
Table of Content for Appendix

Towards Effective and Robust Neural Trojan Defenses via Input Filtering 1

Kien Do , Haripriya Harikumar, Hung Le, Dung Nguyen, Truyen
Tran, Santu Rana, Dang Nguyen, Willy Susilo, and Svetha
Venkatesh

A Related Work about Trojan Attacks . 19

B Experimental Setup . 20

B.1 Datasets . 20

B.2 Model Architectures and Training Settings for Benchmark Attacks 21

B.3 Model Architectures and Training Settings for Our Defenses 21

C Additional Results of Benchmark Attacks . 22

C.1 BadNet+ and Noise/Image-BI+ . 22

C.2 Results of Benchmark Attacks on Dtest . 24

D Additional Results of Baseline Defenses . 25

D.1 Network Pruning . 25

D.2 STRIP . 25

D.3 Neural Cleanse . 25

D.4 Februus . 27

D.5 Neural Attention Distillation . 27

E Additional Results and Ablation Studies of Our Defenses 29

E.1 Results of Our Defenses against All-target Attacks 29

E.2 Comparison between Input Filtering and Input Processing [25] . . 29

E.3 Different architectures of the filter F . 29

E.4 Small amounts of training data . 31

E.5 Large-norm triggers . 33

E.6 Explicit Normalization of Triggers in AIF . 34

F Qualitative Results of Our Defenses . 39

F.1 Against Benchmark Attacks . 39

F.2 Against Attacks with Large-Norm Triggers 40

A Related Work about Trojan Attacks

In this paper, we mainly consider a class of Trojan attacks in which attackers
fully control the training processes of a classifier. We refer to these attacks as
“full-control” attacks. There is another less common type of Trojan attacks
called “clean-label” attacks [37,41,55]. These attacks assume a scenario in which
people want to adapt a popular pretrained classifier C (e.g., ResNet [14]) for their
tasks by retraining the top layers of C with additional data collected from the
web. The goal of an attacker is to craft a poisoning image x̃ that looks visually

https://orcid.org/0000-0002-0119-122X

20 K. Do et al.

Dataset #Classes Image size
Attack Defense

#Train #Test #Train #Test

MNIST 10 28×28×1 60000 10000 7000 3000
CIFAR10 10 32×32×3 50000 10000 7000 3000
GTSRB 43 32×32×3 39209 12630 8826 3804
CelebA 8 64×64×3 162770 19867 13904 5963

Table 4: Datasets used in our experiments.

indistinguishable from an image xt of the target class t while being close to some
source image xs in the feature space by optimizing the following objective:

x̃ = argmin
x
‖Cf(x)− Cf(xs)‖22 + λ‖x− xt‖22

where Cf(·) denotes the output of the penultimate layer of C. The attacker then
puts x̃ on the web so that it can be collected and labeled by victims. Since
x̃ looks like an image of the target class t, x̃ will be labeled as t. When the
victims retrain C using a dataset containing x̃, x̃ will create a “backdoor” in
C. The attacker can use xs to access this “backdoor” and forces C to output t.
Apart from the advantage that the attacker does not need to control the labeling
process (while in fact, he can’t), the clean-label attack has several drawbacks due
to its impractical assumptions. For example, the victims may retrain the whole C
instead of just the last softmax layer of C; the victims may use their own training
data to which the attacker can’t access; the victims may use C for a completely
new task that the attacker does not know; the attacker doesn’t even know who
are the victims. Moreover, since xs often looks very different from images of the
target class t, xs can be easily detected by human inspection at test time.

Compared to clean-label attacks, full-control attacks are much harder to
defend against because attackers have all freedom to do whatever they want
with C before sending it to the victims. BadNet [11], Blended Injection [4] are
among the earliest attacks [16,25] of this type that use only one global trigger
and use image blending as an injection function. These attacks can be mitigated
by well-known defenses like Neural Cleanse [47] or STRIP. Besides, their triggers
also look unnatural. Therefore, subsequent attacks focus mainly on improving
the robustness and stealthiness of triggers at test time. Some attacks use dynamic
and/or input-specific triggers [21,32,33,38]. Others use more advanced injection
functions [24,33] or GANs [31] to create hidden triggers or use physical objects
as triggers [4,49].

B Experimental Setup

B.1 Datasets

We provide details of the datasets used in our experiments in Table 4. The
training and test sets for defense (Dval and Dtest) are taken from the test set for
attack with the #training/#test ratio of 0.7/0.3.

Effective Trojan Defenses via Variational and Adversarial Input Filtering 21

Encoder Encoder

ConvBlockX(1, 16) ConvBlockY(3, 64)
ConvBlockX(16, 32) ConvBlockY(64, 128)
ConvBlockX(32, 64) ConvBlockY(128, 256)

Reshape [64, 3, 3] to [576] ConvBlockY(256, 512)
LinearBlockX(576, 256)

Decoder Decoder

LinearBlockX(256, 576) DeconvBlockY(512, 512)
Reshape [576] to [64, 3, 3] DeconvBlockY(512, 256)

DeconvBlockX(64, 32) DeconvBlockY(256, 128)
DeconvBlockX(32, 16) DeconvBlockY(128, 3)
DeconvBlockX(16, 1)

MNIST CelebA

Table 5: Architectures of F (in AIF) for MNIST and CelebA.

B.2 Model Architectures and Training Settings for Benchmark
Attacks

Model architectures Architectures of the classifier C in our work follow exactly
those in [32,33]. Specifically, we use PreactResNet18 [15] for CIFAR10 and GT-
SRB, ResNet18 [14] for CelebA, and the convolutional network described in [32]
for MNIST.

Training settings We train Input-Aware Attack and WaNet based on the official
implementations of the two attacks45 with the same settings as in the original
papers [32,33]. We implement and train BadNet+, noise/image-BI+ ourselves.
The settings of these attacks are given in Appdx. C.1. We set the poisoning rate
of 0.1 for all the benchmark attacks.

B.3 Model Architectures and Training Settings for Our Defenses

Model architectures In AIF, F is a plain autoencoder. We use the two architec-
tures in Table 5 for F when working on MNIST and CelebA and the architecture
(C) in Table 7 when working on CIFAR10 and GTSRB. The remaining archi-
tectures in Table 7 (A, B, D) are for our ablation study in Appdx. E.3. The
architecture of G is derived from the decoder of F with additional layers to han-
dle the noise vector ε. ε has a fixed length of 128. The symbols in Tables 5, 6,
7, 8 have the following meanings: ci is input channel, co is output channel, k is

4 Input-Aware Attack: https://github.com/VinAIResearch/

input-aware-backdoor-attack-release
5 WaNet: https://github.com/VinAIResearch/Warping-based_Backdoor_

Attack-release

https://github.com/VinAIResearch/input-aware-backdoor-attack-release
https://github.com/VinAIResearch/input-aware-backdoor-attack-release
https://github.com/VinAIResearch/Warping-based_Backdoor_Attack-release
https://github.com/VinAIResearch/Warping-based_Backdoor_Attack-release

22 K. Do et al.

LinearBlockX(di ,do)
Linear(di, do, b=False)

BatchNorm2d(do, m=0.01)
ReLU()

ConvBlockX(ci, co) DeconvBlockX(ci, co)

Conv2d(ci, co, k=4, s=2,
p=1, b=False)

ConvTranspose2d(ci, co, k=4,
s=2, p=1, po=1, b=False)

BatchNorm2d(co, m=0.01) BatchNorm2d(co, m=0.01)
ReLU() ReLU()

ConvBlockY(ci, co) DeconvBlockY(ci, co)

Conv2d(ci, co, k=4, s=2,
p=1, b=False)

ConvTranspose2d(ci, co, k=4,
s=2, p=1, b=False)

BatchNorm2d(co, m=0.01) BatchNorm2d(co, m=0.01)
LeakyReLU(0.2) ReLU()

Table 6: Linear, convolutional, and deconvolutional blocks of the architectures
in Table 5.

kernel size, s is stride, p is padding, po is output padding, m is momentum, and
b is bias.

The architectures of F in VIF are adapted from those in AIF by changing
the middle layer between the encoder and decoder to produce the latent mean
µz and standard deviation σz that characterize qF(z|x).

Training settings If not otherwise specified, we train the generator G, the filter F,
and the parameterized triggers (mi, pi) using an Adam optimizer [17] (learning
rate = 1e−3, β1 = 0.5, β2 = 0.9) for 600 epochs with batch size equal to 128.
For trigger synthesis (Section 3), in Eqs. 2, the norm is L2, δ = 0, λ0 varies
from 1e−3 to 1 with the multiplicative step size ≈ 0.3. For VIF (Section 4.1), in
Eq. 3, the norm is L2, λ1 = 1.0 and λ2 = 0.003. An analysis of different values
of λ2 is provided in Section 5.4.1. For AIF (Section 4.2), F and G are optimized
alternately with the learning rate for G is 3e−4. In Eq. 8, δ = 0.05, λ0 = 0.01,
λ3 = 0.3. In Eq. 9, λ1 = 0.1, λ4 = 0.3, λ5 = 0.01. To ensure that G and F are
in good states before adversarial learning is conducted, we pretrain G and F for
100 epochs each. The pretraining losses for G and F are the terms Lgen in Eq. 8
and LIF in Eq. 9, respectively. The training data in Dval are augmented with
random flipping, random crop (padding size = 5), and random rotation (degree
= 10).

