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Abstract. Gait recognition, which aims at identifying individuals by
their walking patterns, has recently drawn increasing research attention.
However, gait recognition still suffers from the conflicts between the lim-
ited binary visual clues of the silhouette and numerous covariates with
diverse scales, which brings challenges to the model’s adaptiveness. In
this paper, we address this conflict by developing a novel MetaGait that
learns to learn an omni sample adaptive representation. Towards this
goal, MetaGait injects meta-knowledge, which could guide the model to
perceive sample-specific properties, into the calibration network of the
attention mechanism to improve the adaptiveness from the omni-scale,
omni-dimension, and omni-process perspectives. Specifically, we leverage
the meta-knowledge across the entire process, where Meta Triple Atten-
tion and Meta Temporal Pooling are presented respectively to adaptively
capture omni-scale dependency from spatial/channel/temporal dimen-
sions simultaneously and to adaptively aggregate temporal information
through integrating the merits of three complementary temporal aggre-
gation methods. Extensive experiments demonstrate the state-of-the-art
performance of the proposed MetaGait. On CASIA-B, we achieve rank-1
accuracy of 98.7%, 96.0%, and 89.3% under three conditions, respec-
tively. On OU-MVLP, we achieve rank-1 accuracy of 92.4%.

Keywords: Gait recognition, Attention mechanism, Sample adaptive,
Learning to learn

1 Introduction

As one of the most promising biometric patterns, gait could be recognized at a
long distance without the explicit cooperation of humans, thus having wide ap-
plications ranging from security check [11], video retrieval [7], to identity identifi-
cation [3, 49]. Most existing approaches [20, 43, 44] address gait recognition with
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Fig. 1: Illustration of the conflicts and the meta-knowledge. Left: The conflicts
between limited binary visual clues (colorless and textureless) and numerous
covariates with diverse scales, such as bag and clothing, which poses a challenge
to the model’s adaptiveness. Right: Meta Hyper Network (MHN) learns to learn
the meta-knowledge, which could guide the model to perceive sample-specific
properties and adaptively parameterize the calibration network.

a two-step process [53]: feature extraction and temporal aggregation. Though
significant advances have been achieved, gait recognition still suffers from the
conflict between the limited binary visual clues (colorless and textureless) and
numerous covariates with diverse scales of the silhouette shown in Fig. 1a, which
poses a huge challenge to the model’s adaptiveness.

Most existing methods tackle this conflict by utilizing the adaptiveness of
the attention mechanism. For example, the attention mechanism for gait recog-
nition on spatial [34], channel [20], temporal [10], or two of them [33] has been
effectively explored. However, the existing attention mechanism still has some
limitations, which may harm the adaptiveness. First, the calibration network [32]
that performs feature rescaling in the attention mechanism, is static and limited
in capturing dependency at a specific scale. Second, the attention mechanism is
applied at most two dimensions while leaving one out. Third, only the feature
extraction process is considered, while temporal aggregation is ignored.

To address these limitations, we propose a novel framework called MetaGait,
to enhance the adaptiveness of the attention mechanism for gait recognition
from three perspectives: omni scale, omni dimension, and omni process. The core
idea of MetaGait is to leverage meta-knowledge [30, 65, 13], which could guide
the model to perceive sample-specific properties, into the calibration network
of attention mechanism. Specifically, the meta-knowledge is learned by a Meta
Hyper Network (MHN) shown in Fig. 1b and MHN could parameterize the
calibration network in a sample adaptive manner instead of being fixed.

Specifically, benefited from the meta-knowledge, we first present Meta Triple
Attention (MTA) to adaptively capture the omni-scale dependency in the fea-
ture extraction process, leading to the ability to extract walking patterns from
diverse scales. The calibration network of MTA is achieved by a weighted dy-
namic multi-branch structure with diverse receptive fields and parameterized by
the meta-knowledge. Second, MTA is designed in homogeneous and applied on
spatial/channel/temporal dimensions simultaneously. Third, apart from the fea-
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ture extraction process, we present Meta Temporal Pooling (MTP) on temporal
aggregation for adaptively integrating temporal information. MTP leverages the
meta-knowledge to parameterize an attention-based weighting network, which
could excavate the relation between three mainstream temporal aggregation
methods with complementary properties (i.e., Max/Average/GeM Pooling [44]).
Therefore, MTP could adaptively aggregate their merits for comprehensive and
discriminative representation.

