (layers 0 – 6) control the shape
while upper-level ω (layers 7 and higher) determine fine-grained styles.

32 X. Zhao, F. Ma, D. Güera, Z. Ren, A. G. Schwing, A. Colburn

C
o
a
rs
e

Fine

(a) Renderings for corresponding geometries in Fig. S10b.

C
o
a
rs
e

Fine

(b) Geometries for corresponding renderings in Fig. S10a.

Fig. S10: Style mixing on AFHQv2. Results don’t use truncation, i.e., ψ = 1.0.
To obtain each cell in the bottom right grid, we replace lower-level style embeddings
ω (Eq. (3)) in the Fine column with the corresponding ω from the Coarse row. We
observe, GMPI enables semantic editing: lower-level ω (layers 0 – 6) control the shape
while upper-level ω (layers 7 and higher) determine fine-grained styles.

Generative Multiplane Images 33

C
o
a
rs
e

Fine

(a) Renderings for corresponding geometries in Fig. S11b.

C
o
a
rs
e

Fine

(b) Geometries for corresponding renderings in Fig. S11a.

Fig. S11: Style mixing on MetFaces. Results don’t use truncation, i.e., ψ = 1.0.
To obtain each cell in the bottom right grid, we replace lower-level style embeddings
ω (Eq. (3)) in the Fine column with the corresponding ω from the Coarse row. We
observe, GMPI enables semantic editing: lower-level ω (layers 0 – 6) control the shape
while upper-level ω (layers 7 and higher) determine fine-grained styles.

	Generative Multiplane Images:Making a 2D GAN 3D-Aware