C Additional Results of Benchmark Attacks

C.1 BadNet+ and Noise/Image-BI+

BadNet+ BadNet+ is a variant of BadNet [11] that uses M different image
patches p0, ..., pM−1 (pm ∈ Ic×hp×wp , 0 ≤ m < M) as Trojan triggers. Each

Effective Trojan Defenses via Variational and Adversarial Input Filtering 23

Encoder Encoder Encoder Encoder

ConvBlockA(3, 32, k=5, s=1) ConvBlockB(3, 32) ConvBlockC(3, 32) ConvBlockC(3, 32) → z1
ConvBlockA(32, 64, k=4, s=2) ConvBlockB(32, 32) MaxPool2d(2, 2) MaxPool2d(2, 2)
ConvBlockA(64, 128, k=4, s=1) MaxPool2d(2, 2) ConvBlockC(32, 64) ConvBlockC(32, 64) → z2
ConvBlockA(128, 256, k=4, s=2) ConvBlockB(32, 64) MaxPool2d(2, 2) MaxPool2d(2, 2)
ConvBlockA(256, 512, k=4, s=1) ConvBlockB(64, 64) ConvBlockC(64, 128) ConvBlockC(64, 128) → z
ConvBlockA(512, 512, k=1, s=1) MaxPool2d(2, 2)

Linear(512, 256) ConvBlockB(64, 128)
ConvBlockB(128, 128)

MaxPool2d(2, 2)
ConvBlockB(128, 128)

Decoder Decoder Decoder Decoder

DeconvBlockA(256, 256, k=4, s=1) UpsamplingBilinear2d(2) UpsamplingBilinear2d(2) ConvTranspose2d(128, 64, k=2, s=2) → y2
DeconvBlockA(256, 128, k=4, s=2) ConvBlockB(128, 128) ConvBlockC(128, 64) Concat([y2, z2])
DeconvBlockA(128, 64, k=4, s=1) ConvBlockB(128, 64) UpsamplingBilinear2d(2) ConvBlockC(128,64)
DeconvBlockA(64, 32, k=4, s=2) UpsamplingBilinear2d(2) ConvBlockC(64, 32) ConvTranspose2d(64, 32, k=2, s=2) → y1
DeconvBlockA(32, 32, k=5, s=1) ConvBlockB(64, 64) Conv2d(32, 3, k=1) Concat([y1, z1])
DeconvBlockA(32, 32, k=1, s=1) ConvBlockB(64, 32) ConvBlockC(64,32)

ConvTranspose2d(32, 3, k=1, s=1) UpsamplingBilinear2d(2) Conv2d(32, 3, k=1)
ConvBlockB(32, 32)

Conv2d(32, 3, k=3, p=1)

(A) (B) (C) (D)

Table 7: Architectures of F (in AIF) for CIFAR10 and GTSRB.

ConvBlockA(ci, co, k, s) DeconvBlockA(ci, co, k, s) ConvBlockB(ci ,co) ConvBlockC(ci, co)

Conv2d(ci, co, k, s) ConvTranspose2d(ci, co, k, s) Conv2d(ci, co, k=3, p=1) Conv2d(ci, co, k=3, p=1)
BatchNorm2d(co, m=0.1) BatchNorm2d(co, m=0.1) BatchNorm2d(co, m=0.05) ReLU()

LeakyReLU() LeakyReLU() ReLU() BatchNorm2d(co, m=0.01)
Conv2d(co, co, k=3, p=1)

ReLU()
BatchNorm2d(co, m=0.01)

Table 8: Convolutional and deconvolutional blocks of the architectures in Table 7.

patch pm is associated with a 2-tuple lm = (i, j) specifying the location of this
patch in an input image, where 0 ≤ i < h − hp and 0 ≤ j < w − wp. The pixel
values and locations of the patches are generated randomly during construction.
If not otherwise specified, we set M = 20 and set the patch size hp × wp to be
5× 5 for MNIST, CIFAR10, GTSRB, and 8× 8 for CelebA.

Blended Injection+ Blended Injection+ (BI+) is similar to BadNet+ except
that it uses full-size images ρ0, ..., ρM−1 (ρm ∈ Ic×h×w, 0 ≤ m < M) as triggers
instead of patches. Given a clean image x and a Trojan-triggering image ρm, the
corresponding Trojan image x̃ is computed as follows:

x̃ = (1− α) · x+ α · ρm

where α is the blending ratio set to 0.1 by default.
ρ0, ..., ρM−1 can be either random noises or real images, resulting in two

sub-versions of BI+, namely noise-BI+ and image-BI+. Choosing good Trojan-
triggering images for image-BI+ is non-trivial. We tried various real images
(Fig. 7) and found that they lead to very different attack success rates (aka Tro-
jan accuracies) (Fig. 8). The best ones often contain colorful, repetitive patterns
(e.g., “candies” or “crayons” images). Besides, we also observed that training
image-BI+ with M ≥ 10 is difficult since the classifier usually needs a lot of time

24 K. Do et al.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Fig. 7: A list of Trojan-triggering images that we tried. The images are sorted
by their training Trojan accuracy in ascending order. The last 5 images (11-15)
were selected to be triggers for image-BI+ in our experiments.

0 20 40 60 80 100
step (x1000)

0.80

0.85

0.90

0.95

1.00

tra
in

 T
ro

ja
n

ac
c.

0
4
8
12

1
5
9
13

2
6
10
14

3
7
11
15

Fig. 8: Training Trojan accuracy curves of BI on CIFAR10 w.r.t. different triggers
in Fig. 7

to remember real images. Therefore, we selected only 5 images with the highest
training Trojan accuracies (images 11-15 in Fig. 7) to be used as triggers for
image-BI+ in our experiments.

noise-BI+, by contrast, achieves almost perfect Trojan accuracies even when
M is big (M ≈ 100). We think the main reason behind this phenomenon is
that a random noise image usually have much more distinct patterns than a real
image. Although blending with clean input images may destroy some patterns
in the noise image, many other patterns are still unaffected and can successfully
cause the classifier to output the target class.

C.2 Results of Benchmark Attacks on Dtest

For completeness, we provide results of the benchmark attacks on Dtest in Table 9
(for single-target mode) and in Table 10 (for all-target mode). The results in
Table 9 are quite similar to the results on Dval ∪Dtest in Table 1. Since we were

Effective Trojan Defenses via Variational and Adversarial Input Filtering 25

Dataset
Benign BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet
Clean Clean Trojan Clean Trojan Clean Trojan Clean Trojan Clean Trojan

MNIST 99.57 99.47 99.97 99.35 100.0 99.37 100.0 99.33 99.30 99.50 99.07
CIFAR10 94.71 94.83 100.0 94.57 100.0 95.13 99.90 94.57 99.40 94.27 99.67
GTSRB 99.63 99.42 100.0 99.45 100.0 99.34 100.0 98.97 99.66 99.16 99.42
CelebA 78.82 79.57 100.0 78.32 100.0 78.82 100.0 78.17 100.0 78.18 99.97

Table 9: Clean and Trojan accuracies of single-target attacks on the defense test
set (Dtest) of different datasets.

Dataset
BadNet+ noise-BI+ image-BI+ InpAwAtk

Clean Trojan Clean Trojan Clean Trojan Clean Trojan
MNIST 99.37 98.54 99.57 99.38 99.53 99.25 99.23 97.64

CIFAR10 94.63 94.30 94.32 93.77 94.70 94.06 94.53 94.10
GTSRB 99.63 99.08 99.58 99.06 99.37 99.08 99.16 99.29

Table 10: Clean and Trojan accuracies of different all-target attacks on the de-
fense test set (Dtest) of different datasets.

not successful in training the all-target version of WaNet, we exclude this attack
from the results in Table 10.

D Additional Results of Baseline Defenses

D.1 Network Pruning

We provide the Trojan accuracies of Network Pruning (NP) [22] at 1%, 5%,
and 10% decrease in clean accuracy in Table 11 and the corresponding pruning
curves in Fig. 9. It is clear that NP is a very ineffective Trojan mitigation method
since the classifier pruned by NP still achieves nearly 100% Trojan accuracies on
CIFAR10, GTSRB, and CelebA even when experiencing about 10% decrease in
clean accuracy.

D.2 STRIP

In Table 12, we report the false negative rates (FNRs) of STRIP at 1%, 5%, and
10% false positive rate (FPR). We also provide the AUCs and the entropy his-
tograms of STRIP in Figs. 10 and 11, respectively. Note that AUCs are only suit-
able for experimental purpose not practical use since in real-world scenarios, we
still have to compute thresholds based on FPRs on clean data. STRIP achieves
very high FNRs on MNIST, CIFAR10, and GTSRB when defending against
InpAwAtk and WaNet (Table 12) which corresponds to low AUCs (Fig. 10).

D.3 Neural Cleanse

After classifying C as Trojan-infected, Neural Cleanse (NC) mitigates Trojans via
pruning C or via input checking. We refer to these two methods as Neural Cleanse

26 K. Do et al.

Dataset
BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

MNIST 37.38 22.73 14.98 14.21 11.00 6.75 14.69 6.31 4.72 3.32 3.32 3.32 1.18 1.18 1.18
CIFAR10 100.0 100.0 100.0 99.33 87.26 87.26 99.74 99.74 99.74 56.52 56.52 56.52 96.85 96.59 96.59
GTSRB 100.0 100.0 100.0 100.0 100.0 100.0 99.87 99.87 99.87 18.38 18.38 18.38 98.86 98.86 98.86
CelebA 84.08 63.35 50.64 100.0 99.97 99.97 99.87 99.87 99.80 100.0 100.0 99.97 98.22 88.48 53.10

Table 11: Trojan accuracies of C pruned by Network Pruning at 1%, 5%, and
10% decrease in clean accuracy. Smaller values are better. Results are computed
on D′test.

