Supplementary Material:					
Revisiting Outer Optimization in Advers	arial				
Training					
ITanning					
Anonymous ECCV submission					
Danan ID 7099					
Paper ID 7022					
1 Theoretical Analysis					
1.1 Bound on the variance of Gradients					
Let \mathcal{P} be an arbitrary distribution of random vectors, and consider t transformation $T(\mathbf{a}) = \min(\frac{\alpha}{ \mathbf{a} }, 1)\mathbf{a}$ with $\alpha > 0$.	the vector				
Definition 1. The variance of vectors with distribution \mathcal{P} is defined	as: [1, 2]:				
σ ² · □ 𝔅 [₂ □ 𝔅 [₂] ²]	(1)				
$o := \mathbb{E}_{\mathbf{a} \sim \mathcal{P}} [\mathbf{a} - \mathbb{E}_{\mathbf{b} \sim \mathcal{P}} [\mathbf{b}]].$	(1)				
Lemma 1. Applying the vector transformation T bounds the norm of r					
vector to α , i.e., :					
$ \mathbb{E}_{\mathbf{a}\sim\mathcal{P}}[T(\mathbf{a})] \leq \alpha.$	(2)				
<i>Proof.</i> Proof is straightforward by considering that $ T(\mathbf{a}) \leq \alpha, \forall \mathbf{a}.$					
Theorem 1. Applying the vector transformation T bounds the varia vectors to $4\alpha^2$, i.e., :	nce of the				
$\mathbb{E}_{\mathbf{a}\sim\mathcal{P}}\left[T(\mathbf{a}) - \mathbb{E}_{\mathbf{b}\sim\mathcal{P}}[T(\mathbf{b})] ^2\right] \le 4\alpha^2.$	(3)				
<i>Proof.</i> Note that for any \mathbf{a} we have:					
	(4)				
$ T(\mathbf{a}) - \mathbb{E}_{\mathbf{b}\sim\mathcal{P}}[T(\mathbf{b})] \le T(\mathbf{a}) + \mathbb{E}_{\mathbf{b}\sim\mathcal{P}}[T(\mathbf{b})] .$	(4)				
Using $ T(\mathbf{a}) \leq \alpha$ and Lemma 1 concludes the proof.					
1.2 Convergence Analysis					
To analyze the convergence of ENGM, we first define the total empirical risk					
as $A(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} L_i(\boldsymbol{\theta})$, where $L_i(\boldsymbol{\theta}) = L(F_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i)$, and <i>n</i> is the t	otal num-				
ber of examples in the dataset. Based on the previous works $[1, 2]$,	we make				
Assumptions 1 and 2 to analyze the convergence of A .					
Assumption 1 (bounded variance) For any θ the variance of the gr	radients is				
bounded by σ^2 as:					
$\mathbb{E}\left[\nabla A(\boldsymbol{\theta}) - \nabla L_{\boldsymbol{\theta}}(\boldsymbol{\theta}) ^2\right] < \sigma^2$	(5)				