Extensive experiments are conducted on two widely used datasets to evalu-
ate the proposed MetaGait framework. The superior results demonstrate that
MetaGait outperforms other state-of-the-art methods by a considerable margin,
which verifies its effectiveness and adaptiveness.

The major contributions of this work are summarized as follows:

– We present MetaGait framework to address the conflict between limited
binary visual clues and numerous covariates with diverse scales. The core
idea is to introduce the meta-knowledge learned fromMeta Hyper Network to
enhance the calibration network’s adaptiveness in the attention mechanism.

– We present Meta Triple Attention (MTA) for the feature extraction process,
which aims at adaptively capturing the omni-scale dependency on spatial,
channel, and temporal dimensions simultaneously.

– We present attention-based Meta Temporal Pooling (MTP), which could
adaptively integrate the merits of three temporal aggregation methods with
complementary properties in the temporal aggregation process.

2 Related Work

2.1 Gait Recognition

Model-based Approaches. These methods [2, 6, 8, 24, 42, 38] aim at modeling
the structure of human body from pose information [9, 56]. For example, Wang
et al. [60] propose to use the angle change of body joints to model the walking
pattern of different individuals. The advantage of these methods is that they are
robust to the clothing and viewpoints conditions. Nevertheless, the model-based
approaches suffer from expensive computational costs, accurate pose estimation
results, missing ID-related shape information, and extra data collection devices.
Appearance-based Approaches. These methods [23, 39, 50, 64, 17, 25, 4, 52,
40] learn the features from the silhouette sequences without explicitly modeling
the human body structure. For example, GaitSet [10] and GLN [31] deem each
silhouette sequence as an unordered set for recognition. GaitPart [20] utilizes 1D
convolutions to extract temporal information and aggregate it by a summation or
a concatenation. MT3D [43] and 3DLocal [36] propose to exploit 3D convolutions
to extract spatial and temporal information at the same time. Appearance-based
approaches become popular for their flexibility, conciseness, and effectiveness.
The proposed MetaGait is in the scope of appearance-based gait recognition.



4 H. Dou et al.

. . .

H, W

T

C

H, W

T

C

H, W

T

C

Meta Triple
Attention

Dimension
Selection

Feature 
Extractor

Spatial

Channel

Temporal

Meta Temporal
Pooling

Triplet  Loss Inference
CE Loss

Classifier

Separate FC

Fig. 2: Overview of MetaGait. Dimension selection refers to the transpose op-
eration for Meta Triple Attention on the selected dimension. Meta Temporal
Pooling adaptively aggregates the merits of three temporal aggregation methods
with complementary properties. Separate FC is followed by [10, 44].

Attention Mechanism. Visual attention [32, 27, 59, 62], which highlights the
informative clues and suppresses the useless ones, has drawn research attention,
and it has been applied to gait recognition successfully. GaitPart [20] performs
short-range modeling by channel attention. Zhang et al. [66] introduce temporal
attention to learn the attention score of each frame by LTSM [18]. Besides, there
are methods [34, 41] that apply spatial attention. In this paper, we propose to
alleviate the conflict between limited visual clues and various covariates with
diverse scales from the perspective of the attention mechanism’s adaptiveness.

2.2 Dynamic Networks

Dynamic networks can adjust the structures/parameters in an input-dependent
manner, leading to several advantages like efficiency, representation power, adap-
tiveness, and generalizability. Dynamic networks can be mainly divided into
dynamic architectures [61, 58, 47, 19, 5, 37, 45] and dynamic parameters [63, 12,
26, 55, 14, 22, 54, 15]. SkipNet [61] and conv-AIG [58] are two representative ap-
proaches to enabling layer skipping to control the architecture. CondConv [63]
utilizes the weighted sum of the candidate convolutions according to the input.

Further, Zhang et al. [65] point out that dynamic network can be seen as a
form of meta-learning [1, 30, 16, 21, 65] in learning to learn fashion. In this paper,
we leverage the dynamic network for the first time to inject meta-knowledge into
the calibration network for improving the model’s adaptiveness.

3 Method

In this section, we first present the overview of MetaGait in Fig. 2 and then elab-
orate on the meta-knowledge learned by Meta Hyper Network (MHN). Further,
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we introduce two modules that use meta-knowledge in two separate processes,
i.e., Meta Triple Attention for feature extraction and Meta Temporal Pooling
for temporal aggregation. Finally, the details of the optimization are described.