0 10 20 30 40 50 60 70 80 90 100
Ratio of pruned neurons (%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

BadNet+ (Clean)
noise-BI+ (Clean)
image-BI+ (Clean)
InpAwAtk (Clean)
WaNet (Clean)

BadNet+ (Trojan)
noise-BI+ (Trojan)
image-BI+ (Trojan)
InpAwAtk (Trojan)
WaNet (Trojan)

(a) MNIST

0 10 20 30 40 50 60 70 80 90 100
Ratio of pruned neurons (%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

BadNet+ (Clean)
noise-BI+ (Clean)
image-BI+ (Clean)
InpAwAtk (Clean)
WaNet (Clean)

BadNet+ (Trojan)
noise-BI+ (Trojan)
image-BI+ (Trojan)
InpAwAtk (Trojan)
WaNet (Trojan)

(b) CIFAR10

0 10 20 30 40 50 60 70 80 90 100
Ratio of pruned neurons (%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

BadNet+ (Clean)
noise-BI+ (Clean)
image-BI+ (Clean)
InpAwAtk (Clean)
WaNet (Clean)

BadNet+ (Trojan)
noise-BI+ (Trojan)
image-BI+ (Trojan)
InpAwAtk (Trojan)
WaNet (Trojan)

(c) GTSRB

0 10 20 30 40 50 60 70 80 90 100
Ratio of pruned neurons (%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

BadNet+ (Clean)
noise-BI+ (Clean)
image-BI+ (Clean)
InpAwAtk (Clean)
WaNet (Clean)

BadNet+ (Trojan)
noise-BI+ (Trojan)
image-BI+ (Trojan)
InpAwAtk (Trojan)
WaNet (Trojan)

(d) CelebA

Fig. 9: Clean accuracy (dashed) and Trojan accuracy (solid) curves of C pruned
by Network Pruning for different attacks and datasets which correspond to the
results in Table 11.

Pruning (NCP) and Neural Cleanse Input Checking (NCIC). Both methods build
a set of synthetic Trojan images by blending all clean images in Dval with the
synthetic trigger corresponding to the detected target class. NCP ranks neurons
in the second last layer of C according to their average activation gaps computed
on the synthetic Trojan images and the corresponding clean images in Dval in
descending order. It gradually prunes the neurons with the highest ranks first
until certain decrease in clean accuracy is met. NCIC, on the other hand, picks
the top 1% of the neurons in the second last layer of C with largest average
activations on the synthetic

Trojan images to form a characteristic group of Trojan neurons. Given an
input image x, NCIC considers the mean activations of the neurons in the group
w.r.t. x as a score for detecting whether x contains Trojan triggers or not. If the
score is greater than a threshold, x is considered as a Trojan image, otherwise,
a clean image. The threshold is chosen based on the scores of all clean images
in Dval. We provide the results of NCP in Table 13, Fig. 12 and the results of
NCIC in Table 14. At 5% decrease in clean accuracy, NCP reduces the Trojan
accuracies of all the attacks except WaNet to almost 0% on MNIST and CI-
FAR10. However, NCP is ineffective against these attacks especially image-BI+
and InpAwAtk on GTSRB and CelebA. At 10% FPR, NCIC achieves nearly
perfect FNRs against BadNet+, noise-BI+, and image-BI+ on all datasets but
is also ineffective against InpAwAtk on GTSRB and CelebA. Note that both
NCP and NCIC have almost no effect against WaNet on MNIST, CIFAR10, and
CelebA since NC misclassifies the Trojan classifiers w.r.t. this attack as benign.

Effective Trojan Defenses via Variational and Adversarial Input Filtering 27

MNIST CIFAR10 GTSRB CelebA
dataset

0

20

40

60

80

100

AU
C

(%
)

88.0

100.0 99.9
96.0

99.3 99.1 100.0
93.1

99.4

25.8

79.2
71.8

21.5
24.7

28.4

99.5

53.2

45.1 45.0

35.6

BadNet+
InpAwAtk

noise-BI+
WaNet

image-BI+

Fig. 10: AUCs of STRIP against different attacks on different datasets. Larger
values are better.

Dataset
BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

MNIST 88.45 64.40 36.25 13.95 0.00 0.00 16.40 0.05 0.00 99.95 99.80 99.15 99.85 97.55 92.40
CIFAR10 0.00 0.00 0.00 10.35 2.35 0.95 99.45 97.30 95.75 99.55 97.90 96.20 100.0 99.25 96.90
GTSRB 1.05 0.20 0.00 0.00 0.00 0.00 79.20 58.30 44.75 99.85 98.80 97.15 99.50 96.00 91.65
CelebA 17.50 11.20 7.70 33.80 19.80 14.70 75.75 62.35 54.45 1.90 1.20 1.00 99.80 98.55 96.20

Table 12: False negative rates (FNRs) of STRIP at 1%, 5%, and 10% false
positive rate (FPR) for different attacks and datasets. Smaller values are better.

D.4 Februus

We reimplement Februus based on the official code provided by the authors6.
Since there is no script for training the inpainting GAN in the authors’ code, we
use the “inpaint” function from OpenCV instead. Februus has 2 main hyperpa-
rameters that need to be tuned which are: i) the convolutional layer of C at which
GradCAM computes heatmaps (“heatmap layer” for short) and ii) the thresh-
old for converting GradCAM heatmaps into binary masks (“binary threshold”
for short). As shown in Fig. 14, the performance of Februus greatly depends on
these hyperparameters. Increasing the binary threshold means smaller areas are
masked and inpainted, which usually leads to smaller decreases in clean accuracy
(smaller ↓Cs) yet higher Trojan accuracies (higher Ts). Meanwhile, choosing top
layers of C to compute heatmap (e.g., layer4) usually causes bigger ↓Cs yet lower
Ts since the selected regions are often broader (Fig. 13). For simplicity, we choose
the (layer, threshold) setting that gives the smallest decrease in recovery accu-
racy (↓R) of Februus when defending against BadNet+ and apply this setting
to all other attacks.

D.5 Neural Attention Distillation

We reimplement Neural Attention Distillation (NAD) based on the official code
provided by the authors7. We finetune the original Trojan classifier C to obtain

6 Februus: https://github.com/AdelaideAuto-IDLab/Februus
7 NAD: https://github.com/bboylyg/NAD

https://github.com/AdelaideAuto-IDLab/Februus
https://github.com/bboylyg/NAD

28 K. Do et al.

BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

MNIST

0.0 0.1 0.2 0.3
entropy

0

250

500

750

1000

1250

1500

co
un

t

thresh
clean
trojan

0.0 0.2 0.4 0.6 0.8 1.0 1.2
entropy

0

50

100

150

co
un

t

thresh
clean
trojan

0.0 0.2 0.4 0.6 0.8 1.0
entropy

0

200

400

600

800

co
un

t

thresh
clean
trojan

0.0 0.2 0.4 0.6 0.8 1.0 1.2
entropy

0

25

50

75

100

125

150

co
un

t

thresh
clean
trojan

0.0 0.2 0.4 0.6 0.8 1.0
entropy

0

50

100

150

co
un

t

thresh
clean
trojan

CIFAR10

0.0 0.1 0.2 0.3 0.4 0.5 0.6
entropy

0

200

400

600

800

co
un

t

thresh
clean
trojan

0.0 0.2 0.4 0.6
entropy

0

200

400

600

co
un

t

thresh
clean
trojan

0.0 0.2 0.4 0.6
entropy

0

25

50

75

100

125

150

co
un

t

thresh
clean
trojan

0.0 0.1 0.2 0.3 0.4 0.5 0.6
entropy

0

25

50

75

100

125

150

co
un

t

thresh
clean
trojan

0.0 0.2 0.4 0.6 0.8
entropy

0

50

100

150

200

250

co
un

t

thresh
clean
trojan

GTSRB

0.00 0.25 0.50 0.75 1.00
entropy

0

250

500

750

1000

1250

co
un

t

thresh
clean
trojan

0.0 0.2 0.4 0.6 0.8 1.0 1.2
entropy

0

200

400

600

800

co
un

t

thresh
clean
trojan

0.0 0.2 0.4 0.6 0.8 1.0 1.2
entropy

0

50

100

150

200

co
un

t

thresh
clean
trojan

0.00 0.25 0.50 0.75 1.00 1.25
entropy

0

50

100

150

200

250

co
un

t

thresh
clean
trojan

0.0 0.2 0.4 0.6 0.8 1.0 1.2
entropy

0

50

100

150

200

co
un

t

thresh
clean
trojan

CelebA

0.0 0.1 0.2 0.3 0.4
entropy

0

200

400

600

co
un

t

thresh
clean
trojan

0.0 0.1 0.2 0.3 0.4
entropy

0

50

100

150

200

250

co
un

t

thresh
clean
trojan

0.0 0.1 0.2 0.3 0.4 0.5
entropy

0

25

50

75

100

125

150

co
un

t

thresh
clean
trojan

0.0 0.1 0.2 0.3 0.4
entropy

0

500

1000

1500

co
un

t

thresh
clean
trojan

0.0 0.1 0.2 0.3 0.4 0.5
entropy

0

50

100

150

200

co
un

t

thresh
clean
trojan

Fig. 11: Histograms of entropies computed by STRIP for different attacks and
datasets. The vertical red dashed line in each plot indicates the threshold at 5%
false positive rate.