Assumption 2 (Smoothness) $A(\boldsymbol{\theta})$ is smooth with modulus p > 0 if for any θ_0 . θ_1 : $A(\boldsymbol{\theta}_1) \leq A(\boldsymbol{\theta}_0) + \nabla_{\boldsymbol{\theta}} A(\boldsymbol{\theta}_0)^{\top} (\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0) + \frac{p}{2} ||\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0||^2.$ (6)**Lemma 2.** For $\mathbf{g} = \frac{1}{n} \sum_{i=1}^{n} w_i \mathbf{v}_i$, where $w_i = \min\left(\frac{\alpha}{||\mathbf{v}_i||}, 1\right)$, we have $||\mathbf{g}|| \leq \alpha$. *Proof.* Proof is straightforward by considering that $||w_i \mathbf{v}_i|| < \alpha, \forall i$. **Lemma 3.** (Extension of Lemma 2 in [2]) For $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + \mathbf{g}_t$ where $\beta < 1$ and $||\mathbf{g}_t|| < \alpha$. $\forall t > 0$ we have: $||\mathbf{v}_t|| \leq \frac{\alpha}{1-\beta}.$ (7)Proof. $||\mathbf{v}_{t+1}|| < \beta ||\mathbf{v}_t|| + \alpha$ $< \beta^2 ||\mathbf{v}_{t-1}|| + \alpha(\beta + 1)$ (8) $<\beta^{t+1}||\mathbf{v}_{0}||+\alpha(\beta^{t}+\beta^{t-1}+\cdots+1)$ $\leq \frac{\alpha}{1-\beta}$. **Theorem 2.** Consider ENGM for optimizing $A(\boldsymbol{\theta})$ with the following update rule: $\mathbf{v}_{t\perp 1} = \beta \mathbf{v}_t + \mathbf{g}_t.$ (9) $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \eta \mathbf{v}_{t+1},$ (10)where $\mathbf{g}_t = \frac{1}{|\mathcal{I}_t|} \sum_{i \in \mathcal{I}_t} w_i \nabla_{\boldsymbol{\theta}} L_i(\boldsymbol{\theta}_t)$, and $w_i = \min\left(\frac{\alpha}{||\nabla_{\boldsymbol{\theta}} L_i(\boldsymbol{\theta}_t)||}, 1\right)$, for any $\alpha > 0$ the convergence is $O(\sigma)$ and is given as: $\frac{1}{t1}\sum_{t=1}^{t1-1}\mathbb{E}[||\nabla A(\boldsymbol{\theta}_t)||] \leq \frac{1-\beta}{\eta\alpha t_1}(A(\boldsymbol{\theta}_0) - A(\boldsymbol{\theta}^*))$ (11) $+\left(\frac{p\eta}{2(1-\beta)}\right)\alpha.$ *Proof.* We drop **x** from $L(\mathbf{x}, \boldsymbol{\theta})$ and $\boldsymbol{\theta}$ from $\nabla_{\boldsymbol{\theta}}$ for brevity. Let $\boldsymbol{\varphi}_t = \boldsymbol{\theta}_t + \frac{\beta}{1-\beta}(\boldsymbol{\theta}_t - \boldsymbol{\theta}_t)$ $\boldsymbol{\theta}_{t-1}$), then we have: $\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - n \mathbf{g}_t + \beta (\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t-1}).$ (12)and $\varphi_{t+1} = \varphi_t - \frac{\eta}{1-\beta} \mathbf{g}_t.$ (13)Using Assumption 2 we have: $A(\boldsymbol{\varphi}_{t+1}) \leq A(\boldsymbol{\varphi}_t) - \frac{\eta}{1-\beta} \nabla A(\boldsymbol{\varphi}_t)^{\top} \mathbf{g}_t + \frac{p\eta^2}{2(1-\beta)^2} ||\mathbf{g}_t||^2$ $\leq A(\boldsymbol{\varphi}_t) - \frac{\eta}{1-\beta} ||\mathbf{g}_t|| + \frac{p\eta^2}{2(1-\beta)^2} ||\mathbf{g}_t||^2$ (14) $-\frac{\eta}{1-\beta} \Big[\big(\nabla A(\boldsymbol{\varphi}_t) - \nabla A(\boldsymbol{\theta}_t) \big)^\top \mathbf{g}_t \Big]$ + $(\nabla A(\boldsymbol{\theta}_t) - \mathbf{g}_t)^\top \mathbf{g}_t].$

Using Lemma 2, we have:

$$A(\boldsymbol{\varphi}_{t+1}) \le A(\boldsymbol{\varphi}_t) - \frac{\eta\alpha}{1-\beta} + \frac{p\eta^2\alpha^2}{2(1-\beta)^2}$$

$$-\frac{\eta\alpha}{1-\beta} \Big[p || \boldsymbol{\varphi}_t - \boldsymbol{\theta}_t || + || \nabla A(\boldsymbol{\theta}_t) - \mathbf{g}_t || \Big]. \tag{15} \tag{16}$$

Combining Lemma 3 with Equation 12, we obtain:

$$||\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_t|| \le \beta ||\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t-1}|| + \eta \alpha \le \frac{\eta \alpha}{1-\beta}.$$
(16)
⁰⁹⁷
₀₉₈

Consequently, we have:

$$||\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t-1}|| \le \frac{\eta \alpha}{1-\beta}, \tag{17}$$

and:

$$|\boldsymbol{\varphi}_t - \boldsymbol{\theta}_t|| = \frac{\beta}{1-\beta} ||\boldsymbol{\theta}_t - \boldsymbol{\theta}_{t-1}|| \le \frac{\eta\beta\alpha}{(1-\beta)^2}.$$
 (18) 103

Inserting Equation 18 in Equation 15, we obtain:

$$||\nabla A(\boldsymbol{\theta}_t) - \mathbf{g}_t|| \le \frac{1-\beta}{\eta\alpha} (A(\boldsymbol{\varphi}_t) - A(\boldsymbol{\varphi}_{t+1}))$$
(19)

$$+ \frac{p\eta\alpha}{2(1-\beta)} - \frac{p\eta\beta\alpha}{(1-\beta)^2}.$$
⁽¹⁹⁾

Combining Equation 19 with the fact that $||\nabla A(\boldsymbol{\theta}_t)|| \leq ||\nabla A(\boldsymbol{\theta}_t) - \mathbf{g}_t|| + ||\mathbf{g}_t|| \leq ||\mathbf{\theta}_t|| \leq ||\mathbf{\theta}_t$ $||\nabla A(\boldsymbol{\theta}_t) - \mathbf{g}_t|| + \alpha$, we obtain:

$$||\nabla A(\boldsymbol{\theta}_t)|| \le \frac{1-\beta}{\eta\alpha} (A(\boldsymbol{\varphi}_t) - A(\boldsymbol{\varphi}_{t+1}))$$
(20)

$$+ \frac{p\eta\alpha}{2(1-\beta)} - \frac{p\eta\beta\alpha}{(1-\beta)^2} + \alpha.$$
⁽²⁰⁾

Finally, taking expectation from both sides, considering that $\theta_0 = \varphi_0$, and summing up the above inequality from t = 0 to t1 concludes the proof.

