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Abstract. Gait is one of the most promising biometrics to identify indi-
viduals at a long distance. Although most previous methods have focused
on recognizing the silhouettes, several end-to-end methods that extract
gait features directly from RGB images perform better. However, we
demonstrate that these end-to-end methods may inevitably suffer from
the gait-irrelevant noises, i.e. low-level texture and color information.
Experimentally, we design the cross-domain evaluation to support this
view. In this work, we propose a novel end-to-end framework named
GaitEdge which can effectively block gait-irrelevant information and
release end-to-end training potential. Specifically, GaitEdge synthesizes
the output of the pedestrian segmentation network and then feeds it
to the subsequent recognition network, where the synthetic silhouettes
consist of trainable edges of bodies and fixed interiors to limit the in-
formation that the recognition network receives. Besides, GaitAlign
for aligning silhouettes is embedded into the GaitEdge without losing
differentiability. Experimental results on CASIA-B and our newly built
TTG-200 indicate that GaitEdge significantly outperforms the previous
methods and provides a more practical end-to-end paradigm. All the
source code are available at https://github.com/ShiqiYu/OpenGait.

Keywords: Gait Recognition; End-to-end; Gait Alignment; Cross-domain

1 Introduction

In recent years, human identification by walking pattern, i.e. gait, has become
an attractive research topic. Compared with other biometrics, e.g., face, finger-
print and iris, human gait can be easily captured at a long distance without the
cooperation of subjects, which means gait can be promising for crimes investiga-
tion and suspects tracing under real-world uncontrolled conditions. It is noticed
that most of the studies treat gait recognition as a two-step approach, including
extracting the intermediate modality, e.g., silhouette mask or skeleton keypoints,
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Fig. 1. Three typical end-to-end approaches: (a) model-based end-to-end [14,13], (b)
Zhang’s GaitNet [30], (c) Song’s GaitNet [20] and (d) our GaitEdge. Shaded areas for
the float-point numbers ranging from 0 to 1

from RGB images and putting them into the downstream gait recognition net-
work. However, some researches [4,5,7,16] indicate that those multi-step pipelines
usually give rise to the weakness in efficiency and effectiveness; increasing works
tend to infer the final results directly in end-to-end [30,20,14].

To the best of our knowledge, there are three typical end-to-end gait recogni-
tion methods in the recent literature. As illustrated in Fig. 1 (a), Li et al. [14,13]
utilize a fashion human mesh recovery model [11] to reconstruct the three-
dimensional human body and train the recognition network by taking the param-
eters of the skinned multi-person linear (SMPL) [17] model as inputs. Another
typical approach proposed by Zhang et al. [30] introduces an autoencoder frame-
work to disentangle the motion-relevant gait patterns and motion-irrelevant ap-
pearance features explicitly from the sequential RGB images, as shown in Fig. 1
(b). In addition, Song et al. propose GaitNet [20], which integrates two tasks,
i.e. pedestrian segmentation and gait recognition, as illustrated in Fig. 1 (c). It
extracts gait features straightly from the intermediate float mask instead of the
classical binary silhouettes.

To achieve higher performance than those two-step methods, those end-to-
end methods cannot ensure that the learned characteristics for human iden-
tification only consist of walking patterns. Since the intermediate modalities
of previous end-to-end frameworks, e.g., the SMPL reconstruction in [14,13],
posture features disentanglement in [30], and pedestrian segmentation supervi-
sion in [20], are float-coding, they may introduce some background and texture
information. Furthermore, while the previous methods all attempt to exclude
gait-irrelevant features, they lack convincing experiments to validate.