3.1 Overview

The overview of MetaGait is shown in Fig. 2. First, the gait sequences are
fed into the feature extractor, and the feature maps are transposed to per-
form Meta Triple Attention, which models the omni-scale representation on spa-
tial/channel/temporal dimensions simultaneously. Then, Meta Temporal Pool-
ing adaptively integrates the temporal information with three complementary
temporal aggregation methods. Finally, the final objective is computed by the
features from separated fully-connected layer [10, 44].

3.2 Meta Hyper Network

Considering the fact that most attention mechanism in gait recognition applies
a static strategy to their calibration network [32], which may harm the model’s
adaptiveness, we propose Meta Hyper Network (MHN) to parameterize the cal-
ibration network of the attention mechanism adaptively. As shown in Fig. 1b,
MHN learns information on data-specific properties of input gait silhouette se-
quences, i.e., meta-knowledge, and generates the parameters of calibration net-
work in a sample adaptive manner.

Given the input X ∈ RC×T×H×W , let F (·) be a mapping network, the key to
MHN is learning a mapping Fmeta from RC to RN that is used to parameterize
the calibration network Fcali with its parameters Wcali, i.e., fully connected
layer (N = C ′ × C) or convolution (N = C ′ × C × kh × kw × kt). C, C ′, and k
are the input channel, output channel, and kernel size, respectively. Therefore,
the attention mechanism with the meta-knowledge can be formulated as:

f = Fcali(X)⊗X, s.t. Wcali = Fmeta(X), (1)

where ⊗ is element-wise multiplication. Specifically, MHN first utilizes Global
Averange Pooling (GAP) on spatial and temporal dimensions to computes the
statics m ∈ RC×1×1×1 for MHN as:

m = GAP (X) =
1

H ×W × T

H∑
i=1

W∑
j=1

T∑
k=1

X(i, j, k). (2)

Then, the meta-knowledge Wmeta = {Wmeta1
∈ RC×C ,Wmeta2

∈ RN×C}
learned by MHN generates the sample adaptive parameters Wcali of the calibra-
tion network by a Multi-Layer Perceptron (MLP) with Leaky ReLU δ as:

Wcali = δ(Wmeta2
δ(Wmeta1

m). (3)

In this paper, the meta-knowledge is used to improve the adaptiveness of
the attention mechanism on the modules as follows: the global/local calibration
stream in Meta Triple Attention (MTA), the soft aggregation gate in MTA, and
the weighting network of Meta Temporal Pooling described in Sec. 3.4.
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Fig. 3: Illustration of Meta Triple Attention (MTA) and omni-scale representa-
tion. (a) MTA is composed of a multi-branch structure with diverse receptive
fields weighted by the aggregation gate. (b) MTA achieves omni-scale represen-
tation via adaptively weighting the multi-branch structure by soft aggregation
gate, leading to the outputs’s receptive field R′ ∈ [1, C].

3.3 Meta Triple Attention

Though previous attention methods in feature extraction achieve great success,
they mainly suffer from two issues. First, they could only capture fixed-scale
dependency while numerous covariates present diverse scales, which may harm
the model’s adaptiveness. For example, the covariates with small visual changes
like bag carrying only require a small receptive field while a large one would bring
noises. In contrast, the covariates with significant visual changes like viewpoints
require a large receptive field while the small one cannot cover complete visual
changes. Second, they only perform attention on two dimensions at most while
leaving one dimension out, which is ineffective and insufficient.

To enhance the adaptiveness of the attention mechanism in the feature ex-
traction process, we propose Meta Triple Attention (MTA), which injects the
meta-knowledge into its feature rescaling and feature aggregation to capture
omni-scale dependency and perform the omni-dimension attention mechanism
sufficiently. Thus, MTA differs from the previous attention mechanism in two cor-
responding aspects: 1) MTA could cope with the numerous covariates at omni
scale; 2) MTA performs homogeneous attention mechanism on spatial, channel,
and temporal dimensions simultaneously rather than one or two of them. Note
that we describe MTA in channel attention on each frame for simplicity while
applied in all three dimensions in practice.

