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Abstract. The vulnerability of Deep Neural Networks to Adversarial
Attacks has fuelled research towards building robust models. While most
Adversarial Training algorithms aim at defending attacks constrained
within low magnitude Lp norm bounds, real-world adversaries are not
limited by such constraints. In this work, we aim to achieve adversar-
ial robustness within larger bounds, against perturbations that may be
perceptible, but do not change human (or Oracle) prediction. The pres-
ence of images that flip Oracle predictions and those that do not makes
this a challenging setting for adversarial robustness. We discuss the ideal
goals of an adversarial defense algorithm beyond perceptual limits, and
further highlight the shortcomings of naively extending existing training
algorithms to higher perturbation bounds. In order to overcome these
shortcomings, we propose a novel defense, Oracle-Aligned Adversarial
Training (OA-AT), to align the predictions of the network with that of
an Oracle during adversarial training. The proposed approach achieves
state-of-the-art performance at large epsilon bounds (such as an L-inf
bound of 16/255 on CIFAR-10) while outperforming existing defenses
(AWP, TRADES, PGD-AT) at standard bounds (8/255) as well.

1 Introduction

Deep Neural Networks are known to be vulnerable to Adversarial Attacks, which
are perturbations crafted with an intention to fool the network [27]. With the
rapid increase in deployment of Deep Learning algorithms in various critical
applications such as autonomous navigation, it is becoming increasingly crucial
to improve the Adversarial robustness of these models. In a classification setting,
Adversarial attacks can flip the prediction of a network to even unrelated classes,
while causing no change in a human’s prediction (Oracle label).

The definition of adversarial attacks involves the prediction of an Oracle,
making it challenging to formalize threat models for the training and verifica-
tion of adversarial defenses. The widely used convention that overcomes this
challenge is the ℓp norm based threat model with low-magnitude bounds to en-
sure imperceptibility [10,3]. For example, attacks constrained within an ℓ∞ norm
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Fig. 1. Perturbations within different threat models: Adversarial images
(b, c, e, g, i, j) and perturbations (d, f, h) along with the corresponding clean
image (a) for various ℓ∞ norm bounds on CIFAR-10. Attacks are generated from
an Adversarially Trained model (AT) or a Normally Trained model (NT) using
the gradient-based attack GAMA-PGD [25] or the Random-search based attack
Square [1]. The medium-magnitude threat model is challenging since it consists
of attacks which are Oracle-Invariant and partially Oracle-Sensitive.

of 8/255 on the CIFAR-10 dataset are imperceptible to the human eye as shown
in Fig.1(b), ensuring that the Oracle label is unchanged. The goal of Adversarial
Training within such a threat model is to ensure that the prediction of the model
is consistent within the considered perturbation radius ε, and matches the label
associated with the unperturbed image.

While low-magnitude ℓp norm based threat models form a crucial subset of
the widely accepted definition of adversarial attacks [9], they are not sufficient,
as there exist valid attacks at higher perturbation bounds as well, as shown in
Fig.1(c) and (e). However, the challenge at large perturbation bounds is the ex-
istence of attacks that can flip Oracle labels as well [28], as shown in Fig.1(g),
(i) and (j). Naively scaling existing Adversarial Training algorithms to large per-
turbation bounds would enforce consistent labels on images that flip the Oracle
prediction as well, leading to a conflict in the training objective as shown in
Fig.2. This results in a large drop in clean accuracy, as shown in Table-1. This
has triggered interest towards developing perceptually aligned threat models,
and defenses that are robust under these settings [17]. However, finding a per-
ceptually aligned metric is as challenging as building a network that can replicate
oracle predictions [28]. Thus, it is crucial to investigate adversarial robustness
using the well-defined ℓp norm metric under larger perturbation bounds.
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Table 1. CIFAR-10: Standard Ad-
versarial Training using Large-ε:
Performance (%) of various existing
Defenses trained using ε = 8/255 or
16/255 against attacks bound within
ε = 8/255 and 16/255. A large drop
in clean accuracy is observed with ex-
isting approaches [33,30,18,34] when
trained using perturbations with ε =
16/255.

Method
Attack ε
(Training)

Clean
Acc

GAMA
(8/255)

AA
(8/255)

GAMA
(16/255)

Square
(16/255)

TRADES 8/255 80.53 49.63 49.42 19.27 27.82
TRADES 16/255 75.30 35.64 35.12 10.10 18.87
AWP 8/255 80.47 50.06 49.87 19.66 28.51
AWP 16/255 71.63 40.85 40.55 15.92 24.16
PGD-AT 8/255 81.12 49.03 48.58 15.77 26.47
PGD-AT 16/255 64.93 46.66 46.21 26.73 32.25
FAT 8/255 84.36 48.41 48.14 15.18 25.07
FAT 16/255 75.27 47.68 47.34 22.93 29.47
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Fig. 2. Issues with Standard Ad-
versarial Training at Large-ε: An
adversarial example generated from
the original image of a frog looks par-
tially like a deer at an ℓ∞ bound of
16/255, but is trained to predict the
true label, Frog. This induces a con-
flicting objective, leading to a large
drop in clean accuracy.