To alleviate these issues, we notice that gait features are generally more
robust to the variations of camera viewpoints, carrying and clothing than other
gait-irrelevant noises, i.e. texture and color. If those uncorrelated texture and
color features dominate in the extracted gait representations, the recognition
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performance will drop obviously when the model is directly exploited in unseen
domains (new dataset) [8]. Hence, in this paper, we introduce the cross-domain
evaluation to expose the side effects of texture and color. More importantly, we
propose a concise yet compelling end-to-end framework named GaitEdge to
deal with this challenging evaluation. As shown in Fig. 1 (d), the intermediate
modality of GaitEdge is a novel synthetic silhouette, while its edge is composed
of the trainable float mask, and other regions are classical binary silhouettes.
The design is inspired by two intuitive phenomena. First, the RGB-informed
noises are mainly distributed in the non-edge regions, e.g., the human body and
background. Therefore, treating these regions as binary silhouettes can effectively
prevent the leakage of gait-irrelevant noises. Second, the edge region plays a vital
role in describing the shape of the human body. Hence, making the only edge
region trainable can liberate the potential of the end-to-end training strategy.
In addition, we observe that the size-normalized alignment [9] is necessary for
the silhouette pre-processing to keep the body in aspect ratio. Unfortunately,
this operation used to be offline and thus non-differentiable, which means it can
not be directly applied to align the synthetic silhouette. To solve this problem,
inspired by the RoIAlign [6], we propose GaitAlign module to complete the
framework of GaitEdge, which can be regarded as a differentiable version of the
alignment method proposed by [9].

In summary, the three major contributions are as follows:

– We point out that gait-irrelevant noises may be mixed into gait representa-
tions in end-to-end solutions, and introduce a cross-domain testing to ver-
ify the leakage of RGB-informed noises. Besides, due to the lack of a gait
dataset to provide RGB videos, we collect the Ten Thousand Gaits (TTG-
200) dataset which has a similar size to the popular CASIA-B [26] dataset.

– We propose GaitEdge, a concise yet compelling end-to-end gait recognition
framework. Experiments on both CASIA-B and TTG-200 demonstrate that
GaitEdge outperforms state-of-the-arts. GaitEdge can also effectively pre-
vent irrelevant RGB-informed noises.

– We propose a differentiable size-normalization module, GaitAlign, for silhouette-
based end-to-end gait recognition. GaitAlign makes the total solution is end-
to-end and trainable.

2 Related Work

2.1 Gait Recognition

As a kind of biometrics, gait is defined by early research [23] as the walking
pattern that a given person will perform in a fairly repeatable and character-
istic way. On the other hand, another similar task, i.e. person re-identification
(ReID) [31], aims to find a person presented in one camera in another place by
another camera. Despite the similarity, they are still fundamentally different:
gait recognition focuses on walking patterns, while ReID uses clothing primarily
for identification. Therefore, it is worth emphasizing that we can not let the
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gait recognition network acquire information other than gait patterns, such as
RGB-informed texture and color.

At present, the mainstream visual-based gait recognition methods can be
roughly divided into model-based and appearance-based. The former model-
based approaches [15,2,14,22] usually extract the underlying structure of the
human body first, e.g., 2D or 3D skeleton key-points, and then model the hu-
man walking patterns. In general, such methods can better mitigate the effects
of clothing and more accurately describe the body’s posture. Nonetheless, all
of them are difficult to model the human body structure under the practical
surveillance scene due to the low quality of the video.

Appearance-based gait recognition [24,28,4,29,5,7,16] is more popular than
model-based gait recognition in the literature. A recent method, GaitSet [4],
takes a sequence of silhouettes as input and makes great progress. Subsequently,
Fan et al. [5] propose a focal convolutional layer to learn the part-level feature and
utilize micro-motion capture module to model short-range temporal patterns.
Besides, Lin et al. [16] propose a 3D CNN-based global and local feature extractor
module to extract discriminative global and local representations from frames,
which outperforms most other methods remarkably.

2.2 End-to-end Learning

End-to-end learning refers to integrating several separate gradient-based deep
learning modules in a differentiable manner. This training paradigm has a natu-
ral advantage in that the system optimizes components for overall performance
rather than optimizing human-selected intermediates [3].