Specifically, we leverage the global and local dependency modeling in frame-
level with the weighted multi-branch structure to achieve omni-scale representa-
tion. As shown in Fig. 3a, for the global channel dependency relation modeling
in frame level, a GAP is first applied on the spatial to obtain each frame’s statis-
tics s ∈ RC×1×1×1. Then, to effectively capture dimension-wise non-linear global
dependency fglobal and evaluate the channel-wise importance, MTA utilizes an
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MLP activated by Leaky ReLu, which follows the bottleneck design [32, 28] with
a dimension reduction ratio r:

fglobal = Fglobal(s) = Wg2δ(Wg1s), (4)

where the parameters Wg = {Wg1 ∈ RC
r ×C ,Wg2 ∈ RC×C

r } of global calibration

stream F global
cali is adaptively parameterized by MHN.

For local dependency modeling of the calibration network, we design a multi-
branch convolutional structure with diverse receptive fields (i.e., kernel size).
Therefore, each local calibration stream could capture dependency at a spe-
cific scale. To learn omni-scale representation, we propose to aggregate the out-
put fglobal and flocal of global and local streams in a sample adaptive manner
as Eq. (5) instead of being fixed, which is achieved by a soft aggregation gate G
with meta-knowledge. Next, Sigmoid σ is applied to mapping the values of the
attention vector into [0, 1]:

fmta = σ(G(s)[L+ 1] ∗ fglobal +

L∑
l=1

G(s)[l] ∗ f l
local)⊗X, s.t. L ≥ 1, (5)

where L denotes the number of the receptive field sizes in local stream of the cali-
bration network. The output of the soft aggregation gateG is a vector with RL+1

to weight each stream according to the input. Specifically, G is implemented by
GAP, an MLP mapping from RC×1×1×1 to R(L+1)×1×1×1, and Sigmoid in se-
quential. Therefore, the output’s receptive field R′ is adaptively ranging from 1
to global receptive field C, which could capture omni-scale dependency.

Besides, previous approaches design heterogeneous attention modules for
each dimension to fit the dependency scale that each dimension needs to model.
Benefited from the omni-scale dependency modeling, MTA can be efficiently
performed on three different dimensions in homogeneous.

3.4 Meta Temporal Pooling

To achieve omni-process sample adaptive representation, the meta-knowledge
is injected into the temporal aggregation apart from feature extraction. In the
recent gait literature [10, 20, 44], Global Max Pooling (GMP), Global Average
Pooling (GAP), and GeM Pooling [51] along the temporal dimension are the
mainstream temporal aggregation methods, which represent the salient infor-
mation, overall information, and an intermediate form between the former two
methods, respectively. They can be formulated as:

Max(·) = PoolT×1×1
Max (·), (6a)

Mean(·) = PoolT×1×1
Avg (·), (6b)

GeM(·) = (Mean(·)p)
1
p , (6c)
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Fig. 4: The illustration of Meta Temporal Pooling (MTP), which aims at lever-
aging meta-knowledge from MHN to adaptively integrate the merits from three
complementary temporal aggregation methods.

where p in GeM Pooling is a learnable parameter. Though these temporal aggre-
gation methods have been validated their effectiveness individually, their relation
is under-explored. We argue that different temporal aggregation methods have
their own merits and complementarities to each other, which can be excavated
to adaptively integrated temporal clues according to the properties of inputs.
Specifically, GMP preserves the most salient information along the temporal di-
mension while ignoring the majority of information. By contrast, GAP includes
the overall temporal information, but the salient information would be diluted
out. Though GeM, an intermediate form, can obtain salient temporal informa-
tion while preserving overall one, it is less robust than GAP and GMP due to
the learning stability of unconstrained learnable parameter p.

To fully exploit their merits, we leverage the meta-knowledge learned by
MHN to adaptively integrate the features produced by three temporal aggrega-
tion methods as shown in Fig. 4. In detail, we first compute the statics using
GAP on spatial and channel dimensions, and we utilize MHN to generate the
parameter (N = 3T ), which is used to parameterize the weighting network, i.e.,
an FC layer with Wt ∈ R3×T followed by a Sigmoid. Therefore, the weights of
different temporal aggregation methods β ∈ R3 can be obtained as:

β = σ(Wt(GAP (fmta))). (7)

Then, β adaptively weights the features of three complementary temporal ag-
gregation methods and obtain omni sample adaptive representation fomni as:

fomni = β1Mean(fmta) + β2Max(fmta) + β3GeM(fmta) (8)

3.5 Optimization

Following the optimization strategy[44, 31, 33], we apply Triplet Loss [29] Ltri

and Cross-Entropy loss Lce on each horizontal feature independently to train
our model as Eq. (9). The similarity metric is set to Euclidean distance.