Dataset
BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

MNIST 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - -
CIFAR10 0.00 0.00 0.00 7.37 1.11 0.70 0.00 0.00 0.00 - - - - - -
GTSRB 61.94 48.23 48.23 78.71 1.03 1.03 51.74 51.74 51.74 49.02 38.33 38.33 2.75 1.58 1.58
CelebA 75.97 26.73 7.63 99.95 98.75 95.30 99.75 96.21 83.62 99.87 98.42 93.31 - - -

Table 13: Trojan accuracies of the Trojan classifier C pruned by Neural Cleanse
Pruning at 1%, 5%, and 10% decrease in clean accuracy for different attacks
and datasets. Smaller values are better. Some results for InpAwAtk and WaNet
are not available because Neural Cleanse fails to classify C as Trojan-infected in
these cases (Fig. 4a).

the teacher T in 10 epochs. After that, we distill knowledge from T to C in 20
more epochs. In both cases, the batch size is 64 and the optimizer is Adam with
an learning rate of 0.0001 divided by 10 after 10 epochs. We note that in the
original paper, the authors reported that they used an initial learning rate of 0.1
and divided it by 10 after every 2 epochs during knowledge distillation. However,
in our experiment, we found that such an initial learning rate is too large for
distillation and can cause a significant drop in the clean accuracy of C which is
hard to be recovered even if the learning rate is decayed later.

Effective Trojan Defenses via Variational and Adversarial Input Filtering 29

0 10 20 30 40 50 60 70 80 90 100
Ratio of pruned neurons (%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

BadNet+ (Clean)
noise-BI+ (Clean)
image-BI+ (Clean)
InpAwAtk (Clean)

BadNet+ (Trojan)
noise-BI+ (Trojan)
image-BI+ (Trojan)
InpAwAtk (Trojan)

(a) MNIST

0 10 20 30 40 50 60 70 80 90 100
Ratio of pruned neurons (%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

BadNet+ (Clean)
noise-BI+ (Clean)
image-BI+ (Clean)

BadNet+ (Trojan)
noise-BI+ (Trojan)
image-BI+ (Trojan)

(b) CIFAR10

0 10 20 30 40 50 60 70 80 90 100
Ratio of pruned neurons (%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

BadNet+ (Clean)
noise-BI+ (Clean)
image-BI+ (Clean)
InpAwAtk (Clean)
WaNet (Clean)

BadNet+ (Trojan)
noise-BI+ (Trojan)
image-BI+ (Trojan)
InpAwAtk (Trojan)
WaNet (Trojan)

(c) GTSRB

0 10 20 30 40 50 60 70 80 90 100
Ratio of pruned neurons (%)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

BadNet+ (Clean)
noise-BI+ (Clean)
image-BI+ (Clean)
InpAwAtk (Clean)

BadNet+ (Trojan)
noise-BI+ (Trojan)
image-BI+ (Trojan)
InpAwAtk (Trojan)

(d) CelebA

Fig. 12: Clean accuracy (dashed) and Trojan accuracy (solid) curves of the Trojan
classifier C pruned by Neural Cleanse Pruning for different attacks and datasets
which correspond to the results in Table 13.

Dataset
BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

MNIST 9.75 4.75 3.25 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.30 0.15 - - -
CIFAR10 99.50 78.90 0.65 90.55 39.30 0.05 95.50 56.90 0.40 - - - - - -
GTSRB 100.0 0.40 0.00 0.00 0.00 0.00 0.03 0.00 0.00 99.48 92.17 86.65 3.02 0.40 0.32
CelebA 2.25 0.00 0.00 17.70 0.65 0.00 50.20 11.60 2.35 88.25 42.15 13.60 - - -

Table 14: False negative rates (FNRs) computed by Neural Cleanse Input Check-
ing at 1%, 5%, and 10% false positive rate (FPR) for different attacks and
datasets. Smaller values are better.

E Additional Results and Ablation Studies of Our
Defenses

E.1 Results of Our Defenses against All-target Attacks

In Tables 15 and 16, we show the results our filtering and FtC defenses against
different all-target attacks. On CIFAR10 and GTSRB, VIF/VIFtC and AIF/AIFtC
are comparable. However, on MNIST, AIF/AIFtC is clearly better than VIF/VIFtC.

E.2 Comparison between Input Filtering and Input Processing [25]

In Fig. 17, we compare the performances of our Input Filtering (IF) and Input
Processing (IP) against all the benchmark attacks on all the datasets. It is clear
that IF outperforms IP in terms of Trojan accuracy in most cases, especially un-
der InputAwAtk and WaNet. For example, IP achieves very high (poor) Trojan
accuracies of 34.85%, 62.33%, and 76.49% against WaNet on CIFAR10, GTSRB,
and CelebA, respectively while our IF achieves only 4.82%, 9.83%, and 15.21%.
These results empirically verify the importance of the term − log pC(y|x◦) in the
loss of IF. This term ensures that the filtered output x◦computed by F cannot
cause harm to C even when it look very similar to the original input x.

E.3 Different architectures of the filter F

A major factor that affects the performance of F is its architecture. We consider
an architecture of F to be more complex than others if F achieves smaller re-

30 K. Do et al.

layer2.0.conv2
layer2.1.conv2

layer3.0.conv2
layer3.1.conv2

layer4.0.conv2
layer4.1.conv2

Fig. 13: Examples of heatmaps computed by Februus’s GradCAM at different
layers of C ordered from bottom (layer2.0.conv2) to top (layer4.1.conv2). The
dataset is CIFAR10 and the classifier is a PreactResNet18 [15]. The Trojan
attack is BadNet+. It is clear that only some layers give reasonably good results.

construction loss on Dval with this architecture. In Section 4, we argued that an
optimal filter should be neither too simple nor too complex. Here, we empiri-
cally verify this intuition by examining 4 different architectures of F for CIFAR10
marked as A, B, C, D (Table 7). Their complexities are greater in alphabetical
order as shown in Figs. 15a, 15b. The architecture D has skip-connections be-
tween its encoder and decoder while A, B, C do not.

Denote F with the architectures A, B, C, D as FA, FB, FC, FD respectively.
As shown in Table 18, FC is the best in terms of recovery accuracy although C
is neither the simplest (A) nor the most complex architecture (D). FA achieves
reasonably low Trojan accuracies comparable to those of FB and FC but the
worst clean accuracies. FD, by contrast, experiences almost no decrease in clean
accuracy but achieves very high Trojan accuracies. The reason is that FD simply
copies all information from an input to the output via its skip-connections rather
than learning compressed latent representations of input images. One can verify
this by observing that the DKL (Eq. 3) of FD is almost 0 (Fig. 16c). In this case,
changing λ2 has no effect on the Trojan accuracy of FD as shown in Fig. 17.
However, it is still possible to lower the Trojan accuracy of FD without removing
the skip-connections in D. For example, we can treat the latent representations
corresponding to the skip-connections as random variables and apply the DKL to
these variables like what we do with the middle representation. Or we can com-

Effective Trojan Defenses via Variational and Adversarial Input Filtering 31

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
threshold

0

20

40

60

80

De
cr

ea
se

 in
 C

le
an

 A
cc

. (
%

)

36.1

26.0

14.9
9.0

4.6
2.1 1.3 0.3

52.1

37.3

25.1

13.6

6.5
3.0 1.2 0.4

66.5

56.4

46.8

34.5

21.0

10.9

3.9 1.6

42.0

30.2

21.9

15.1
10.4

5.9
3.1 1.7

66.5

58.3

49.2

37.4

26.9

18.5

11.1
5.5

81.8 80.2 79.9 78.6
74.9

65.0

46.7

29.4

layer2.0.conv2
layer3.0.conv2
layer4.0.conv2

layer2.1.conv2
layer3.1.conv2
layer4.1.conv2

(a) Decrease in clean accuracy (↓C)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
threshold

0

20

40

60

80

100

Tr
oj

an
 A

cc
. (

%
)

88.5
91.8

95.1 97.2 98.7 99.6 99.9 100.0
94.0 96.4 98.3 98.8 99.5 99.8 99.9 100.0

24.2 24.4

38.1

54.0

72.1

85.7

95.6
99.1

31.0

49.6

73.7

88.8
95.5 98.1 99.8 100.0

7.3 6.3
12.6

24.2

46.6

66.6

89.9

98.7

46.4

33.2

22.7
18.8 18.6

22.3

42.6

74.5

layer2.0.conv2
layer3.0.conv2
layer4.0.conv2

layer2.1.conv2
layer3.1.conv2
layer4.1.conv2

(b) Trojan accuracy (T)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
threshold

0

20

40

60

80

De
cr

ea
se

 in
 R

ec
ov

er
y

Ac
c.

 (%
)

79.3 79.6 81.1 82.7 83.9 84.8 85.0 85.1
80.4 82.2 83.7 84.1 84.7 85.0 85.0 85.1

45.3

30.8
35.6

47.0

61.6

72.9

81.3
84.4

27.7

43.4

63.4

75.7
81.3 83.4 84.9 85.1

28.0

19.8 19.6
25.7

42.9

58.4

77.0

84.0
81.2 80.4 78.1

74.4

67.3

55.6 55.8

68.8

layer2.0.conv2
layer3.0.conv2
layer4.0.conv2

layer2.1.conv2
layer3.1.conv2
layer4.1.conv2

(c) Decrease in recovery accuracy (↓R)

Fig. 14: Decreases in clean accuracy (a), Trojan accuracies (b), and decreases
in recovery accuracy (c) of Februus when mitigating BadNet+’s Trojans on
CIFAR10 w.r.t. different heatmap layers and binary thresholds.

press the whole FD by using advanced network compression techniques [30,27,1].
These ideas are out of scope of this paper so we leave them for future work.