Recently, some research topics have been benefited from the end-to-end learn-
ing paradigm. Amodei et al. [1] replace entire pipelines of hand-engineered com-
ponents with neural networks to overcome the diverse variety of speech by end-
to-end learning. Another notable work [3] is Nvidia’s end-to-end training for
autonomous driving systems. It only gives the system the human steering an-
gle as the training signal. Still, the system can automatically learn the internal
representation of the necessary processing steps, such as detecting lane lines.

As the end-to-end philosophy becomes increasingly popular, several stud-
ies [30,14,20] have applied it to gait recognition. Zhang et al. [30] propose an
autoencoder to disentangle the appearance and gait information without the ex-
plicit appearance and gait label for supervision. Li et al. [14,13] use the newly
developed 3D human mesh model [17] as an intermediate modality and make the
silhouettes generated by the neural 3D mesh renderer [12] consistent with the
silhouette segmented from RGB images. Because the 3D mesh model provides
more helpful information than silhouettes, this approach achieves state-of-the-
art results. However, using a 3D mesh model requires high resolution input RGB
images which is not feasible in the real surveillance scenario. Different from the
previous two, Song et al. [20] propose another type of end-to-end gait recognition
framework. It is formed by directly connecting the pedestrian segmentation and
gait recognition networks, which is supervised by a joint loss, i.e. segmentation
loss and recognition loss. This approach looks more applicable, but it may make
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the gait-irrelevant noises leak into the recognition network due to the absence of
explicit restrictions. Differently, our GaitEdge mainly poses and addresses two
pivotal problems: cross-domain evaluation and silhouette misalignment.

3 Cross Domain Problem

From the previous perspective, we argue that although the existing end-to-end
approaches [30,20,14,13] greatly improve the accuracy, it is natural to suspect
that the introduction of RGB information is the cause of the improvement. To
verify our conjecture, we introduce two gait recognition paradigms and compare
them experimentally.

Firstly, one of the best-performing two-step gait recognition methods, i.e.
GaitGL [16], is adopted as a baseline. In addition, a simple and straightfor-
ward end-to-end model named GaitGL-E2E that provides a fair comparison is
introduced. As shown in Fig. 2 (a) and (b), both methods use the same mod-
ules except that GaitGL-E2E replaces binary mask with float-coding silhouettes
through a trainable segmentation network, i.e. U-Net [18]. Experimentally, we
define the single-domain evaluation as training and testing on CASIA-B*5 [26].
Correspondingly, the cross-domain evaluation is defined as training on another
dataset, i.e. TTG-200, but testing the trained model on CASIA-B*. More im-
plementation details will be elaborated in Section 5.

As shown in the single-domain part of Fig. 2 (d), GaitGL-E2E easily outper-
forms GaitGL because it has more trainable parameters, and more information is
contained in the float-point mask than the binary mask. However, it is inevitable
to doubt that float-point numbers flowing into the recognition network bring in
texture and color from RGB images, which makes the recognition network learn
gait-irrelevant information and leads to the degradation of cross-domain per-
formance. On the other hand, the cross-domain part of Fig. 2 (d) shows that
GaitGL-E2E does not achieve the same advantages as it does in single-domain
and is even much lower than GaitGL (GaitGL: 40.34%, GaitGL-E2E: 27.18%)
in the most challenging case, i.e. CL (walking with cloth change). This phe-
nomenon indicates it is easier for end-to-end models to learn easily identifiable
coarse-grained RGB information rather than fine-grained imperceptible gait pat-
terns.

The above two experiments demonstrate that GaitGL-E2E does absorb RGB
noises so that it is no longer reliable for gait recognition with practical cross-
domain requirements. Therefore, we propose a novel framework GaitEdge com-
posed of our carefully designed Gait Synthesis module and differentiable GaitAl-
ign module, as shown in Fig. 2 (c). The most significant difference between Gait-
Edge and GaitGL-E2E is that we control the transmission of RGB information
through manual silhouettes synthesis.