Ltotal = Ltri +Lce. (9)
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4 Experiments

4.1 Datasets

CASIA-B [64]. It is composed of 124 IDs, each of which has 10 groups of
sequences, i.e., 6 normal walking (NM), 2 walking with a bag (BG), 2 walking
in coats (CL). The views are uniformly distributed in [0◦, 180◦]. For evaluation,
the protocol is adopted as [10], i.e., small-scale training (ST), medium-scale
training (MT), and large-scale training (LT). These three settings select the
first 24/62/74 IDs as the training set and the rest 100/62/50 IDs as the test set,
respectively. During the evaluation, the first four sequences of each ID under
NM are deemed as the gallery, and the rest are used as the probe.
OU-MVLP [57]. It is the largest dataset consisting of 10,307 IDs. In OU-
MVLP, there are 1 waling condition (NM) with 2 sequences and 14 views, which
are uniformly distributed between [0◦, 90◦] and [180◦, 270◦]. The training set and
test set are composed of 5,153 IDs and 5,154 IDs, respectively. For evaluation,
the first sequence of each ID is adopted as the gallery, and the rest is the probe.

4.2 Implementation Details

Hyper-parameters. 1) The resolution of the silhouette is resized to 64× 44 or
128×88 following [31, 36, 33]; 2) In a mini-batch, the number of the IDs and the
sequences of each ID is set to (8, 8) for CASIA-B and (32, 8) for OU-MVLP; 3)
Adam optimizer is used with a learning rate of 1e-4; 4) We train our model for
100k iterations for CASIA-B and 250k for OU-MVLP, where the learning rate
is reduced to 1e-5 at 150k iterations; 5) The margin of Triplet loss is set to 0.2;
6) The reduction ratio r in this paper is all set to 2.
Training Details. 1) The feature extractor is following the global and local
backbone in [44]; 2) The channels of the feature extractor in the three stages
are set to (32, 64, 128) for CASIA-B and double for OU-MVLP. 3) The local
stream of MTA is implemented with Conv1d and Conv2d for channel/temporal
and spatial dimensions, respectively. The receptive fields of the local stream are
set to {1,3,5}. Refer to supplementary materials for more details.

4.3 Comparison with State-of-the-Art Methods

Results on CASIA-B. To evaluate MetaGait on cross-view and large resolu-
tion scenarios, we conduct a comparison between MetaGait and latest SOTA as
shown in Tab. 1, where MetaGait outperforms SOTA at most views and both
two resolutions. Specifically, under NM/BG/CL conditions, MetaGait outper-
forms previous methods by 0.3%/0.4%, 0.7%/0.5%, and 2.7%/2.3% at the
resolution of 64× 44/128× 88 at least. Further, MetaGait achieves rank-1 ac-
curacies over 98% and 96% under NM and BG, respectively. More importantly,
the considerable performance gain on the most challenging condition CL nar-
rows the gap between the performance of NM and CL to less than 10%, which
verifies the robustness of MetaGait under the cross-walking-condition scenario.
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Table 1: Averaged rank-1 accuracy on CASIA-B, excluding identical views cases.

Gallery NM #1-4 0◦-180◦
Mean

Prob. Res. Method 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM

64× 44

GaitSet 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
MT3D 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7
CSTL 97.2 99.0 99.2 98.1 96.2 95.5 97.7 98.7 99.2 98.9 96.5 97.8

3DLocal 96.0 99.0 99.5 98.9 97.1 94.2 96.3 99.0 98.8 98.5 95.2 97.5
GaitGL 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4

MetaGait97.399.299.599.197.295.5 97.6 99.199.399.196.7 98.1

128× 88

GaitSet 91.4 98.5 98.8 97.2 94.8 92.9 95.4 97.9 98.8 96.5 89.1 95.6
GLN 93.2 99.3 99.5 98.7 96.1 95.6 97.2 98.1 99.3 98.6 90.1 96.9
CSTL 97.8 99.4 99.2 98.4 97.3 95.2 96.7 98.9 99.4 99.3 96.7 98.0

3DLocal 97.8 99.4 99.7 99.3 97.5 96.0 98.3 99.1 99.9 99.2 94.6 98.3
MetaGait98.199.499.899.497.696.798.599.399.999.697.0 98.7

BG

64× 44

GaitSet 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5
MT3D 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.0
CSTL 91.7 96.5 97.0 95.4 90.9 88.0 91.5 95.8 97.0 95.5 90.3 93.6