Evaluations on ℓ_2 -norm Threat Model

Here, we evaluate the performance of different AT methods combined with ENGM on CIFAR-10/100 datasets. PGD with 10 steps (PGD¹⁰), $\epsilon = 128/255$, and step size 15/255 is used as the attack to maximize the adversarial loss during the training. Table 1 presents the results for these evaluations. We observe that similar to the ℓ_{∞} -norm threat model, ENGM provides better robustness than MSGD in ℓ_2 -norm threat model. Furthermore, it reduces the robust overfitting across all evaluations.

	ECO	CV-2	22 submissie	on ID 702	2					
				0		(0	1)	0 0		
			A1 Mathad	Optim. Method	Ac	curacy (7 DCD ²⁰	(o) • • • •	(07)		
			method	Mech		FGD ⁻ °	AA	(%)		
			Vanilla	M5GD FNCM	89.64 80.15	07.12 60 50	05.20	10.0		
		0		MSCD	87.03	09.00 68.33	67.01	4.5		
		1(TRADES	ENGM	87 37	60.05	68 11	0.2 3.5		
		ΆF		MSGD	88 10	68 42	67 32	5.5 6 1		
		CIF	MART	ENGM	87 78	70.14	68.47	5.3		
		\cup		MSGD	88.08	70.30	68.91	3.9		
			AWP	ENGM	88.52	71.16	69.96	3.3		
			X.7 .11	MSGD	63.46	41.31	38.54	14.6	•	
			Vanilla	ENGM	62.63	43.53	39.92	6.8		
		00		MSGD	61.25	43.40	39.33	9.29		
		В-1	INADES	ENGM	61.11	44.64	40.18	6.7		
		FA.	MART	MSGD	61.90	43.75	39.20	10.8		
		CI		ENGM	61.43	44.19	40.68	8.8		
C		AWP	MSGD	61.83	45.26	40.28	8.0			
							41 0 4	6 1		
	-		AWI	ENGM	62.00	45.31	41.24	0.4		٦ or
able	1: C	omj	parison of	ENGM methods	62.00 for oute	45.31 er optimi	41.24 ization	on differ	ent AT	
able roacl	1: C hes. N	omj Jote	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi tperform	41.24 ization as MSG	on differ D.	ent AT	
able roacl	1: C hes. N	omj Jote	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi tperform	ization ns MSG	on differ D.	ent AT	
able roacl	1: C hes. N	om Jote	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi tperform	41.24 ization ns MSG	on differ D.	ent AT	
able roacl	1: C hes. N	lom <u>i</u> lote	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi tperform	41.24 ization ns MSG	on differ D.	ent AT	
able roacl	1: C hes. N	lom] lote	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi tperform	41.24 ization ns MSG	on differ D.	ent AT	Laj
able roacl	1: C hes. N	lomj lote	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi tperform	41.24 ization ns MSG	on differ D.	ent AT	Laj
able roac	1: C hes. N	lomj Jote	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi tperform	41.24 ization ns MSG	on differ D.	ent AT	L aj
able roac	1: C hes. N	lom] Note	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi tperform	41.24 ization ns MSG	on differ D.	ent AT	L aj
àble roac	1: C hes. N	lomj Vote	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi tperform	41.24 ization as MSG	on differ D.	ent AT	L aj
'able roaci	1: C hes. N	lomj Note	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi tperform	41.24 ization ns MSG	on differ D.	ent AT	L aj
'able roac	1: C hes. N	lomj	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi tperform	41.24 ization ns MSG	on differ D.	ent AT	_ aj
àble roac	1: C hes. N	Jomj	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi tperform	41.24 ization ns MSG	on differ D.	ent AT	_ aj
`able roac	1: C hes. N	lomj lote	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi	41.24 ization ns MSG	on differ D.	ent AT	- aj
able roac	1: C hes. N	lomj	parison of that ENG	ENGM methods M consis	62.00 for oute tently ou	45.31 er optimi	41.24 ization ns MSG	on differ D.	ent AT	- aj

180	References	180					
181		181					
182	1. Yu, H., Jin, R., Yang, S.: On the linear speedup analysis of communication effi-	182					
183	cient momentum SGD for distributed non-convex optimization. In: International	183					
184	Conference on Machine Learning. pp. 7184–7193. PMLR (2019)						
185	2. Zhao, S.Y., Xie, Y.P., Li, W.J.: Stochastic normalized gradient descent with mo-	185					
186	mentum for large batch training. arXiv preprint arXiv:2007.13985 (2020)	186					
187		187					
188		188					
189		189					
190		190					
191		191					
192		192					
193		193					
194		194					
195		195					
196		196					
197		197					
198		198					
199		199					
200		200					
201		201					
202		202					
203		203					
204		204					
205		205					
206		206					
207		207					
208		208					
209		209					
210		210					
211		211					
212		212					
213		213					
214		214					
215		215					
210		210					
217		217					
219		210					
220		220					
221		221					
222		222					
223		223					
224		224					