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A Appendix

Table I. The performance (Agreement and test accuracy) of previous methods under
the soft-label and the hard-label settings. And the average performance reduction of
each dataset under hard label is reported in the last row.

Method
CIFAR10 SVHN Caltech256 CUBS200

Agreement Acc Agreement Acc Agreement Acc Agreement Acc

KnockoffNets
soft-label 81.59% 80.03% 93.17% 92.14% 76.42% 74.42% 65.48% 59.15%
hard-label 75.32%-6.27% 74.44%-5.59% 85.00%-8.17% 84.50%-7.64% 57.64%-18.78% 55.28%-19.14% 30.01%-35.47% 28.03%-31.12%

ActiveThief(Entropy)
soft-label 81.61% 79.85% 92.79% 91.95% 77.38% 70.91% 68.12% 60.39%
hard-label 75.26%-6.35% 74.21%-5.64% 90.47%-2.32% 89.85%-2.10% 56.28%-21.10% 54.14%-16.77% 32.05%-36.07% 29.43%-30.96%

ActiveThief(k-Center)
soft-label 82.98% 81.42% 94.45% 93.62% 78.66% 72.20% 73.71% 65.34%
hard-label 75.71%-7.27% 74.24%-7.18% 81.45%-13.00% 80.79%-12.83% 61.19%-17.47% 58.84%-13.36% 37.68%-36.03% 34.64%-30.70%

ActiveThief(DFAL)
soft-label 80.42% 78.88% 91.41% 90.57% 64.56% 59.81% 53.24% 47.65%
hard-label 76.72%-3.70% 75.62%-3.26% 84.79%-6.62% 84.17%-6.40% 46.92%-17.64% 44.91%-14.90% 20.31%-32.93% 18.69%-28.96%

ActiveThief(DFAL+k-Center)
soft-label 82.05% 80.86% 93.03% 92.08% 67.27% 62.67% 61.39% 55.18%
hard-label 74.97%-7.08% 73.98%-6.88% 81.40%-11.63% 80.86%-11.22% 55.70%-11.57% 53.69%-8.98% 26.60%-34.79% 24.42%-30.76%

Average difference -6.13% -5.71% -8.35% -8.04% -17.31% -14.63% -35.06% -30.50%

A.1 Gap between hard-label and soft-label setting

Here, we report the numerical results of previous methods under both the soft-
label setting and the hard-label setting as a supplementary to the Fig.1. To be
consistent with the experiment section, the victim models we use are trained
using a ResNet-34 [2] architecture on four datasets: CIFAR10 [4], SVHN [5],
Caltech256 [1], and CUBS200 [8]. And their test accuracy are 91.56%, 96.45%,
78.40%, and 77.10% respectively. We use the 1.2M images without labels pre-
sented in the ILSVRC-2012 challenge [6] as the attack dataset. We also adopt
official source codes from the authors for a fair comparison. As in the Tab. I, the
performance of all previous methods has a significant degradation on the four
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Table II. Test accuracy of our method and previous methods with different architec-
tures on CIFAR10 dataset. The smaller the standard deviation (Std), the more stable
the method.

Method
Substitute’s architecture

Std(×102)↓
ResNet-34 ResNet-18 ResNet-50 VGG-16 DenseNet

KnockoffNets 74.44% 77.12% 66.78% 53.52% 78.50% 9.22
ActiveThief(k-Center) 74.24% 72.90% 71.25% 35.56% 74.48% 15.11
ActiveThief(Entropy) 74.21% 78.77% 73.52% 37.88% 79.09% 15.57
Ours 80.47% 79.93% 80.34% 75.22% 74.43% 2.68

datasets in this scenario, and the averages of the loss are in the last row of the
Tab. I, which are 5.71%, 8.04%, 14.63%, and 30.50% respectively. The above re-
sults show that in the hard-label scenario, the previous model stealing methods
are not effective enough.

A.2 The influence of model architectures

Instead of assuming that the substitute model and the victim one share the
same architecture, we show the effect of different model architectures here on
the CIFAR10 dataset. Keeping ResNet-34 as the victim model, we choose the
structure of substitute model from ResNet-34, ResNet-18, ResNet-50 [2], VGG-
16 [7], DenseNet [3], respectively. With the same architecture included, we use the
standard deviation to evaluate the impact of architectures on different methods.
As in Tab. II, the standard deviation of our method is about 1/6 to 1/3 of others,
which means that our method is less susceptible to the influence of the model
structure. In real situations, the structure of the victim model is often unknown.
Since our method is less affected by the structure, our method performs better
in real-world attacks.

A.3 The visualization of the attention alignment.

As we point out in the section 3.1, the novel CAM-driven erasing strategy we
designed can not only dig out more class information, but also help the substitute
model to align the victim model’s attention. As shown in Fig. I, at the beginning
time, the substitute model learns the wrong attention map. Along with the
iterative training stages, the attention area of the substitute model tends to fit
the victim model’s, which conforms to our intention. As [9] stated, we transfer
the victim’s attention to the substitute model, which is one of the reasons why
our method is effective enough.
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Original image Victim’s CAMSubstitute’s CAM of  different stages

Fig. I. The additional visualized attention maps of the victim model and different
stages substitute models using the Grad-CAM. Along with the training stages, the
attention map of the substitute model tends to fit the victim model’s.
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