5 We reprocess CASIA-B and denote the newly processed one as CASIA-B*.
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Fig. 2. (a), (b) and (c) are three different frameworks. (d) The rank-1 accuracy (%)
on CASIA-B* excluding identical-view cases. NM for normal walking, BG for walking
with bags, and CL for walking with cloth change

4 Our Framework

4.1 Gait Synthesis

We generally believe that the edge (the contour of the silhouette) contains the
most discriminative information in silhouette images [25]. The interior of a sil-
houette can be regarded as low-frequency content with less information, whereas
the information will be too compact to train the recognition network if we get
rid of the interior. Therefore, the designed module, named Gait Synthesis, fo-
cuses on combining trainable edges with fixed interiors through mask operation.
It only trains the edge part of the silhouette image, and the region other than
edges are extracted from the frozen segmentation network. As shown in Fig. 3,
to clarify how our framework works, we use yellow for the trainable module and
illustrate the flow of gradient transfer, in which the dotted orange line represents
the backward propagation, and the solid blue line represents the forward prop-
agation. The masks of edge and interior are denoted as Me and Mi. The output
probability of the segmentation network is denoted as P . Then, the output of
Gait Synthesis denoted Ms can be obtained by several element-wise operations:

Ms = Me × P +Mi (1)

As shown in Equation 1, we explicitly multiply Ps by Me and then add it to Mi,
which blocks most information, including the gait-relevant and gait-irrelevant.
However, we can still fine-tune the edges of the silhouettes, making it automat-
ically optimized for recognition.



GaitEdge 7

Segmentation

Segmentation 

Loss

Recognition 

Loss

Backward

Forward

InteriorEdge

Gait Synthesis

R
ep

resen
tatio

n

P
re

-p
ro

ce
ssin

g

GaitAlign

Gait 

Recognition

0 1 [0-1]

Trainable module

𝑀𝑒 𝑀𝑖

𝑃 𝑀𝑠

Fig. 3. Illustration of GaitEdge, ⊕ for add element-wise, ⊗ for multiply element-wise,
and shaded areas for float-point numbers ranging from 0 to 1. More details about Pre-
processing module can be found in Fig. 4.

Pre-processing. We design an untrainable pre-processing operation to get Me

and Mi, shown in Fig. 4. Specifically, we divide it to three steps. First, we
segment the input RGB image with the trained segmentation model to obtain
the silhouette M . Then, in the second step, we use the classic morphological
algorithms to get the dilation and erosion silhouettes(Mi) with a 3 × 3 flat
structuring element. Finally, we getMe by element-wise exclusive or ⊻. Formally:

Mi = erode(M)

Me = Mi ⊻ dilate(M)
(2)

Overall, Gait Synthesis takes the most intuitive approach by limiting the
adjustable region to retain the most valuable silhouette features while eliminate
most of low-level RGB-informed noises. It is worth mentioning that, Gait Syn-
thesis can be detachably integrated into previous silhouette-based end-to-end
methods due to the simplicity of the design.

4.2 Gait Alignment Module

Alignment is very crucial for all silhouette-based gait recognition methods. Since
the size-normalization of the silhouette was used for the first time on the OU-
ISIR Gait Database [9], almost all silhouette-based methods pre-process the
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Fig. 4. The Pre-processing module in GaitEdge
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Algorithm 1 Pseudocode of GaitAlign in a PyTorch-like style.

# s_in : silhouettes from segmentation output, (nx1xhxw)
# size : the target size, (H,W)
# r : aspect ratio of human body, (n)
# s_out : aligned silhouettes, (nx1xHxW)

# pad along the x axis so as not to exceed the boundary
s_in = ZeroPad2d((w // 2, w // 2), 0, 0)) # (nx1xhx2w)
binary_mask = round(s_in) # binary silhouette

# compute the coordinates and restore the aspect ratio r
left, top, right, bottom = bbox(binary_mask, r, size)

# get the new silhouettes by differentiable roi_align
s_out = roi_align(s_in, (left, top, right, bottom), size)

bbox: Get the four regularly locations of bounding box keeping aspect ratio. We hide this
tedious engineering trick, and the source code will be released.
roi align: Crop and resize the interested region without the loss of spatial alignment.

silhouette input via size-normalization, which removes the noise and benefits the
recognition. However, the previous end-to-end approach, i.e. GaitNet [20], feeds
the segmented silhouette into the recognition network directly, which hardly
handles the situation mentioned above. Therefore, we propose a differentiable
Gait Alignment Module called GaitAlign to make the body be the center of the
image and fill the entire image vertically.