In this work, we aim to improve robustness at larger epsilon bounds, such as
an ℓ∞ norm bound of 16/255 on the CIFAR-10 and CIFAR-100 datasets [16].

We define this as a moderate-magnitude bound, and discuss the ideal goals
for achieving robustness under this threat model in Sec.3.3. We further propose a
novel defense Oracle-Aligned Adversarial Training (OA-AT), which attempts to
align the predictions of the network with that of an Oracle, rather than enforcing
all samples within the constraint set to have the same label as the original image.

Our contributions have been summarized below:

• We propose Oracle-Aligned Adversarial Training (OA-AT) to improve ro-
bustness within the defined moderate-ε threat model.

• We demonstrate superior performance when compared to state-of-the-art
methods such as AWP [30], TRADES [33] and PGD-AT [18] at ε = 16/255
while also performing better at ε = 8/255 on CIFAR-10 and SVHN. We also
demonstrate improved performance on challenging datasets such as CIFAR-
100 and Imagenette (10-class subset of Imagenet with 160×160 images).

• We achieve improvements over the baselines even at larger model capacities
such as WideResNet-34-10, and demonstrate results that outperform existing
methods on the RobustBench leaderboard.

• We show the relation between contrast level of images and the existence of
attacks that can flip the Oracle label within a given perturbation bound,
and use this observation for constructing better evaluation metrics at large
perturbation bounds.

Our code is available here: https://github.com/val-iisc/OAAT.

https://github.com/val-iisc/OAAT
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2 Related Works

Robustness against imperceptible attacks: Following the discovery of ad-
versarial examples by Szegedy et al., [27], a myriad of adversarial attack and
defense methods have been proposed. Adversarial Training has emerged as the
most successful defense strategy against ℓp norm bound imperceptible attacks.
PGD Adversarial Training (PGD-AT) proposed by Madry et al. [18] constructs
multi-step adversarial attacks by maximizing Cross-Entropy loss within the con-
sidered threat model and subsequently minimizes the same for training.

This was followed by several adversarial training methods [33,34,22,30,25,20]
that improved accuracy against such imperceptible threat models further.

Zhang et al. [33] proposed the TRADES defense, which maximizes the Kullback-
Leibler (KL) divergence between the softmax outputs of adversarial and clean
samples for attack generation, and minimizes the same in addition to the Cross-
Entropy loss on clean samples for training.

Improving Robustness of base defenses:Wu et al. [30] proposed an addi-
tional step of Adversarial Weight Perturbation (AWP) to maximize the training
loss, and further train the perturbed model to minimize the same. This gener-
ates a flatter loss surface [26], thereby improving robust generalization. While
this can be integrated with any defense, AWP-TRADES is the state-of-the-art
adversarial defense today.

On similar lines, the use of stochastic weight averaging of model weights [15] is
also seen to improve the flatness of loss surface, resulting in a boost in adversarial
robustness [11,5]. Recent works attempt to use training techniques such as early
stopping [22], optimal weight decay [20], Cutmix data augmentation [31,21] and
label smoothing [21] to achieve enhanced robust performance on base defenses
such as PGD-AT [18] and TRADES [33]. We utilize some of these methods in
our approach (Sec.7), and also present improved baselines by combining AWP-
TRADES [30] with these enhancements.

Robustness against large perturbation attacks: Shaeiri et al. [23] demon-
strate that the standard formulation of adversarial training is not well-suited for
achieving robustness at large perturbations, as the loss saturates very early. The
authors propose Extended Adversarial Training (ExAT), where a model trained
on low-magnitude perturbations (ε = 8/255) is fine-tuned with large magnitude
perturbations (ε = 16/255) for just 5 training epochs, to achieve improved ro-
bustness at large perturbations. The authors also discuss the use of a varying
epsilon schedule to improve training convergence. Friendly Adversarial Train-
ing (FAT) [34] performs early-stopping of an adversarial attack by thresholding
the number of times the model misclassifies the image during attack generation.
The threshold is increased over training epochs to increase the strength of the
attack over training. Along similar lines, Sitawarin et al. [24] propose Adversarial
Training with Early Stopping (ATES), which performs early stopping of a PGD
attack based on the margin (difference between true and maximum probability
class softmax outputs) of the perturbed image being greater than a threshold
that is increased over epochs. We compare against these methods and improve
upon them significantly using our proposed approach (Sec.4).
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3 Preliminaries and Threat Model