3DLocal 92.9 95.9 97.8 96.2 93.0 87.8 92.7 96.3 97.9 98.0 88.5 94.3
GaitGL 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5

MetaGait92.996.7 97.1 96.494.790.492.997.298.598.192.3 95.2

128× 88

GaitSet 89.0 95.3 95.6 94.0 89.7 86.7 89.7 94.3 95.4 92.7 84.4 91.5
GLN 91.1 97.7 97.8 95.2 92.5 91.2 92.4 96.0 97.5 95.0 88.1 94.0
CSTL 95.0 96.8 97.9 96.0 94.0 90.5 92.5 96.8 97.9 99.094.3 95.4

3DLocal 94.7 98.7 98.8 97.5 93.3 91.7 92.8 96.5 98.1 97.3 90.7 95.5
MetaGait95.198.999.097.894.092.092.996.998.2 98.4 93.5 96.0

CL

64× 44

GaitSet 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
MT3D 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5
CSTL 78.1 89.4 91.6 86.6 82.1 79.9 81.8 86.3 88.7 86.6 75.3 84.2

3DLocal 78.2 90.2 92.0 87.1 83.0 76.8 83.1 86.6 86.8 84.1 70.9 83.7
GaitGL 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6

MetaGait80.091.893.087.886.582.985.290.090.889.378.4 86.9

128× 88

GaitSet 66.3 79.4 84.5 80.7 74.6 73.2 74.1 80.3 79.7 72.3 62.9 75.3
GLN 70.6 82.4 85.2 82.7 79.2 76.4 76.2 78.9 77.9 78.7 64.3 77.5
CSTL 84.1 92.1 91.8 87.2 84.4 81.5 84.5 88.4 91.6 91.2 79.9 87.0

3DLocal 78.5 88.9 91.0 89.2 83.7 80.5 83.2 84.3 87.9 87.1 74.7 84.5
MetaGait87.894.693.590.387.184.386.189.793.993.481.7 89.3

ST MT75

80

85

90

95

R
an

k-
1

79.5

92.0

82.8

94.4

86.0

95.9

88.5

96.8GaitSet
MT3D
GaitGL
Ours

(a) NM

ST MT65

70

75

80

85

90

95

R
an

k-
1

68.6

84.3

74.0

89.8

78.6

92.1

80.2

94.0GaitSet
MT3D
GaitGL
Ours

(b) BG

ST MT
40

50

60

70

80

R
an

k-
1

40.9

62.5

56.6

75.6

57.4

78.3

61.9

83.5
GaitSet
MT3D
GaitGL
Ours

(c) CL

ST MT55
60
65
70
75
80
85
90
95

R
an

k-
1

63.0

79.6

71.3

86.6

74.0

88.8

76.9

91.4GaitSet
MT3D
GaitGL
Ours

(d) Mean

Fig. 5: Comparison with state-of-the-art methods under ST/MT setting.

Then, we evaluate MetaGait under the data-limited scenarios following the
protocol in [10]. As the experimental results are shown in Fig. 5, MetaGait
outperforms state-of-the-art methods with a significant margin, which further
shows the efficiency and robustness of MetaGait under small data scenarios.
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Table 2: Comparison with SOTA methods of rank-1 accuracy (%) and mAP (%).

Method Pub.
Rank-1

mAP
NM BG CL Mean

GaitSet [10] AAAI19 95.0 87.2 70.4 84.2 86.2
GaitPart [20] CVPR20 96.2 91.5 78.7 88.8 88.7
GLN [31] ECCV20 96.9 94.0 77.5 89.5 89.2
MT3D [46] ACM MM20 96.7 93.0 81.5 90.4 90.1
CSTL [35] ICCV21 97.8 93.6 84.2 91.9 -

3DLocal [36] ICCV21 97.5 94.3 83.7 91.8 -
GaitGL [44] ICCV21 97.4 94.5 83.6 91.8 91.5
MetaGait - 98.1 95.2 86.9 93.4 93.2

Table 3: Averaged rank-1 accuracy on OU-MVLP across different views exclud-
ing identical-view cases.