We first review the size-normalization [9] procedure because GaitAlign can
be regarded as a differentiable version. In size-normalization, by figuring out the
top, bottom, and horizontal center of the body, we can scale the body to the
target height in aspect ratio and then pad the x-axis with zeros to reach the
target width. In our case, pseudo-code in Algorithm 1 depicts the procedure of
GaitAlign. We first need to pad the left and right sides with half the width of ze-
ros, which ensures that crop operation will not exceed the boundary. According
to the aspect ratio and the target size, then we compute the exact values of four
regularly sampled locations. Finally, RoIAlign [6] is applied to the locations
given by the previous step. As a result, we get the standard-size, image-filled
silhouettes, and its aspect ratio remains the same (refer to the output of GaitAl-
ign in Fig. 3). Another noteworthy point is that the GaitAlign module is still
differentiable, making our end-to-end training feasible.

5 Experiment

5.1 Settings

Datasets. There are a few available datasets for gait recognition, e.g., CASIA-
B [26], OUMVLP [21], Outdoor-Gait [20], FVG [30], GREW [32], and so on.
However, not all of them are useful for the end-to-end based gait recognition
methods. For example, the proposed work cannot apply the two worldwide most
enormous gait datasets, OUMVLP [21] and GREW [32], because neither provides
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TTG-200CASIA-B

Fig. 5. Examples of CASIA-B and TTG-200. The left (CASIA-B) consists of six views
of one sequence. The right (TTG-200) consists of six subjects with different views

RGB videos. In short, our ideal gait dataset owns several vital attributes: RGB
videos available, rich camera viewpoints, and multiple walking conditions.

CASIA-B [26] seems to be a good choice. Nevertheless, there still needs an-
other similar dataset to fit our cross-domain settings. Consequently, we collect a
private dataset named Ten Thousand Gaits 200 (TTG-200) and show its statis-
tics in Table 1.

CASIA-B. There are 124 subjects walking indoor in CASIA-B. It is probably
the most popular dataset that consists of 11 views ([0◦-180◦]) and three walking
conditions, i.e. normal walking (NM#01-06), walking with bags (BG#01-02),
and walking with cloth change (CL#01-02). We strictly follow previous studies,
which group the first 74 subjects into the training set and others into the test set.
Furthermore, for the test stage, the first 4 sequences (NM#01-04) are regarded
as the gallery set, while the left 6 sequences are grouped into 3 probe subsets, i.e.
NM#05-06, BG#01-02, CL#01-02. Besides, since the silhouettes of CASIA-B
were obtained by the outdated background subtraction, there exists much noise
caused by the background and clothes of subjects. Hence, we re-annotate the
silhouettes of CASIA-B and denote it as CASIA-B*. All our experiments are
conducted on this newly annotated one.

TTG-200. This dataset contains 200 subjects walking in the wild, and each
subject is required to walk under 6 various conditions, i.e. carrying, clothing,
taking on the phone, and so on. For each walking process, the subject will be
captured by 12 cameras located around the different viewpoints (unlabelled),

Table 1. The statistics of existing gait datasets and our collected TTG-200

Dataset Subjects Environment Format Variations #Sequnces

CASIA-B 124 Indoor RGB 11 views, carrying, clothing 13,636

OUMVLP 10,307 Indoor Silhouette 14 views 267,388

FVG 226 Outdoor RGB
3 frontal views, walking speed,
carrying, clothing, background

2,856

Outdoor-Gait 138 Outdoor RGB carrying, clothing 4,964

GREW 26,345 Outdoor Silhouette multiple camera 128,671

TTG-200 (our) 200 Outdoor RGB
12 views, carrying, clothing,

talking on the phone,
background

14,198
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which means each subject ideally owns 6 × 12 = 72 gait sequences. In the fol-
lowing experiments, we take the first 120 subjects for training and the last 80
subjects for the test. In addition, the first sequence (#1) is regarded as gallery
set, and the left 5 sequences (#2-6) are regarded as probe set.