3.1 Notation

We consider an N -class image classification problem with access to a labelled
training dataset D. The input images are denoted by x ∈ X and their corre-
sponding labels are denoted as y ∈ {1, ..., N}. The function represented by the
Deep Neural Network is denoted by fθ where θ ∈ Θ denotes the set of network
parameters. The N -dimensional softmax output of the input image x is denoted
as fθ(x). Adversarial examples are defined as images that are crafted specifically
to fool a model into making an incorrect prediction [9]. An adversarial image
corresponding to a clean image x would be denoted as x̃. The set of all images
within an ℓp norm ball of radius ε is defined as S(x) = {x̂ : ||x̂− x||p < ε}.

In this work, we specifically consider robustness to ℓ∞ norm bound adversar-
ial examples. We define the Oracle prediction of a sample x as the label that a
human is likely to assign to the image, and denote it as O(x). For a clean image,
O(x) would correspond to the true label y, while for a perturbed image it could
differ from the original label.

3.2 Nomenclature of Adversarial Attacks

Tramer et al. [28] discuss the existence of two types of adversarial examples:
Sensitivity-based examples, where the model prediction changes while the Ora-
cle prediction remains the same as the unperturbed image, and Invariance-based
examples, where the Oracle prediction changes while the model prediction re-
mains unchanged. Models trained using standard empirical risk minimization
are susceptible to sensitivity-based attacks, while models which are overly robust
to large perturbation bounds could be susceptible to invariance-based attacks.
Since these definitions are model-specific, we define a different nomenclature
which only depends on the input image and the threat model considered:

• Oracle-Invariant set OI(x) is defined as the set of all images within the
bound S(x), that preserve Oracle label. Oracle is invariant to such attacks:

OI(x) := {x̂ : O(x̂) = O(x), x̂ ∈ S(x)} (1)

• Oracle-Sensitive set OS(x) is defined as the set of all images within the
bound S(x), that flip the Oracle label. Oracle is sensitive to such attacks:

OS(x) := {x̂ : O(x̂) ̸= O(x), x̂ ∈ S(x)} (2)

3.3 Objectives of the Proposed Defense

Defenses based on the conventional ℓp norm threat model attempt to train mod-
els which are invariant to all samples within S(x). This is an ideal requirement
for low ε-bound perturbations, where the added noise is imperceptible, and hence
all samples within the threat model are Oracle-Invariant. An example of a low
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ε-bound constraint set is the ℓ∞ threat model with ε = 8/255 for the CIFAR-10
dataset, which produces adversarial examples that are perceptually similar to
the corresponding clean images, as shown in Fig.1(b).

As we move to larger ε bounds, Oracle-labels begin to change, as shown in
Fig.1(g, i, j). For a very high perturbation bound such as 32/255, the changes
produced by an attack are clearly perceptible and in many cases flip the Oracle
label as well. Hence, robustness at such large bounds is not of practical relevance.
The focus of this work is to achieve robustness within a moderate-magnitude ℓp
norm bound, where some perturbations look partially modified (Fig.1(g)), while
others look unchanged (Fig.1(c, e)), as is the case with ε = 16/255 for CIFAR-10.
The existence of attacks that do not significantly change the perception of the
image necessitates the requirement of robustness within such bounds, while the
existence of partially Oracle-Sensitive samples makes it difficult to use standard
adversarial training methods on the same. The ideal goals for training defenses
under this moderate-magnitude threat model are described below:

• Robustness against samples which belong to OI(x)
• Sensitivity towards samples which belong to OS(x), with model’s prediction
matching the Oracle label

• No specification on samples which cannot be assigned an Oracle label.

Given the practical difficulty in assigning Oracle labels during training and eval-
uation, we consider the following subset of these ideal goals in this work:

• Robustness-Accuracy trade-off, measured using accuracy on clean samples
and robustness against valid attacks within the threat model

• Robustness against all attacks within an imperceptible radius (ε = 8/255 for
CIFAR-10), measured using strong white-box attacks [7,25]

• Robustness to Oracle-Invariant samples within a larger radius (ε = 16/255
for CIFAR-10), measured using gradient-free attacks [1,4]