Method
Probe View

Mean
0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦

GEINet 11.4 29.1 41.5 45.5 39.5 41.8 38.9 14.9 33.1 43.2 45.6 39.4 40.5 36.3 35.8
GaitSet 79.5 87.9 89.9 90.2 88.1 88.7 87.8 81.7 86.7 89.0 89.3 87.2 87.8 86.2 87.1
GaitPart 82.6 88.9 90.8 91.0 89.7 89.9 89.5 85.2 88.1 90.0 90.1 89.0 89.1 88.2 88.7
GLN 83.8 90.0 91.0 91.2 90.3 90.0 89.4 85.3 89.1 90.5 90.6 89.6 89.3 88.5 89.2
CSTL 87.1 91.0 91.5 91.8 90.6 90.8 90.6 89.4 90.2 90.5 90.7 89.8 90.0 89.4 90.2

3DLocal 86.1 91.2 92.6 92.9 92.2 91.3 91.1 86.9 90.8 92.2 92.3 91.3 91.1 90.2 90.9
GaitGL 84.9 90.2 91.1 91.5 91.1 90.8 90.3 88.5 88.6 90.3 90.4 89.6 89.5 88.8 89.7

MetaGait (64× 44) 88.2 92.3 93.0 93.5 93.1 92.7 92.6 89.3 91.2 92.0 92.6 92.3 91.9 91.1 91.9
MetaGait (128× 88) 88.5 92.6 93.4 93.7 93.8 93.0 93.3 90.1 91.7 92.4 93.3 92.9 92.6 91.6 92.4

Further, to evaluate the comprehensive retrieval performance of MetaGait,
we present the average rank-1/mAP performance in Tab. 2, where mAP is com-
puted by the reproduced methods. Specifically, MetaGait outperforms GaitSet
by 9.2%/7%, GaitPart by 4.6%/4.5%, and GaitGL by 1.6%/1.7%, which
indicates the superior retrieval performance of MetaGait.
Results on OU-MVLP. To verify the effectiveness of MetaGait on the large
dataset, we evaluate it on the largest public dataset OU-MVLP. As shown
in Tab. 3, it can be seen that MetaGait outperforms other SOTA methods by
considerable margins, which proves the generalizability of MetaGait.

4.4 Ablation Study

This section presents ablation studies to validate the effectiveness of MTA and
MTP, including the quantitative and qualitative analysis.
Effectiveness of MTA and MTP. The individual impacts of the MTA and
MTP module are presented in Tab. 4. The baseline model refers to the feature
extractor in [44] with traditional temporal aggregation (Max Pooling) and a
separate FC layer. From the results, several conclusions are summarized as: 1)
Using MTA or MTP individually can obtain 3.3% and 2.5% performance gain,
respectively, which indicates the effectiveness of these modules. And MetaGait
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Table 4: Ablation study on the effec-
tiveness of each component of Meta-
Gait, including Meta Triple Attention
and Meta Temporal Aggregation.

Method NM BG CL Mean

Baseline 96.1 90.5 80.3 89.0
Baseline + MTA 97.5 94.2 85.4 92.3
Baseline + MTP 96.8 93.8 84.0 91.5

MetaGait 98.1 95.2 86.9 93.4

Table 5: Ablation study on the com-
bination of receptive field of the lo-
cal branch in omni-scale representa-
tion of Meta Triple Attention.

Local NM BG CL Mean

{1} 97.3 94.0 85.3 92.2
{1,3} 97.8 94.7 86.4 93.0
{1,3,5} 98.1 95.2 86.9 93.4
{1,3,5,7} 97.4 94.3 85.6 92.4
{1,3,5,7,9} 97.2 93.7 84.8 91.9

Table 6: Analysis of Meta Triple Attention, including the attention on three
dimension, the calibration network, and the soft aggregation gate.

Attention Calibration
Aggregation Gate NM BG CL Mean

Spatial Channel Temporal Static Meta

96.8 93.8 84.0 91.5
✓ ✓ 97.4 94.0 84.5 92.0

✓ ✓ 97.0 94.1 84.1 91.7
✓ ✓ 96.8 94.0 84.7 91.8

✓ ✓ ✓ 97.5 94.2 84.8 92.2
✓ ✓ ✓ 97.6 94.3 85.0 92.3

✓ ✓ ✓ 97.1 94.1 84.9 92.0

✓ ✓ ✓ ✓ 97.7 94.5 85.2 92.5
✓ ✓ ✓ ✓ ✓ 97.8 94.8 86.0 92.9
✓ ✓ ✓ ✓ 98.0 95.0 86.4 93.1
✓ ✓ ✓ ✓ ✓ 98.1 95.2 86.9 93.4

improves the performance by 4.4%; 2) Both MTA and MTP significantly im-
prove the performance under the most challenging condition (i.e., CL) by 5.1%
and 3.7%. 3) The performance gain with MTP is mainly reflected in the BG/CL
condition, where temporal aggregation would be more crucial [33].