As shown in Fig. 5, compared with CASIA-B, TTG-200 has three main differ-
ences: (1) The backgrounds of TTG-200 are more complex and diverse (collected
in multiple different outdoor scenes); (2) The data of TTG-200 are mostly aerial
view, while data of CASIA-B are mostly horizontal view; (3) TTG-200 has better
image quality. Therefore, we can treat these two datasets as different domains.

Implementation Details

Data Pre-processing. We first employ ByteTrack [27] to detect and track pedes-
trians from the raw RGB videos for both CASIA-B [26] and TTG-200, and then
conduct the human segmentation and silhouette alignment [9] to extract the gait
sequences. The obtained silhouettes are resized to 64 × 44 and can be taken as
the input of these two-stage gait recognition methods or be the ground-truth for
the pedestrian segmentation network in these end-to-end based approaches.

Pedestrian Segmentation. We use the popular U-Net [18] as our segmentation
network that is supervised by Binary Cross-Entropy [10] loss Lseg. We set the
input size as 128 × 128 × 3 and the channels of U-Net as {3, 16, 32, 64, 128,
64, 32, 16, 1} and train it via SGD [19] (batch size=960, momentum=0.9, ini-
tial learning rate=0.1, weight decay=5 × 10−4). For each dataset, we train the
network with learning rate scaled to 1/10 two times for every 10000 iterations
until convergence.

Gait Recognition. We use the latest GaitGL [16] as our recognition network and
strictly follow the original paper’s settings.

Joint Training Details. In this step, the training data sampler and batch size
are similar to the gait recognition network. We jointly fine-tune the segmenta-
tion and recognition networks with the joint loss Ljoint = λLseg + Lrec, where
Lrec denotes the loss of recognition network. The λ represents the loss weight of
segmentation network and is set to 10. Besides, to make the joint training pro-
cess converge faster, we use the trained segmentation and recognition networks
parameters to initialize the end-to-end model, and accordingly, their initial learn-
ing rate is set to 10−5 and 10−4, respectively. Moreover, we fix the first half of
the segmentation network, i.e. U-Net, to keep the segmentation result in human
shape. We jointly train the end-to-end network for a total of 20,000 iterations
and reduce the learning rate by 1/10 at the 10,000th iteration.

5.2 Performance Comparison

To demonstrate the reliable cross-domain capability of GaitEdge, we conduct
the single-domain and cross-domain evaluations on CASIA-B* and TTG-200, as
shown in Table 2.
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Table 2. The rank-1 accuracy (%) on CASIA-B* and TTG-200. The identical-view
cases in CASIA-B* are excluded. The bold and (bold) numbers for the two highest
accuracies of single-domain and that of cross-domain, respectively

Training Set Method
Test Set

CASIA-B* TTG-200
NM BG CL Mean -

CASIA-B*
Two-step

GaitSet [4] 92.30 86.10 73.36 83.92 40.26
GaitPart [5] 93.14 85.99 75.05 84.72 42.23
GaitGL [16] 94.15 89.98 81.42 88.52 (48.74)

End2end
GaitGL-E2E 99.06 98.24 89.45 95.58 37.18
GaitEdge 97.94 96.06 86.36 93.45 (49.12)

TTG-200
Two-step

GaitSet [4] 41.32 35.15 21.59 32.69 77.62
GaitPart [5] 45.21 38.75 25.92 36.62 80.24
GaitGL [16] 50.47 45.29 40.34 (45.37) 80.46

End2end
GaitGL-E2E 51.24 45.93 27.18 41.45 90.37
GaitEdge 54.76 49.85 38.16 (47.59) 88.66

The diagonal of Table 2 shows the single-domain performance comparisons,
where these methods are trained and evaluated in the identical dataset. On the
opposite, the anti-diagonal shows the cross-domain performance comparisons,
where these methods are trained and evaluated in the different datasets.