4 Proposed Method

In order to achieve the goals discussed in Sec.3.3, we require to generate Oracle-
Sensitive and Oracle-Invariant samples and impose specific training losses on
each of them individually. Since labeling adversarial samples as Oracle-Invariant
or Oracle-Sensitive is expensive and cannot be done while training networks, we
propose to use attacks which ensure a given type of perturbation (OI or OS) by
construction, and hence do not require explicit annotation.
Generation of Oracle-Sensitive examples: Robust models are known to
have perceptually aligned gradients [29]. Adversarial examples generated using a
robust model tend to look like the target (other) class images at large perturba-
tion bounds, as seen in Fig.1(g, i, j). We therefore use large ε-bound white-box
adversarial examples generated from the model being trained as Oracle-Sensitive
samples, and the model prediction as a proxy to the Oracle prediction.
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Fig. 3. Oracle-Aligned Adversarial Training: The proposed defense OA-AT
involves alternate training on Oracle-Invariant and Oracle-Sensitive samples.
1) Oracle-Invariant samples are generated by minimizing the LPIPS distance
between the clean and perturbed images in addition to the maximization of
the Classification Loss. 2) Oracle-Sensitive samples are trained using a convex
combination of the predictions of the clean image and the perturbed image at a
larger perturbation bound as reference in the KL divergence loss.

Generation of Oracle-Invariant examples: While the strongest Oracle-
Invariant examples are generated using the gradient-free attacks Square [1] and
Ray-S [4], they require a large number of queries (5000 to 10000), which is com-
putationally expensive for use in adversarial training. Furthermore, reducing the
number of queries weakens the attack significantly. The most efficient attack that
is widely used for adversarial training is the PGD 10-step attack. However, it
cannot be used for the generation of Oracle-Invariant samples as gradient-based
attacks generated from adversarially trained models produce Oracle-Sensitive
samples. We propose to use the Learned Perceptual Image Patch Similarity
(LPIPS) measure for the generation of Oracle-Invariant attacks, as it is known
to match well with perceptual similarity based on a study involving human anno-
tators [35,17]. Further, we observe that while the standard AlexNet model used in
prior work [17] fails to distinguish between Oracle-Invariant and Oracle-Sensitive
samples, an adversarially trained model is able to distinguish between the two ef-
fectively (Ref: Fig.3 in the Supplementary). We therefore propose to minimize the
LPIPS distance between natural and perturbed images, in addition to the maxi-
mization of Cross-Entropy loss for attack generation: LCE(x, y)−λ·LPIPS(x, x̂).
The ideal setting of λ is the minimum value that transforms attacks from Oracle-
Sensitive to Oracle-Invariant (OI) for majority of the images. This results in the
generation of strong Oracle-Invariant (OI) attacks. We present several Oracle-
Invariant examples for visual inspection in Fig.5 in Supplementary.

Oracle-Aligned Adversarial Training (OA-AT): The training algorithm
for the proposed defense, Oracle-Aligned Adversarial Training (OA-AT) is pre-
sented in Algorithm-1 and illustrated in Fig.3. We denote the maximum pertur-
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Algorithm 1 Oracle-Aligned Adversarial Training

1: Input: Deep Neural Network fθ with parameters θ, Training Data {xi, yi}Mi=1,
Epochs T , Learning Rate η, Perturbation budget εmax, Adversarial Perturbation
function A(x, y, ℓ, ε) which maximises loss ℓ

2: for epoch = 1 to T do
3: ε̃ = max{εmax/4, εmax · epoch/T}
4: for i = 1 to M do
5: δi ∼ U(−min(ε̃, εmax/4),min(ε̃, εmax/4))
6: if ε̃ < 3/4 · εmax then

7: ℓ = ℓCE(fθ(xi + δi), yi) , δ̃i = A(xi, yi, ℓ, ε̃)

8: Ladv = KL
(
fθ(xi + δ̃i)||fθ(xi)

)
9: else if i% 2 = 0 then
10: ℓ = ℓCE(fθ(xi + δi), yi) , δ̂i = A(xi, yi, ℓ, εref ) , δ̃i = Π∞(δ̂i, ε̃)

11: Ladv = KL
(
fθ(xi + δ̃i) || α · fθ(xi) + (1− α) · fθ(xi + δ̂i)

)
12: else
13: δi ∼ U(−ε̃, ε̃ )

14: ℓ = ℓCE(fθ(xi + δi), yi)− LPIPS(xi, xi + δi), δ̃i = A(xi, yi, ℓ, ε̃)

15: Ladv = KL
(
fθ(xi + δ̃i) || fθ(xi)

)
16: L = ℓCE(fθ(xi), yi) + Ladv

17: θ = θ − η · ∇θL

bation bound used for attack generation during the training by εmax. We use the
AWP-TRADES formulation [33,30] as the base implementation. Similar to Wu
et al. [30], we use 10 steps of optimization for attack generation and one addi-

tional weight perturbation step. We maximize the classification loss on xi+2 · δ̃i
(where δ̃i is the attack) in the additional weight perturbation step (instead of

xi + δ̃i [30]), in order to achieve better smoothness in the loss surface. We start
training with attacks constrained within a perturbation bound of εmax/4 upto
one-fourth the training epochs (Alg.1, L6-L8), and ramp up this value linearly
to εmax at the last epoch alongside a cosine learning rate schedule. The use of a
fixed epsilon initially helps in improving the adversarial robustness faster, while
the use of an increasing epsilon schedule later results in better training stability
[23]. We use 5 attack steps upto εmax/4 to reduce computation and 10 attack
steps later.