E.4 Small amounts of training data

We are curious to know how well our proposed defenses will perform if we reduce
the amount of training data. We select the proportion of training data from {0.8,
0.6, 0.4, 0.2, 0.1, 0.05}. In addition, we consider two broader training settings.
In the first setting, the number of training epochs is fixed at 600 (Section B.3)
regardless of the amount of training data. Because less training data results in
fewer iterations per epoch, fixing the number of training epochs means smaller
total number of training iterations for less training data. In the second setting,
we adjust the number of training epochs based on the proportion of training
data so that the total number of training iterations is fixed and similar to that
when full data is used. Table 19 shows the results of our filtering defenses w.r.t.

32 K. Do et al.

Dataset Defense
BadNet+ noise-BI+ image-BI+ InpAwAtk

↓C T ↓R ↓C T ↓R ↓C T ↓R ↓C T ↓R
IF 0.00 75.90 76.30 -0.03 99.30 99.47 0.13 6.96 6.96 0.00 95.74 96.17

MNIST VIF -0.07 49.67 50.17 -0.07 4.06 4.23 0.07 0.20 0.23 -0.23 63.58 64.21
AIF 0.47 19.31 20.27 0.13 0.03 0.10 0.03 0.03 0.13 -0.13 23.90 24.53

IF 3.93 1.57 8.03 2.63 1.17 3.30 3.60 18.90 22.20 3.83 9.97 14.63
CIFAR10 VIF 8.13 1.87 12.73 6.27 1.33 6.72 6.83 5.67 11.90 7.96 5.95 16.87

AIF 5.67 1.23 9.13 4.40 0.97 5.47 5.13 5.10 9.63 5.43 6.73 14.33

IF 0.29 0.11 1.58 0.13 0.21 1.18 -0.26 61.57 62.25 0.11 3.97 4.50
GTSRB VIF 0.47 0.32 3.36 0.32 0.37 1.26 0.16 6.28 8.23 0.11 0.60 1.58

AIF 0.11 0.29 2.08 -0.05 0.29 1.74 0.11 1.21 3.23 -0.16 2.02 2.39

Table 15: Decreases in clean accuracy (↓Cs), Trojan accuracies (Ts), and recov-
ery accuracies (↓Rs) of our filtering defenses (IF, VIF, AIF) against different
all-target Trojan attacks on different datasets. Smaller values are better. For a
particular dataset, attack, and metric, the best defense is highlighted in bold.

Dataset Defense
BadNet+ noise-BI+ image-BI+ InpAwAtk

FPR FNR FPR FNR FPR FNR FPR FNR

MNIST
IFtC 0.20 77.83 0.10 99.63 0.23 7.22 0.20 97.44

VIFtC 0.20 49.97 0.07 4.19 0.07 0.27 0.33 64.85
AIFtC 0.70 19.24 0.27 0.07 0.30 0.07 0.40 24.83

CIFAR10
IFtC 7.13 1.00 6.10 0.70 6.70 18.57 6.30 9.97

VIFtC 12.10 1.30 10.14 1.12 10.50 5.40 11.13 5.83
AIFtC 9.07 0.87 8.03 1.10 8.47 5.40 8.90 6.70

GTSRB
IFtC 0.50 0.08 0.29 0.29 0.42 62.57 0.34 3.97

VIFtC 0.68 0.32 0.58 0.47 0.84 6.15 0.58 0.55
AIFtC 0.34 0.42 0.26 0.26 0.79 0.92 0.45 2.05

Table 16: FPRs and FNRs of our FtC defenses against different all-target attacks.
Smaller values are better. For a particular dataset, attack, and metric, the best
defense is highlighted in bold.

the above settings. When the number of epochs is fixed, we see that our defenses
often achieve lower Ts yet larger ↓Cs (and ↓Rs) for less training data. This is
because the filter F has not been fully trained to reconstruct the input image well
enough (the first column in Fig. 18). On the other hand, when the total number
of iterations is fixed, F has been fully trained and we do not see much difference
in Trojan accuracy of VIF for different amounts of training data. The Trojan
accuracy of AIF slightly increase for less training data but is still acceptable (the
last column in Fig. 18). Changes in clean accuracy of our filtering defenses are
small (the third column in Fig. 18). In summary, these results suggest that our
filtering defenses are quite robust to the limited amount of training data.

Effective Trojan Defenses via Variational and Adversarial Input Filtering 33

Dataset Def.
BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

↓C T ↓R ↓C T ↓R ↓C T ↓R ↓C T ↓R ↓C T ↓R

MNIST
IP 0.37 1.29 3.60 0.03 3.69 10.92 0.13 1.81 11.72 0.30 1.14 2.10 0.20 1.66 1.70
IF 0.27 2.47 4.99 0.10 0.16 13.52 0.13 1.29 12.02 0.21 0.96 2.08 0.23 0.34 0.61

CIFAR10
IP 4.23 2.74 8.60 3.60 0.78 4.97 4.27 35.85 33.60 5.20 20.48 22.80 5.37 34.85 30.37
IF 4.15 2.30 7.79 3.32 1.01 4.43 4.76 37.48 34.30 4.47 16.35 18.96 3.21 4.82 6.80

GTSRB
IP 0.18 0.00 2.79 0.24 0.00 1.76 0.37 52.61 52.37 0.42 2.06 3.76 10.73 62.33 61.33
IF 0.13 0.00 2.55 0.13 0.03 1.52 0.37 52.27 51.95 0.03 0.66 3.60 0.08 9.83 9.62

CelebA
IP 2.83 9.98 4.23 2.73 25.57 14.72 2.43 73.63 35.82 2.31 15.09 7.81 2.28 76.49 36.76
IF 4.21 8.62 4.75 2.57 13.83 6.00 2.25 59.39 27.94 2.86 11.95 6.07 2.43 15.21 4.75

Table 17: Trojan filtering results (in %) of Input Processing [25] and our Input
Filtering. For a particular dataset, attack, and metric, the best among the 2
defenses are highlighted in bold. Results taken from Table 2 are shown in italic.

0 50 100 150
step (x1000)

50

100

150

200

250

300

re
c.

 lo
ss

A
C

B
D

(a) Reconstruction losses

Input

A

B

C

D

(b) Reconstructed images

Fig. 15: Reconstruction losses (a) and reconstructed images (b) on CIFAR10
corresponding to the 4 autoencoders described in Table 7.

E.5 Large-norm triggers

In this section, we examine the performances of our defenses against attacks that
use large-norm triggers. We consider BadNet+ and noise-BI+ for this study.
For BadNet+, we increase the trigger norm by increasing the trigger size s.
The results for BadNet+ are shown in Table 20. For noise-BI+, we increase
the trigger norm by increasing the blending ratio α. The results for noise-BI+
are shown in Table 21. It is clear that even when triggers have large norms,
our filtering defenses, especially VIF, still effectively erase most of the trigger
pixels that could activate the Trojans in C (Fig. 25) and achieve low Trojan
accuracies (Tables. 20, 21). However, large-norm triggers cause a lot of difficulty
in reconstructing the original clean images from Trojan images (Fig. 25), which
leads to large decreases in recovery accuracy of our methods. Note that such poor
performance is inevitable for filtering defenses like VIF and AIF. A solution to
this problem is using other types of defenses. STRIP [8], Neural Cleanse [47], and
NAD [20] are possible yet not good options. As shown in Fig. 19, STRIP works
well against BadNet+ with large trigger sizes but poorly against noise-BI+ with

34 K. Do et al.

Arch.
BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

↓C T ↓R ↓C T ↓R ↓C T ↓R ↓C T ↓R ↓C T ↓R
A 40.02 5.96 41.10 40.90 14.52 42.43 35.73 3.56 37.92 38.13 3.52 38.97 32.65 6.81 32.94
B 9.23 2.74 13.37 8.73 1.96 10.32 10.48 10.59 18.87 9.75 1.96 13.91 9.94 4.22 11.73
C 7.70 2.52 11.27 6.43 1.22 7.10 7.53 10.52 16.50 7.67 3.07 12.38 7.97 3.96 10.67
D 0.27 100.0 84.83 -0.02 100.0 84.57 0.21 99.81 84.96 -0.10 98.85 83.33 -0.07 98.96 83.35

Table 18: Trojan filtering results (in %) of VIF against different attacks on
CIFAR10 w.r.t. different architectures of F. For a particular dataset, attack, and
metric, the best defense is highlighted in bold.