Single-domain Evaluation. From the diagonal results in Table 2, we observe
that the performance of traditional two-step gait recognition methods is far
inferior to that of two end-to-end ones. For example, GaitGL-E2E exceeds Gait-
Set [4] by 11.66% for CASIA-B* and 12.75% for TTG-200, respectively. On the
other hand, the accuracy of our proposed GaitEdge is slightly lower than that of
GaitGL-E2E, i.e. -2.13% for CASIA-B* and -1.71% for TTG-200. However, we
argue that GaitGL-E2E owns the higher risk of overfitting in the gait-irrelevant
noises since it directly takes the float mask generated by the segmentation net-
work as the input of the recognition network. Hence, we further conduct the
cross-domain evaluation to to support this notion experimentally.

Cross-domain Evaluation. If some irrelevant noises dominate the gait repre-
sentations used for human identification, i.e. texture and color, the recognition
accuracy would drop dramatically in the case of cross-domain settings since the
extracted features impotently represent the relatively robust gait patterns. The
anti-diagonal results in Table 2 show that all these methods have significant
performance degradation compared to single-domain due to the significant dif-
ference between CASIA-B* and TTG-200. We notice that although GaitGL-E2E
has the highest accuracy in single-domain, it achieves the poorest performance
for crossing the domain from CASIA-B* to TTG-200. In contrast, our GaitEdge
reaches the best performance than any other posted method in cross-domain
evaluations, although it is about 2% lower than GaitGL-E2E in single domain.
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Table 3. The rank-1 accuracy (%) on CASIA-B* across different views excluding the
identical-view cases. For evaluation, the first 4 sequences (NM#01-04) are regarded
as the gallery set, while the left 6 sequences are grouped into 3 probe subsets, i.e.
NM#05-06, BG#01-02, CL#01-02. The original paper of Song GaitNet [20] does not
mention the results of BG and CL

Probe Method
Probe View

Mean
0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180°

NM

Song GaitNet [20] 75.6 91.3 91.2 92.9 92.5 91.0 91.8 93.8 92.9 94.1 81.9 89.9
Zhang GaitNet [30] 93.1 92.6 90.8 92.4 87.6 95.1 94.2 95.8 92.6 90.4 90.2 92.3
ModelGait [14] 96.9 97.1 98.5 98.4 97.7 98.2 97.6 97.6 98.0 98.4 98.6 97.9

MvModelGait [13] 97.5 97.6 98.6 98.8 97.7 98.9 98.9 97.3 97.6 97.8 97.9 98.1
GaitEdge 97.2 99.1 99.2 98.3 97.3 95.5 97.1 99.4 99.3 98.5 96.4 97.9

BG

Zhang GaitNet [30] 88.8 88.7 88.7 94.3 85.4 92.7 91.1 92.6 84.9 84.4 86.7 88.9
ModelGait [14] 94.8 92.9 93.8 94.5 93.1 92.6 94.0 94.5 89.7 93.6 90.4 93.1

MvModelGait [13] 93.9 92.5 92.9 94.1 93.4 93.4 95.0 94.7 92.9 93.1 92.1 93.4
GaitEdge 95.3 97.4 98.4 97.6 94.3 90.6 93.1 97.8 99.1 98.0 95.0 96.1

CL

Zhang GaitNet [30] 50.1 60.7 72.4 72.1 74.6 78.4 70.3 68.2 53.5 44.1 40.8 62.3
ModelGait [14] 78.2 81.0 82.1 82.8 80.3 76.9 75.5 77.4 72.3 73.5 74.2 77.6

MvModelGait [13] 77.0 80.0 83.5 86.1 84.5 84.9 80.6 80.4 77.4 76.6 76.9 80.7
GaitEdge 84.3 92.8 94.3 92.2 84.6 83.0 83.0 87.5 87.4 85.9 75.0 86.4

Hence, this cross-domain evaluation not only indicates the robustness of Gait-
Edge is far superior to that of GaitGL-E2E but also claims the GaitEdge is a
practical and advanced framework for the end-to-end gait recognition task.