We perform standard adversarial training upto a perturbation bound of
3/4 · εmax as the attacks in this range are imperceptible, based on the cho-
sen moderate-magnitude threat model discussed in Sec.3.3. Beyond this, we
start incorporating separate training losses for Oracle-Invariant and Oracle-
Sensitive samples in alternate training iterations (Alg.1, L9-L15), as shown in
Fig.3. Oracle-Sensitive samples are generated by maximizing the classification
loss in a PGD attack formulation. Rather than enforcing the predictions of such
attacks to be similar to the original image, we allow the network to be partially
sensitive to such attacks by training them to be similar to a convex combination
of predictions on the clean image and perturbed samples constrained within a
bound of εref , which is chosen to be greater than or equal to εmax (Alg.1, L10).
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This component of the overall training loss is shown below:

KL
(
fθ(xi + δ̃i) || α fθ(xi) + (1− α) fθ(xi + δ̂i)

)
(3)

Here δ̃i is the perturbation at the varying epsilon value ε̃, and δ̂i is the
perturbation at εref . This loss formulation results in better robustness-accuracy
trade-off as shown in E1 versus E3 of Table-4. In the alternate iteration, we use
the LPIPS metric to efficiently generate strong Oracle-Invariant attacks during
training (Alg.1, L14). We perform exponential weight-averaging of the network
being trained and use this for computing the LPIPS metric for improved and
stable results (E1 versus E2 and F1 versus F2 in Table-4). We therefore do
not need additional training or computation time for training this model. We
increase α and λ over training, as the nature of attacks changes with varying ε̃.
The use of both Oracle-Invariant (OI) and Oracle-Sensitive (OS) samples ensures
robustness to Oracle-Invariant samples while allowing sensitivity to partially
Oracle-Sensitive samples.

5 Analysing Oracle Alignment of Adversarial Attacks

We first consider the problem of generating Oracle-Invariant and Oracle-Sensitive
attacks in a simplified, yet natural setting to enable more fine-grained theoretical
analysis. We consider a binary classification task as introduced by Tsipras et al.
[29], consisting of data samples (x, y), with y ∈ {+1,−1}, x ∈ Rd+1. Further,

x1 =

{
y, w.p. p

−y, w.p. 1− p
, xi ∼ N (αy, 1) ∀i ∈ {2, . . . , d+ 1}

In this setting, x1 can be viewed as a feature that is strongly correlated with
the Oracle Label y when the Bernoulli parameter p is sufficiently large (for
eg: p ≈ 0.90), and thus corresponds to an Oracle Sensitive feature. On the other
hand, x2, . . . , xd+1 are spurious features that are positively correlated (in a weak
manner) to the Oracle label y, and are thus Oracle Invariant features. Building
upon theoretical analysis presented by Tsipras et al. [29], we make a series of
observations, whose details we expound in the Supplementary Section 2:
Observation 1. Adversarial perturbations of a standard, non-robust classifier
utilize spurious features, resulting in Oracle Invariant Samples that are weakly
anti-correlated with the Oracle label y.
Observation 2. Adversarial perturbations of a robust model result in Oracle
Sensitive Samples, utilizing features strongly correlated with the Oracle label y.

6 Role of Image Contrast in Robust Evaluation

As shown in Fig.1, perturbations constrained within a low-magnitude bound
(Fig.1(b)) do not change the perceptual appearance of an image, whereas per-
turbations constrained within very large bounds such as ε = 32/255 (Fig.1(j))
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Fig. 4. Relation between the contrast level of an image and the Oracle-
Sensitivity of adversarial examples within a given perturbation bound. First
and second rows show low contrast images, and third and fourth rows show high
contrast images. Column (a) shows the original clean image and columns (b-e)
show adversarial examples at different perturbation bounds generated at the
largest bound in (e) and projected to the other bounds in (b, c, d). The adver-
sarial perturbation is shown in column (f). Adversarial examples in columns (d)
and (e) are Oracle-Invariant for the high contrast images, and Oracle-Sensitive
for the low contrast images.

flip the Oracle prediction. As noted by Balaji et al. [2], the perturbation radius
at which the Oracle prediction changes varies across images. We hypothesize
that the contrast level of an image plays an important role in determining the
minimum perturbation magnitude εOS that can flip the Oracle prediction of
an image to generate an Oracle-Sensitive (OS) sample. We visualize a few High-
Contrast and Low-Contrast images of the CIFAR-10 and SVHN datasets in Fig.4
(more comprehensive visualisations are made available in Fig.10-15 in the Sup-
plementary). We observe that High-contrast (HC) images are Oracle-Invariant
even at large perturbation bounds, while Low-Contrast (LC) images are Oracle-
Sensitive at lower perturbation bounds as well. Based on this, we present robust
evaluations at large epsilon bounds on images of varying contrast levels in Fig.5.