0 4 8 12 16 20 24 28 32
step (x1000)

0

1

2

3

4

Cr
os

se
nt

ro
py

 lo
ss

BadNet+ (A)
BadNet+ (B)
BadNet+ (C)
BadNet+ (D)

NoiseBI+ (A)
NoiseBI+ (B)
NoiseBI+ (C)
NoiseBI+ (D)

ImageBI+ (A)
ImageBI+ (B)
ImageBI+ (C)
ImageBI+ (D)

InpAwAtk (A)
InpAwAtk (B)
InpAwAtk (C)
InpAwAtk (D)

WaNet (A)
WaNet (B)
WaNet (C)
WaNet (D)

(a) Crossentropy loss

0 4 8 12 16 20 24 28 32
step (x1000)

0

10

20

30

40

50

60

70

Re
co

ns
tru

ct
io

n
lo

ss

BadNet+ (A)
BadNet+ (B)
BadNet+ (C)
BadNet+ (D)

NoiseBI+ (A)
NoiseBI+ (B)
NoiseBI+ (C)
NoiseBI+ (D)

ImageBI+ (A)
ImageBI+ (B)
ImageBI+ (C)
ImageBI+ (D)

InpAwAtk (A)
InpAwAtk (B)
InpAwAtk (C)
InpAwAtk (D)

WaNet (A)
WaNet (B)
WaNet (C)
WaNet (D)

(b) Reconstruction loss

0 4 8 12 16 20 24 28 32
step (x1000)

0

500

1000

1500

2000

2500

KL
 d

iv
er

ge
nc

e

BadNet+ (A)
BadNet+ (B)
BadNet+ (C)
BadNet+ (D)

NoiseBI+ (A)
NoiseBI+ (B)
NoiseBI+ (C)
NoiseBI+ (D)

ImageBI+ (A)
ImageBI+ (B)
ImageBI+ (C)
ImageBI+ (D)

InpAwAtk (A)
InpAwAtk (B)
InpAwAtk (C)
InpAwAtk (D)

WaNet (A)
WaNet (B)
WaNet (C)
WaNet (D)

(c) KL divergence

Fig. 16: Training curves of VIF against InpAwAtk on CIFAR10 (Dval) w.r.t. the
4 architectures of F in Table 7.

large blending ratios. We guess the reason is that with large blending ratios,
Trojan images of noise-BI+ will look like noises, and superimposing a noise-like
Trojan image with a clean image is like adding noise to the clean image, hence,
won’t affect of the class prediction of the clean image. Neural Cleanse tends to
wrongly identify Trojan models as benign if the behind attacks use triggers with
large enough norms. This is because the reverse-engineered trigger w.r.t. the true
target class also has large norm which is not very different from the norms of the
reverse-engineered triggers w.r.t. other classes. NAD achieves impracticably high
Trojan accuracies when trigger norms are large for both BadNet+ and noise-BI+.
By contrast, our FtC defenses, especially VIFtC, are good alternatives. VIFtC
achieves very low FNRs (<7% in case of BadNet+ and <2% in case of noise-
BI+) while still keeping FPRs in an acceptable range between 10% and 15%
(Tables. 20, 21).

E.6 Explicit Normalization of Triggers in AIF

E.6.1 Theoretical Derivation During training AIF, we observed that under
the influence of LVIF-gen (Eq. 8), the norm ‖m‖ of a synthetic trigger mask m
usually increases overtime despite the fact that LVIF-gen also contains a norm
regularization term. The reason is that G is encouraged to output bigger Trojan
triggers to fool F. However, too big trigger causes the generated Trojan image
x̃ to be very different from the input image x, which affects the learning of F.
One way to deal with this problem is explicitly normalizing m so that its norm

Effective Trojan Defenses via Variational and Adversarial Input Filtering 35

0 4 8 12 16 20 24 28 32
step (x1000)

70

75

80

85

90

95

Fi
lte

re
d

Cl
ea

n
Ac

c.
 (%

)

1e0
3e-3

3e-1
1e-3

1e-1
3e-4

3e-2
1e-4

1e-2
0

(a) Filtered Clean Acc.

0 4 8 12 16 20 24 28 32
step (x1000)

50

60

70

80

90

100

Fi
lte

re
d

Tr
oj

an
 A

cc
. (

%
)

1e0
3e-3

3e-1
1e-3

1e-1
3e-4

3e-2
1e-4

1e-2
0

(b) Filtered Trojan Acc.

0 4 8 12 16 20 24 28 32
step (x1000)

10

20

30

40

50

60

70

Fi
lte

re
d

Tr
ue

-c
la

ss
 A

cc
. (

%
) 1e0

3e-3
3e-1
1e-3

1e-1
3e-4

3e-2
1e-4

1e-2
0

(c) Filtered Recovery Acc.

Fig. 17: Test results of VIF using the architecture D (Table 7) for F against
InpAwAtk on CIFAR10 (Dtest) w.r.t. different coefficient values for DKL (λ2 in
Eq. 3).

Def. Metric
InpAwAtk

Default Fixed #epochs Fixed total #iterations
1.0 0.8 0.6 0.4 0.2 0.1 0.05 0.8 0.6 0.4 0.2 0.1 0.05

↓C 4.47 4.73 4.43 5.37 7.90 11.60 25.93 3.53 3.87 3.83 4.20 4.23 4.87
IF T 16.35 15.11 11.56 9.48 6.70 4.07 6.70 16.11 15.41 20.22 18.37 26.33 21.00

↓R 18.96 19.00 15.10 15.47 15.07 17.47 32.23 18.47 18.03 21.87 20.57 26.63 23.17

↓C 7.67 9.17 8.57 9.83 12.13 17.10 27.80 8.53 7.93 7.87 8.97 9.37 11.27
VIF T 3.07 3.81 2.81 4.30 3.30 2.70 5.67 3.26 4.19 4.26 3.70 3.44 4.67

↓R 12.38 14.90 13.17 16.30 17.37 22.10 32.30 13.73 13.87 13.67 14.73 15.03 17.87

↓C 5.28 5.47 6.53 7.90 11.70 16.67 26.13 5.07 5.23 5.17 6.17 5.77 7.83
AIF T 5.30 4.96 3.59 4.89 3.15 2.89 4.00 6.63 9.04 5.70 4.56 8.48 12.96

↓R 11.87 11.60 11.90 13.87 17.03 21.80 30.40 11.73 13.83 11.77 12.57 14.50 19.93

Table 19: Trojan filtering results (in %) of IF, VIF, and AIF against InpAwAtk
on CIFAR10 w.r.t. different proportions of training data (the third row) and
two broader training settings (the second row): i) fixed number of epochs, and
ii) fixed total number of iterations. Results taken from Table 2 are shown in
italic.

is always upper-bounded by δ. Denoted by m̄ the δ-normalized version of m. m̄
can be computed as follows:

m̄ =

{
m if ‖m‖ ≤ δ
δ m
‖m‖ if ‖m‖ > δ

(11)

or more compactly,

m̄ = m×
(

1− max(‖m‖ − δ, 0)

‖m‖

)
= m×

(
1− ReLU(‖m‖ − δ)

‖m‖

)
(12)

In case the norm is L2, the second expression in Eq. 11 can be seen as the
projection of m onto the surface of a sphere of radius δ. By replacing ReLU(·)

36 K. Do et al.

Fixed #epochs Fixed total #iterations

IF

0 4 8 12 16 20 24 28 32
step (x1000)

65

70

75

80

85

90

Cl
ea

n
Ac

cu
ra

cy
 (%

)

5%
60%

10%
80%

20%
100%

40%

0 4 8 12 16 20 24 28 32
step (x1000)

0

10

20

30

40

Tr
oj

an
 A

cc
ur

ac
y

(%
)

5%
60%

10%
80%

20%
100%

40%

0 4 8 12 16 20 24 28 32
step (x1000)

65

70

75

80

85

90

Cl
ea

n
Ac

cu
ra

cy
 (%

)

5%
60%

10%
80%

20%
100%

40%

0 4 8 12 16 20 24 28 32
step (x1000)

0

10

20

30

40

Tr
oj

an
 A

cc
ur

ac
y

(%
)

5%
60%

10%
80%

20%
100%

40%

VIF

0 4 8 12 16 20 24 28 32
step (x1000)

60

65

70

75

80

85

90

Cl
ea

n
Ac

cu
ra

cy
 (%

)

5%
60%

10%
80%

20%
100%

40%

0 4 8 12 16 20 24 28 32
step (x1000)

0

10

20

30

40

Tr
oj

an
 A

cc
ur

ac
y

(%
)

5%
60%

10%
80%

20%
100%

40%

0 4 8 12 16 20 24 28 32
step (x1000)

60

65

70

75

80

85

90

Cl
ea

n
Ac

cu
ra

cy
 (%

)

5%
60%

10%
80%

20%
100%

40%

0 4 8 12 16 20 24 28 32
step (x1000)

0

10

20

30

40

Tr
oj

an
 A

cc
ur

ac
y

(%
)

5%
60%

10%
80%

20%
100%

40%

AIF

0 4 8 12 16 20 24 28 32
step (x1000)

60

65

70

75

80

85

90

Cl
ea

n
Ac

cu
ra

cy
 (%

)

5%
60%

10%
80%

20%
100%

40%

0 4 8 12 16 20 24 28 32
step (x1000)

0

10

20

30

40

Tr
oj

an
 A

cc
ur

ac
y

(%
)

5%
60%

10%
80%

20%
100%

40%

0 4 8 12 16 20 24 28 32
step (x1000)

60

65

70

75

80

85

90

Cl
ea

n
Ac

cu
ra

cy
 (%

)

5%
60%

10%
80%

20%
100%

40%

0 4 8 12 16 20 24 28 32
step (x1000)

0

10

20

30

40

Tr
oj

an
 A

cc
ur

ac
y

(%
)

5%
60%

10%
80%

20%
100%

40%

Fig. 18: Test clean accuracy and Trojan accuracy curves of our filtering defenses
(IF, VIF, AIF) against InpAwAtk on CIFAR10 w.r.t. different proportions of
training data and 2 broader training settings: i) fixed number of epochs and ii)
fixed total number of iterations.

in Eq. 12 with Softplus(·), we obtain a soft version of m̄:

m̄s = m×
(

1− Softplus(‖m‖ − δ, τ)

‖m‖

)
= m×

(
1− τ log(1 + exp((‖m‖ − δ)/τ))