Receptive Field in Omni-scale Representation. In MTA, we use the re-
weighted combination of receptive fields in diverse scales to achieve omni-scale
representation. To explore the effects of the different combinations, we use the
convolutions with the kernel size of 1,3,5,7,9 in the local calibration network
of MTA as shown in Tab. 5. It can be seen that the performance is improved
with the increase of the receptive field scale until the combination of {1,3,5}.
In contrast, a larger receptive field decreases the performance, which may lie in
that larger and more diverse receptive fields could improve the ability of feature
representation, but the over-parameterized convolution is hard to optimize.

Analysis of MTA. To evaluate the effectiveness of MTA, we analyze it from
three aspects, i.e., the attention design, the kind of the calibration network, and
the soft aggregation gate. From the results shown in Tab. 6, we could conclude:
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Table 7: The ablation study on Meta Temporal Aggregation.

Aggregation Weight Network
NM BG CL Mean

Max Mean GeM Static Meta

✓ – – 97.5 94.2 85.4 92.3
✓ – – 96.3 93.4 84.0 91.2

✓ – – 97.3 94.3 85.6 92.4

✓ ✓ ✓ 97.3 94.2 85.7 92.4
✓ ✓ ✓ 97.6 94.5 85.7 92.6

✓ ✓ ✓ 97.7 94.5 85.9 92.7

✓ ✓ ✓ ✓ 97.9 94.7 86.2 92.9
✓ ✓ ✓ ✓ 98.1 95.2 86.9 93.4

(a) Baseline (b) Ours

Fig. 6: The visualizaton of feature space using t-SNE [48].

1) MTA effectively improves the performance either using alone or in dimension
combination; 2) The calibration network and the soft aggregation gate, which
are parameterized by the meta-knowledge, clearly improve the rank-1 accuracy
by 1.2%. The above experimental results indicate that our MHN can effectively
improve the model’s adaptiveness.
Analysis of MTP. The results in Tab. 7 shows the impacts of different temporal
aggregation methods and weighting network. It can be seen that: 1) Different
temporal aggregation methods used together provide performance gain by 0.6%.
2) Weighting network with meta-knowledge could effectively integrate the merits
of three aggregation methods than the static one, which indicates that MTP
could achieve more comprehensive and discriminative representation.
Visualization of Feature Space. To validate the effectiveness of MetaGait
intuitively, we randomly choose 10 IDs from CASIA-B to visualize their feature
distribution. As shown in Fig. 6, we find that MetaGait improves the intra-class
compactness and inter-class separability than baseline.
Visualization of Attention Maps. To qualitatively analyze MTA, we visual-
ize the attention map shown in Fig. 7. For spatial dimension, MTA effectively
learns the shape-aware attention map to guide the learning process adaptively.
For temporal dimension, MTA can adaptively highlight important frames and
suppress irrelevant frames to model the temporal representation. For channel
dimension, it can be observed that MTA can learn a sample adaptive represen-
tation. Further, we can observe that different samples have low attention weights
in certain channels, which may be caused by the channel redundancy in common.
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(a) Sampled silhouette sequence from CASIA-B

(b) Meta Triple Attention on spatial dimension.

(c) Meta Triple Attention on temporal dimension.

Channel

Frame

High

Low

(d) Meta Triple Attention on channel dimension.

Fig. 7: The visualization of the attention maps of Meta Triple Attention. The
transparency of the silhouette in (c) represents its attention value.

5 Conclusion

We propose a novel MetaGait framework to alleviate the conflicts between lim-
ited visual clues and various covariates with diverse scales. The key idea is
to leverage meta-knowledge learned from Meta Hyper Network to improve the
adaptiveness of attention mechanism. Specifically, Meta Triple Attention utilizes
meta-knowledge to parameterize the calibration network and simultaneously
conduct omni-scale attention on spatial/channel/temporal dimensions. Further,
Meta Temporal Pooling excavates the relation between three complementary
temporal aggregation methods and aggregates them in a sample adaptive man-
ner. Finally, extensive experiments validate the effectiveness of MetaGait.
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