7 Experiments and Results

In this section, we present detailed robust evaluations of the proposed approach
along with various existing defenses on the CIFAR-10 [16], CIFAR-100 [16],
SVHN [19] and Imagenette [14] datasets. We report adversarial robustness against
the strongest known attacks, AutoAttack (AA) [7] and GAMA PGD-100 (GAMA)
[25] for ε = 8/255 in order to obtain the worst-case robust accuracy. For larger
bounds such as 12/255 and 16/255, we primarily aim for robustness against an
ensemble of the Square [1] and Ray-S [4] attacks, as they generate strong Oracle-
Invariant examples. On the SVHN dataset, we find that the perturbation bound
for imperceptible attacks is ε = 4/255, and consider robustness within 12/255
(Fig.10, 11 in the Supplementary).
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Table 2. Comparison with existing methods: Performance (%) of the pro-
posed defense OA-AT when compared to baselines against the attacks, GAMA-
PGD100 [25], AutoAttack (AA) [7] and an ensemble of Square [1] and Ray-S [4]
attacks (SQ+RS), with different ε bounds. Sorted by AutoAttack (AA) accuracy
at ε = 8/255 for CIFAR-10, CIFAR-100 and Imagenette, and 4/255 for SVHN.

(a) CIFAR-10, SVHN

Metrics of interest Others

Method Clean
GAMA
8/255

AA
8/255

SQ+RS
16/255

GAMA
16/255

AA
16/255

CIFAR-10 (ResNet-18), 110 epochs

FAT 84.36 48.41 48.14 23.22 15.18 14.22
PGD-AT 79.38 49.28 48.68 25.43 18.18 17.00
AWP 80.32 49.06 48.89 25.99 19.17 18.77
ATES 80.95 49.57 49.12 26.43 18.36 16.30
TRADES 80.53 49.63 49.42 26.20 19.27 18.23
ExAT + PGD 80.68 50.06 49.52 25.13 17.81 19.53
ExAT + AWP 80.18 49.87 49.69 27.04 20.04 16.67
AWP 80.47 50.06 49.87 27.20 19.66 19.23
Ours 80.24 51.40 50.88 29.56 22.73 22.05

CIFAR-10 (ResNet-34), 110 epochs

AWP 83.89 52.64 52.44 27.69 20.23 19.69
OA-AT (Ours) 84.07 53.54 53.22 30.76 22.67 22.00

CIFAR-10 (WRN-34-10), 200 epochs

AWP 85.36 56.34 56.17 30.87 23.74 23.11
OA-AT (Ours) 85.32 58.48 58.04 35.31 26.93 26.57

SVHN (PreActResNet-18), 110 epochs

Method Clean
GAMA
4/255

AA
4/255

SQ+RS
12/255

GAMA
12/255

AA
12/255

AWP 91.91 75.92 75.72 35.49 30.70 30.31
OA-AT (Ours) 94.61 78.37 77.96 39.24 34.25 33.63

(b) CIFAR-100, ImageNette

Metrics of interest Others

Method Clean
GAMA
8/255

AA
8/255

SQ+RS
16/255

GAMA
16/255

AA
16/255

CIFAR-100 (ResNet-18), 110 epochs

AWP 58.81 25.51 25.30 11.39 8.68 8.29
AWP+ 59.88 25.81 25.52 11.85 8.72 8.28
OA-AT (no LS) 60.27 26.41 26.00 13.48 10.47 9.95
OA-AT (Ours) 61.70 27.09 26.77 13.87 10.40 9.91

CIFAR-100 (PreActResNet-18), 200 epochs

AWP 58.85 25.58 25.18 11.29 8.63 8.19
AWP+ 62.11 26.21 25.74 12.23 9.21 8.55
OA-AT (Ours) 62.02 27.45 27.14 14.52 10.64 10.10

CIFAR-100 (WRN-34-10), 110 epochs

AWP 62.41 29.70 29.54 14.25 11.06 10.63
AWP+ 62.73 29.92 29.59 14.96 11.55 11.04
OA-AT (no LS) 65.22 30.75 30.35 16.77 12.65 11.95
OA-AT (Ours) 65.73 30.90 30.35 17.15 13.21 12.01

Imagenette (ResNet-18), 110 epochs

Method Clean
GAMA
8/255

AA
8/255

SQ+RS
16/255

GAMA
16/255

AA
16/255

AWP 82.73 57.52 57.40 42.52 29.14 28.86
OA-AT (Ours) 82.98 59.51 59.31 48.01 48.66 31.78