‖m‖

)
(13)

where τ > 0 is a temperature. m̄s with smaller τ approximates m̄ better. Gen-
erally, using m̄s gives better gradient update than using m̄. However, since Soft-
plus is an upper-bound of ReLU, Softplus(‖m‖− δ, τ) can be greater than ‖m‖,
which causes m̄s to be negative. To avoid that, we slightly modify Eq. 13 into
the equation below:

m̄s = m×
(

1− τ log(1 + exp((‖m‖ − δ)/τ))

‖m‖+Ω

)
(14)

Effective Trojan Defenses via Variational and Adversarial Input Filtering 37

Defense
BadNet+

s = 5 s = 11 s = 17 s = 23
↓C T ↓R FPR FNR ↓C T ↓R FPR FNR ↓C T ↓R FPR FNR ↓C T ↓R FPR FNR

IF | IFtC 4.15 2.30 7.79 7.47 1.70 5.83 6.33 29.27 8.83 6.81 4.17 22.52 52.50 6.83 22.37 4.30 64.41 78.77 7.47 63.74
VIF | VIFtC 7.70 2.52 11.27 11.00 2.63 11.07 3.89 31.07 14.43 3.85 9.13 5.41 55.60 12.80 4.89 9.77 7.22 77.73 14.07 6.81
AIF | AIFtC 5.60 2.37 9.03 8.87 1.96 5.53 3.33 23.97 9.03 3.15 4.67 7.56 48.40 8.30 8.04 5.10 28.07 77.70 8.30 28.0

AIF∗ | AIFtC∗ 5.90 2.15 10.00 9.30 2.15 6.50 5.00 34.33 9.97 5.30 5.77 14.63 52.67 9.33 13.70 6.97 29.96 77.93 10.60 30.19

Table 20: Trojan filtering results (in %) of IF, VIF, AIF, and AIF without explicit
trigger normalization (AIF∗) against BadNet+ with different trigger sizes (s) on
CIFAR10. For a particular trigger size and metric, the best result is highlighted
in bold. Results taken from Tables 2, 3 are shown in italic.

Defense
noise-BI+

α = 0.1 α = 0.3 α = 0.5 α = 0.7
↓C T ↓R FNR FPR ↓C T ↓R FNR FPR ↓C T ↓R FNR FPR ↓C T ↓R FNR FPR

IF/IFtC 3.32 1.01 4.43 6.57 0.93 4.30 1.26 36.73 7.80 1.19 3.53 27.59 73.03 7.10 26.74 3.87 49.37 83.10 7.13 49.00
VIF/VIFtC 6.43 1.22 7.10 10.67 1.26 7.53 1.44 27.57 11.80 1.56 7.67 0.74 67.33 11.63 0.74 7.93 0.22 80.80 11.57 0.26
AIF/AIFtC 4.87 1.14 6.02 8.73 0.89 4.90 1.33 39.50 8.60 1.37 5.30 7.00 72.30 9.10 7.11 6.07 31.41 80.70 8.87 31.67

AIF∗/AIFtC∗ 5.60 0.78 7.50 9.53 0.74 6.07 0.48 45.13 10.10 0.74 6.27 1.48 74.83 10.67 1.78 6.47 38.74 80.97 10.00 39.56

Table 21: Trojan filtering results (in %) of IF, VIF, AIF, and AIF without
explicit trigger normalization (AIF∗) against noise-BI+ with different blending
ratios (α) on CIFAR10. For a particular blending ratio and metric, the best
result is highlighted in bold. Results taken from Tables 2, 3 are shown in italic.

where Ω > 0 is an added term to ensure that m̄s ≥ 0. Ω can be computed from
τ and δ by solving the following inequality:

τ log(1 + exp((‖m‖ − δ)/τ)) ≤ ‖m‖+Ω

⇔1 + exp

(
‖m‖ − δ

τ

)
≤ exp

(
‖m‖+Ω

τ

)
⇔1 ≤ exp

(
‖m‖
τ

)(
exp

Ω

τ
− exp

(
−δ
τ

))
⇔ exp

(
−‖m‖
τ

)
≤ exp

Ω

τ
− exp

(
−δ
τ

)
Since exp

(
−‖m‖
τ

)
is always smaller than 1, we can choose Ω so that:

exp
Ω

τ
− exp

(
−δ
τ

)
= 1

⇔Ω = τ log

(
1 + exp

(
−δ
τ

))
In our experiments, we set δ = 0.05 and τ = 0.01. We also observed that the hard
normalization (Eq. 12) and the soft normalization (Eq. 14) of m give roughly
the same performance.

E.6.2 Empirical Results From Table 22, we see that AIF with explicit trig-
ger normalization (denoted as AIF-w) always achieve smaller ↓Cs and sometimes

38 K. Do et al.

STRIP Neural Cleanse NAD AIF VIF

B
a
d
N

et
+

5 11 17 23
trigger size

0

20

40

60

80

100

Fa
lse

 N
eg

at
iv

e
Ra

te
 (%

)

0.0

16.5

0.2 5.1

5 11 17 23
trigger size

0

1

2

3

4

An
om

al
y

In
de

x

3.1
2.9

1.6

0.9

thresh

5 11 17 23
trigger size

0

20

40

60

80

100

Tr
oj

an
 A

cc
ur

ac
y

(%
)

35.7

54.6

93.8 98.3

5 11 17 23
trigger size

0

20

40

60

80

100

Tr
oj

an
 A

cc
ur

ac
y

(%
)

2.4 3.3 7.6

28.1

5 11 17 23
trigger size

0

20

40

60

80

100

Tr
oj

an
 A

cc
ur

ac
y

(%
)

2.5 3.9 5.4 7.2

n
o
is

e-
B

I+

0.1 0.3 0.5 0.7
blending ratio

0

20

40

60

80

100

Fa
lse

 N
eg

at
iv

e
Ra

te
 (%

)

0.9

64.6
72.1

98.6

0.1 0.3 0.5 0.7
blending ratio

0

2

4

6

8

An
om

al
y

In
de

x

7.3

2.2
1.5 1.3

thresh

0.1 0.3 0.5 0.7
blending ratio

0

20

40

60

80

100

Tr
oj

an
 A

cc
ur

ac
y

(%
)

1.8

27.2

69.5

91.9

0.1 0.3 0.5 0.7
blending ratio

0

20

40

60

80

100

Tr
oj

an
 A

cc
ur

ac
y

(%
)

1.1 1.3
7.0

31.4

0.1 0.3 0.5 0.7
blending ratio

0

20

40

60

80

100

Tr
oj

an
 A

cc
ur

ac
y

(%
)

1.2 1.4 0.7 0.2

Fig. 19: FNRs at 10% FPR of STRIP, anomaly indices of Neural Cleanse, Trojan
accuracies of NAD, and Trojan accuracies of our filtering defenses VIF, AIF
against BadNet+ with different trigger sizes (top) and noise-BI+ with different
blending ratios (bottom).

Dataset Norm.
BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

↓C T ↓R ↓C T ↓R ↓C T ↓R ↓C T ↓R ↓C T ↓R

CIFAR10
w/ 5.60 2.37 9.03 4.87 1.14 6.02 5.23 1.96 7.10 5.28 5.30 11.87 4.30 1.22 5.67
wo/ 5.90 2.15 10.00 5.60 0.78 7.50 6.60 1.56 7.53 6.20 2.56 9.37 5.80 2.22 8.10

GTSRB
w/ -0.16 0.00 1.87 0.05 0.00 0.81 0.13 7.47 9.54 -0.03 0.05 1.37 -0.05 0.50 0.42
wo/ 0.13 0.08 3.18 0.24 0.00 1.26 0.45 0.92 5.44 0.45 0.00 2.60 0.21 0.11 0.45

Table 22: Trojan filtering results (in %) of AIF with and without explicit trigger
normalization against different attacks on CIFAR10 and GTSRB. For a partic-
ular attack, dataset and metric, the best result is highlighted in bold. Results
taken from Table 2 are shown in italic.

achieve larger Ts than the counterpart without explicit trigger normalization (de-
noted as AIF-wo). In general, AIF-w usually achieves lower ↓Rs than AIF-wo
and is considered to be better so we set it as default. Fig. 20 provides a deeper
insight into the results in Table 22. Without explicit trigger normalization, the
generator G can easily fool F (low crossentropy losses in Fig. 20i) by just increas-
ing the norm of the synthetic triggers (Fig. 20k). This makes x̃ more different
from x and causes more difficulty for F to force x̃◦ close to x (Fig. 20h) as
well as correcting the label of x̃ (Fig. 20g). The large difference between x̃ and
x also negatively affects the performance of F on reconstructing clean images
(Fig. 20f). As a result, AIF-wo achieves much poorer Ts on synthetic Trojan im-
ages (Fig. 20d) than AIF-w. On ground-truth Trojan images, AIF-wo performs
as well as AIF-w in terms of T (Fig. 20b) and worse than AIF-w in terms of ↓C
(Fig. 20a) and ↓R (Fig. 20d).

