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1 Theoretical Analysis

1.1 Bound on the variance of Gradients

Let P be an arbitrary distribution of random vectors, and consider the vector
transformation T'(a) = min(ﬁ, 1)a with a > 0.

Definition 1. The variance of vectors with distribution P is defined as: [1, 2]:
0 = Eacup[||a — Epep[b]|1?)- 1)

Lemma 1. Applying the vector transformation T bounds the norm of the mean
vector to a, i.e., :
[Ea~p[T'(a)]]| < o (2)

Proof. Proof is straightforward by considering that ||T'(a)|| < «, Va.

Theorem 1. Applying the vector transformation T bounds the variance of the
vectors to 402, i.e., :

Eavp [||T(2) = Eoup[T(b)]|°] < 40, (3)
Proof. Note that for any a we have:
IT(a) — Ep~p[T(b)][| < [[T(2)|] + [[Eb~p [T (b)]]- (4)

Using ||T(a)|| < @ and Lemma 1 concludes the proof.

1.2 Convergence Analysis

To analyze the convergence of ENGM, we first define the total empirical risk
as A(0) = L3 | L;(6), where L;(0) = L(Fg(x;),y:), and n is the total num-
ber of examples in the dataset. Based on the previous works [1,2], we make
Assumptions 1 and 2 to analyze the convergence of A.

Assumption 1 (bounded variance) For any 0 the variance of the gradients is
bounded by o2 as:
E[|IVA() - VL(9)?] < o> (5)
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Assumption 2 (Smoothness) A(0) is smooth with modulus p > 0 if for any 6y,
01 N
A(61) < A(6o) + VaA(Bo) " (61 — o) + 5|01 — 6| (6)

Lemma 2. Forg= 13"  w;v;, where w; = min (ﬁ, 1), we have ||g|| < o
Proof. Proof is straightforward by considering that ||w;v;|| < a, Vi.

Lemma 3. (Eztension of Lemma 2 in [2]) For viy1 = Bvy + gt where f < 1
and ||gd]] < o, Vt > 0 we have:

I[vel| < 125 (7)

Proof.

[[Viril] < Bl[vel| +
< BVl + (B +1)
< Bt vol|+ (B + BT+ 1)

(63

<2

Theorem 2. Consider ENGM for optimizing A(0) with the following update
rule:

(8)

Vir1 = BV + 8, 9)

0111 =0, —nvia, (10)
where gy = \Tltl ZieL w;VoL;(0:), and w; = min (m, 1), for any a >0
the convergence is O(o) and is given as:

LS E(IVAG] < 2 (A00) — A6")
1=0

()
+ (%)a.

Proof. We drop x from L(x, 0) and 0 from Vg for brevity. Let ¢, = 0,5—1— (Bt —
0;_1), then we have:

0141 =0, —ng:+ B(0; —6;_1), (12)

and
Pt+1 = Pt — ﬁgb (13)

Using Assumption 2 we have:

A1) < A(pe) — 25V A(pr) gt+21 T el 2
Alpr) — 12 Bllgtll+2(1 e el 2
— %5 [ (VA(p) - vA@6)

+ (VA6 - gt)Tgt]
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Using Lemma 2, we have:

A("pt+1) S A(§0t> - + 2?{] %)2 (15)
- = p||sot 6|+ IV A6, — gil]
Combining Lemma 3 with Equation 12, we obtain:
1041 — 64| < Bl1Or — 01| + no < 55 (16)
Consequently, we have:
16: — 01| < 225, (17)
and:
o = 0dl] = 125116: — 0:1l| < 7255 (18)
Inserting Equation 18 in Equation 15, we obtain:
IVA(:) — gl < ﬂ(14(9015) — A(pr+1)) 19
4 _pne pnBo (19)
2(1-p) ~ (1-p)*"

Combining Equation 19 with the fact that |[[VA(0,)|] < |[[VA(0:) —g:|| +1]g:]] <
[IVA(6:) — g¢|| + o, we obtain:

IVA(6:)]| < %(A(sot) — A1)

+ 5y — Al o

(20)
Finally, taking expectation from both sides, considering that 8y = ¢, and sum-
ming up the above inequality from ¢ = 0 to t1 concludes the proof.

2 Evaluations on £,-norm Threat Model

Here, we evaluate the performance of different AT methods combined with
ENGM on CIFAR-10/100 datasets. PGD with 10 steps (PGD!9), e =128/255,
and step size 15/255 is used as the attack to maximize the adversarial loss during
the training. Table 1 presents the results for these evaluations. We observe that
similar to the /,.-norm threat model, ENGM provides better robustness than
MSGD in ¢3-norm threat model. Furthermore, it reduces the robust overfitting
across all evaluations.

093
094
095
096
097
098
099
100
101
102
103
104

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134



164

4 ECCV-22 submission ID 7022

AT Optim. Accuracy (%) Overfit.
Method  Method Natural PGD?° AA (%)
Venilla  MSGD 89.64 6712 6520 10.6
ENGM  89.15  69.50 66.58 4.3
S MSGD  87.93 6833 67.01 6.2
o TRADES pyent 87.37  69.95 68.11 3.5
= MART  MSGD 8810 6842 67.32 6.1
@) ENGM 8778 70.14 6847 5.3
AWP MSGD  88.08 70.30 6891 3.9
ENGM 8852 71.16 69.96 3.3
Venilla  MSGD 63.46 4131 3854 146
- ENGM  62.63 43.53 39.92 6.8
g MSGD  61.25  43.40 39.33  9.29
0 TRADES pyaM 6111 4464 4018 6.7
< MSGD  61.90 43.75 39.20  10.8
% MART  pNaM 6143 4419 40.68 88
AWP MSGD  61.83  45.26 40.28 8.0
ENGM  62.00 45.31 41.24 6.4

Table 1: Comparison of methods for outer optimization on different AT ap-
proaches. Note that ENGM consistently outperforms MSGD.
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