For each baseline on CIFAR-10, we find the best set of hyperparameters
to achieve clean accuracy of around 80% to ensure a fair comparison across all
methods. We further perform baseline training across various ε values and report
the best in Table-2a. We note that existing defenses do not perform well when
trained using large ε bounds such as 16/255 as shown in Table-1 (more detailed
results available in Table-2,3 in Supplementary). On other datasets, we present
comparative analysis primarily with AWP [30], the leading defense amongst prior
methods on the RobustBench Leaderboard [6] in the setting without additional
or synthetic training data, which we consider in this work. We further compare
the proposed approach with the AWP baseline using various model architectures
(ResNet-18, ResNet-34 [12], WideResNet-34-10 [32] and PreActResNet-18 [13]).

Contrary to prior works [22,21], we obtain additional gains with the use of
the augmentation technique, AutoAugment [8]. We also use Model Weight Av-
eraging (WA) [15,11,5] to obtain better generalization performance, especially
at larger model capacities. To ensure a fair comparison, we use these methods
to obtain improved baselines as well, and report this as AWP+ in Table-2 if any
improvement is observed (more comprehensive results in Sec.7.4 of the Supple-
mentary). As observed by Rebuffi et al. [21], we find that label-smoothing and
the use of warmup in the learning rate scheduler helps achieve an additional
boost in robustness. However, we report our results without including this as
well (no LS) to highlight the gains of the proposed method individually.
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Table 3. Comparison with RobustBench Leaderboard [6] Results: Per-
formance (%) of the proposed method (OA-AT) when compared to AWP [30],
which is the state-of-the-art amongst methods that do not use additional training
data/ synthetic data on the RobustBench Leaderboard.

Method
Clean
Acc

ℓ∞ (AA)
8/255

ℓ∞ (OI)
16/255

ℓ2 (AA)
ε = 0.5

ℓ2 (AA)
ε = 1

ℓ1 (AA)
ε = 5

ℓ0 (PGD0)
ε = 7

Comm
Corr

CIFAR-10 (WRN-34-10)

AWP 85.36 56.17 30.87 60.68 28.86 37.29 39.09 75.83
Ours 85.32 58.04 35.31 64.08 34.54 45.72 44.40 76.78

CIFAR-100 (WRN-34-10)

AWP 62.73 29.59 14.96 36.62 17.05 21.88 17.40 50.73
Ours 65.73 30.35 17.15 37.21 17.41 25.75 29.20 54.88
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Fig. 5. Evaluation across test subsets of increasing contrast levels: Here
we plot the gain in robust accuracy of the proposed defense OA-AT over AWP
[30]. The proposed defense achieves higher gains as contrast increases, verifying
that the proposed approach is more robust to the Oracle-Invariant white-box
attacks on High-Contrast images.

From Table-2, we observe that the proposed defense achieves significant and
consistent gains across all metrics specified in Sec.3.3. The proposed approach
outperforms existing defenses by a significant margin on all four datasets, over
different network architectures. Although we train the model for achieving ro-
bustness at larger ε bounds, we achieve an improvement in the robustness at the
low ε bound (such as ε = 8/255 on CIFAR-10) as well, which is not observed
in any existing method (Sec.7 of Supplementary). We also report the results on
ℓ2 Norm adversaries in Table-4 of Supplementary. As shown in Fig.5, the pro-
posed defense achieves higher gains on the high contrast test subsets of different
datasets, verifying that the proposed approach has better robustness against
Oracle-Invariant attacks, and not against Oracle-Sensitive attacks.

RobustBench Leaderboard Comparisons: As shown in Table-3, using
the proposed method, we obtain a significant improvement over state-of-the-
art results reported on the RobustBench Leaderboard (AWP) without the use
of additional/ synthetic data on both CIFAR-10 and CIFAR-100 datasets. We
observe that the proposed approach achieves significant gains against ℓ∞ norm
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Fig. 6. Results across variation in training εmax: While the proposed ap-
proach works best at moderate-ε bounds such as 16/255 on CIFAR-10, we ob-
serve that it outperforms the baseline for various εmax values ≥ 8/255 as well.

bound attacks at ε = 8/255 and 16/255 that were used for training, as well as
other ℓp norm bound attacks and common corruptions on both datasets.

The εmax used for training is a system specification, which is the perturbation
bound within which the model has to be robust. Thus, to validate the efficacy of
the proposed approach, we train different ResNet-18 models on CIFAR-10 using
different specifications of εmax. From Fig.6, we observe that for various values
of training εmax, the proposed approach consistently outperforms AWP [30].
Training time of OA-AT is comparable with that of AWP [30]. On CIFAR-10,
OA-AT takes 7 hours 16 minutes, while AWP takes 7 hours 27 minutes for 110
epochs of training on ResNet-18 using a single V100 GPU. To ensure the absence
of gradient masking in the proposed approach, we present further evaluations
against diverse attacks and sanity checks in Sec.8 of the Supplementary.