Effective Trojan Defenses via Variational and Adversarial Input Filtering 39

10 15 20 25 30 35 40
step (x1000)

90

92

94

96

98

100

Cl
ea

n
Ac

cu
ra

cy
 (%

)

BadNet+ (w/ norm)
NoiseBI+ (w/ norm)
ImageBI+ (w/ norm)
InpAwAtk (w/ norm)
WaNet (w/ norm)

BadNet+ (wo/ norm)
NoiseBI+ (wo/ norm)
ImageBI+ (wo/ norm)
InpAwAtk (wo/ norm)
WaNet (wo/ norm)

(a) Clean Accuracy

10 15 20 25 30 35 40
step (x1000)

0

5

10

15

20

Tr
oj

an
 A

cc
ur

ac
y

(%
)

BadNet+ (w/ norm)
NoiseBI+ (w/ norm)
ImageBI+ (w/ norm)
InpAwAtk (w/ norm)
WaNet (w/ norm)

BadNet+ (wo/ norm)
NoiseBI+ (wo/ norm)
ImageBI+ (wo/ norm)
InpAwAtk (wo/ norm)
WaNet (wo/ norm)

(b) Trojan Accuracy

10 15 20 25 30 35 40
step (x1000)

80

85

90

95

100

Re
co

ve
ry

 A
cc

ur
ac

y
(%

)

BadNet+ (w/ norm)
NoiseBI+ (w/ norm)
ImageBI+ (w/ norm)
InpAwAtk (w/ norm)
WaNet (w/ norm)

BadNet+ (wo/ norm)
NoiseBI+ (wo/ norm)
ImageBI+ (wo/ norm)
InpAwAtk (wo/ norm)
WaNet (wo/ norm)

(c) Recovery Accuracy

10 15 20 25 30 35 40
step (x1000)

0

20

40

60

80

100

Tr
oj

an
 A

cc
. o

n
Sy

n.
 D

at
a

(%
) BadNet+ (w/ norm)

NoiseBI+ (w/ norm)
ImageBI+ (w/ norm)
InpAwAtk (w/ norm)
WaNet (w/ norm)

BadNet+ (wo/ norm)
NoiseBI+ (wo/ norm)
ImageBI+ (wo/ norm)
InpAwAtk (wo/ norm)
WaNet (wo/ norm)

(d) Trojan Acc. on
Sync. Data

15 20 25 30 35 40
step (x1000)

0.06

0.08

0.10

0.12

lo
gp

C(y
|x

)

BadNet+ (w/ norm)
NoiseBI+ (w/ norm)
ImageBI+ (w/ norm)
InpAwAtk (w/ norm)
WaNet (w/ norm)

BadNet+ (wo/ norm)
NoiseBI+ (wo/ norm)
ImageBI+ (wo/ norm)
InpAwAtk (wo/ norm)
WaNet (wo/ norm)

(e) log p(y|x◦) (F)

15 20 25 30 35 40
step (x1000)

2

3

4

5
|x

x|

BadNet+ (w/ norm)
NoiseBI+ (w/ norm)
ImageBI+ (w/ norm)
InpAwAtk (w/ norm)
WaNet (w/ norm)

BadNet+ (wo/ norm)
NoiseBI+ (wo/ norm)
ImageBI+ (wo/ norm)
InpAwAtk (wo/ norm)
WaNet (wo/ norm)

(f) ‖x◦ − x‖ (F)

15 20 25 30 35 40
step (x1000)

0.0

0.5

1.0

1.5

2.0

2.5

lo
gp

C(y
|x

)

BadNet+ (w/ norm)
NoiseBI+ (w/ norm)
ImageBI+ (w/ norm)
InpAwAtk (w/ norm)
WaNet (w/ norm)

BadNet+ (wo/ norm)
NoiseBI+ (wo/ norm)
ImageBI+ (wo/ norm)
InpAwAtk (wo/ norm)
WaNet (wo/ norm)

(g) log p(y|x̃◦) (F)

15 20 25 30 35 40
step (x1000)

5

10

15

20

|x
x|

BadNet+ (w/ norm)
NoiseBI+ (w/ norm)
ImageBI+ (w/ norm)
InpAwAtk (w/ norm)
WaNet (w/ norm)

BadNet+ (wo/ norm)
NoiseBI+ (wo/ norm)
ImageBI+ (wo/ norm)
InpAwAtk (wo/ norm)
WaNet (wo/ norm)

(h) ‖x̃◦ − x‖ (F)

15 20 25 30 35 40
step (x1000)

6

8

10

12

14

lo
gp

C(k
|x

)

BadNet+ (w/ norm)
NoiseBI+ (w/ norm)
ImageBI+ (w/ norm)
InpAwAtk (w/ norm)
WaNet (w/ norm)

BadNet+ (wo/ norm)
NoiseBI+ (wo/ norm)
ImageBI+ (wo/ norm)
InpAwAtk (wo/ norm)
WaNet (wo/ norm)

(i) log p(k|x̃◦) (G)

15 20 25 30 35 40
step (x1000)

0

2

4

6

8

lo
gp

C(k
|x

)

BadNet+ (w/ norm)
NoiseBI+ (w/ norm)
ImageBI+ (w/ norm)
InpAwAtk (w/ norm)
WaNet (w/ norm)

BadNet+ (wo/ norm)
NoiseBI+ (wo/ norm)
ImageBI+ (wo/ norm)
InpAwAtk (wo/ norm)
WaNet (wo/ norm)

(j) log p(k|x̃) (G)

15 20 25 30 35 40
step (x1000)

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Av
g.

 T
rig

ge
r N

or
m

BadNet+ (w/ norm)
NoiseBI+ (w/ norm)
ImageBI+ (w/ norm)
InpAwAtk (w/ norm)
WaNet (w/ norm)

BadNet+ (wo/ norm)
NoiseBI+ (wo/ norm)
ImageBI+ (wo/ norm)
InpAwAtk (wo/ norm)
WaNet (wo/ norm)

(k) ‖m‖ (G)

Fig. 20: Test result curves and training loss curves of F, G of VIF with and without
explicit trigger normalization against different attacks on GTSRB. These plots
correspond to the results in the bottom 2 rows in Table 22.

F Qualitative Results of Our Defenses

F.1 Against Benchmark Attacks

In Figs. 21a, 22a, 23a, 24a, we show some ground-truth (GT) Trojan images x̃
and their filtered counterparts x̃◦ computed by Februus (Feb.) and our filtering
defenses (VIF, AIF) for different Trojan attacks and datasets. We also show the
corresponding “counter-triggers” of x̃◦ defined as |x̃◦− x̃| in Figs. 21b, 22b, 23b,
24b in comparison with the ground-truth Trojan triggers |x̃− x|. It is apparent
that VIF and AIF correctly filter the true triggers of all the attacks without
knowing them while Februus fails to filter the true triggers of noise-BI+, image-
BI+, InpAwAtk and WaNet. The failure of Februus comes from the fact that
GradCAM is unable to find regions containing full-sized, distributed triggers
of noise/image-BI+ or isomorphic, input-specific triggers of InpAwAtk/WaNet.
For BadNet+ and InpAwAtk, our filtering defenses mainly blur the triggers of
these attacks instead of completely removing the triggers but this is enough to
deactivate the triggers.

40 K. Do et al.

BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

GT

Feb.

VIF

AIF

(a) Filtered images

BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

GT

Feb.

VIF

AIF

(b) Counter-triggers

Fig. 21: (a): Ground-truth (GT) Trojan images of different attacks and the corre-
sponding filtered images computed by Februus (Feb.), VIF, and AIF on MNIST.
(b): GT triggers and counter-triggers w.r.t. the filtered images in (a).

F.2 Against Attacks with Large-Norm Triggers

In Fig. 25, we visualize the filtered images and their corresponding counter-
triggers computed by our methods for Trojan images of BadNet+ with different
trigger sizes and of noise-BI+ with different blending ratios. In general, our
filtering defenses can effectively deactivate triggers embedded in the Trojan im-
ages via modifying the trigger pixels but cannot fully reconstruct the original
clean images. These qualitative results correspond to the quantitative results in
Tables 20, 21.

Effective Trojan Defenses via Variational and Adversarial Input Filtering 41

BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

GT

Feb.

VIF

AIF

(a) Filtered images

BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

GT

Feb.

VIF

AIF

(b) Counter-triggers

Fig. 22: (a): Ground-truth (GT) Trojan images of different attacks and the cor-
responding filtered images computed by Februus (Feb.), VIF, and AIF on CI-
FAR10. (b): GT triggers and counter-triggers w.r.t. the filtered images in (a).

BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

GT

Feb.

VIF

AIF

(a) Filtered images

BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

GT

Feb.

VIF

AIF

(b) Counter-triggers

Fig. 23: (a): Ground-truth (GT) Trojan images of different attacks and the corre-
sponding filtered images computed by Februus (Feb.), VIF, and AIF on GTSRB.
(b): GT triggers and counter-triggers w.r.t. the filtered images in (a).

42 K. Do et al.

BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

GT

Feb.

VIF

AIF

(a) Filtered images

BadNet+ noise-BI+ image-BI+ InpAwAtk WaNet

GT

Feb.

VIF

AIF

(b) Counter-triggers

Fig. 24: (a): Ground-truth (GT) Trojan images of different attacks and the corre-
sponding filtered images computed by Februus (Feb.), VIF, and AIF on CelebA.
(b): GT triggers and counter-triggers w.r.t. the filtered images in (a).

s=11 s=17 s=23

GT

IF

VIF

AIF

AIF*

(a) Filtered images (BadNet+)

=0.3 =0.5 =0.7

GT

IF

VIF

AIF

AIF*

(b) Filtered images (noise-BI+)

s=11 s=17 s=23

GT

IF

VIF

AIF

AIF*

(c) Counter-triggers (BadNet+)

=0.3 =0.5 =0.7

GT

IF

VIF

AIF

AIF*

(d) Counter-triggers (noise-BI+)

Fig. 25: (a)/(b): Ground-truth (GT) Trojan images of BadNet+/noise-BI+ and
the corresponding filtered images computed by IF, VIF, AIF, and AIF without
explicit trigger normalization (AIF∗). (c)/(d): GT triggers and counter-triggers
w.r.t. the filtered images in (a)/(b).