Ablation Study: In order to study the impact of different components of
the proposed defense, we present a detailed ablative study using ResNet-18 and
WideResNet-34-10 models in Table-4. We present results on the CIFAR-10 and
CIFAR-100 datasets, with E1 and F1 representing the proposed approach. First,
we study the efficacy of the LPIPS metric in generating Oracle-Invariant attacks.
In experiment E2, we train a model without LPIPS by setting its coefficient to
zero. While the resulting model achieves a slight boost in robust accuracy at
ε = 16/255 due to the use of stronger attacks for training, there is a considerable
drop in clean accuracy, and a corresponding drop in robust accuracy at ε = 8/255
as well. We observe a similar trend by setting the value of α to 1 as shown in
E3, and by combining E2 and E3 as shown in E4. We note that E4 is similar
to standard adversarial training, where the model attempts to learn consistent
predictions in the ε ball around every data sample. While this works well for
large ε attacks (16/255), it leads to poor clean accuracy as shown in Table-1.

We further note that the computation of LPIPS distance using an exponential
weight averaged model (E1) results in better performance as compared to using

the model being trained (E5). As discussed in Sec.4, we maximize loss on xi+2·δ̃i
(where δ̃i is the attack) in the additional weight perturbation step. We present
results by using the standard ε limit for the weight perturbation step as well, in



14 S. Addepalli et al.

Table 4. CIFAR-10, CIFAR-100: Ablation experiments on ResNet-18 archi-
tecture (E1-E7) and WideResNet-34-10 (F1-F2) architecture to highlight the
importance of various aspects in the proposed defense OA-AT. Performance (%)
against attacks with different ε bounds is reported.

CIFAR-10 CIFAR-100

Method Clean
GAMA
(8/255)

GAMA
(16/255)

Square
(16/255)

Clean
GAMA
(8/255)

GAMA
(16/255)

Square
(16/255)

E1: OA-AT (Ours) 80.24 51.40 22.73 31.16 60.27 26.41 10.47 14.60
E2: LPIPS weight = 0 78.47 50.60 24.05 31.37 58.47 25.94 10.91 14.66
E3: Alpha = 1 79.29 50.60 23.65 31.23 58.84 26.15 10.97 14.89
E4: Alpha = 1, LPIPS weight = 0 77.16 50.49 24.93 32.01 57.77 25.92 11.33 15.03
E5: Using Current model (without WA) for LPIPS 80.50 50.75 22.90 30.76 59.54 26.23 10.50 14.86
E6: Without 2*eps perturbations for AWP 79.96 50.50 22.61 30.60 60.18 26.27 10.15 14.20
E7: Maximizing KL div in the AWP step 81.19 49.77 21.17 29.39 59.48 25.03 7.93 13.34

F1: OA-AT (Ours) 85.32 58.48 26.93 36.93 65.73 30.90 13.21 18.47
F2: LPIPS weight = 0 83.47 57.58 27.21 36.68 63.16 30.22 13.59 18.42

E6. This leads to a drop across all metrics, indicating the importance of using
large magnitude perturbations in the weight perturbation step for producing a
flatter loss surface that leads to better generalization to the test set. Different
from the standard TRADES formulation, we maximize Cross-Entropy loss for
attack generation in the proposed method. From E7 we note a drop in robust
accuracy since the KL divergence based attack is weaker (Gowal et al. [11]). We
present further ablative analysis in Sec.6 of the Supplementary.

8 Conclusions

In this paper, we investigate in detail robustness at larger perturbation bounds
in an ℓp norm based threat model. We discuss the ideal goals of an adversarial
defense at larger perturbation bounds, identify deficiencies of prior works in this
setting and further propose a novel defense, Oracle-Aligned Adversarial Training
(OA-AT) that aligns model predictions with that of an Oracle during training.
The key aspects of the defense include the use of LPIPS metric for generating
Oracle-Invariant attacks during training, and the use of a convex combination of
clean and adversarial image predictions as targets for Oracle-Sensitive samples.
We achieve state-of-the-art robustness at low and moderate perturbation bounds,
and a better robustness-accuracy trade-off. We further show the relation between
the contrast level of images and the existence of Oracle-Sensitive attacks within
a given perturbation bound. We use this for better evaluation, and highlight the
role of contrast of images in achieving an improved robustness-accuracy trade-
off. We hope that future work would build on this to construct better defenses
and to obtain a better understanding on the existence of adversarial examples.
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