Comparison with other end-to-end methods. Last but not least, the pro-
posed GaitEdge is compared to three previous end-to-end gait recognition meth-
ods across different views on CASIA-B*. Table 3 shows that GaitEdge reaches
almost the highest accuracy on various walking conditions, especially for CL
(+5.7% than MvModelGait), which reveals that GaitEdge is remarkably robust
to color and texture (cloth change).

Table 4. The ablation study for the size of structuring element. The larger size for the
larger edge region. The bold and (bold) numbers for the highest accuracy of single-
domain and that of cross-domain, respectively

Training Set Method
Structuring
Element

Test Set
CASIA-B* TTG-200

NM BG CL Mean -

CASIA-B*
GaitEdge

3× 3 97.94 96.06 86.36 93.45 49.12
5× 5 98.88 97.36 88.24 94.83 (50.98)
7× 7 98.97 97.90 88.36 95.08 49.15
9× 9 99.02 98.19 89.05 95.42 44.47

GaitGL-E2E - 99.06 98.24 89.45 95.58 37.18

TTG-200
GaitEdge

3× 3 54.76 49.85 38.16 (47.59) 88.66
5× 5 49.21 45.22 33.71 42.71 89.62
7× 7 50.26 44.20 32.43 42.29 90.00
9× 9 48.84 41.72 27.66 39.41 90.39

GaitGL-E2E - 51.24 45.93 27.18 41.45 90.37
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Fig. 6. (a) The original images (top) vs. the disturbed images (bottom). We make
random pixel offset to the disturbed images, including vertical and horizontal direction.
(b) The ablation study for the GaitAlign module. The results are reported on CASIA-
B* after disturbance

5.3 Ablation Study

Impact of Edge. Table 4 shows the impact of body edge size. We extract
the edges by several sizes of structuring elements—the larger the structuring
element, the larger the edge area. According to the results shown in Table 4, as
the size of the structuring element increases, the performance of single-domain
accordingly increases, but the performance of cross-domain almost decreases at
the same time. This result claims that the area of the float mask occupying the
intermediate synthetic silhouette is negatively associated with the cross-domain
performance for GaitEdge. Therefore, we can argue that the reason why GaitGL-
E2E fails in cross-domain evaluation is that it is equivalent to GaitEdge in the
case of the infinite structural element. Furthermore, those non-edge regions of
silhouette, i.e. human body and background, are unsuitable in float-coding for
the end-to-end gait recognition framework.

Impact of GaitAlign. Notably, we observe that the result of pedestrian de-
tection (upstream task) in natural scenes, is often much worse than that of the
controlled environment, i.e. CASIA-B* and TTG-200. In order to simulate this
complex situation, we first apply object detection on the videos of CASIA-B*
and then perform random pixel offset along with vertical and horizontal coordi-
nates with a probability of 0.5. As shown in Fig. 6 (a), the bottom images are
disturbed, aiming to simulate the natural situation. Fig. 6 (b) shows that align-
ment improves the average accuracy significantly. In addition, we also notice
that the accuracy of normal walking (NM) drops a little, i.e. -0.38%. However,
we believe this is because the accuracy of NM is approaching the upper limit.
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Fig. 7. The comparison between the intermediate results and ground truth, i.e. the
first two rows v.s. the third row

5.4 Visualization

To better understand the performance degradation of GaitGL-E2E and the effec-
tiveness of GaitEdge, we illustrate the intermediate results generated by GaitGL-
E2E and GaitEdge respectively as well as the ground truth corresponding to the
same frame, as shown in Fig. 7. Specifically, for GaitGL-E2E, the intermediate
results in (a), (b), (c) and (d) capture more background and texture informa-
tion, and some body parts are eliminated such as legs in (e) and (f). While for
GaitEdge, the intermediate results are much more stable and reasonable making
it more robust.

6 Conclusion

This paper presents a novel end-to-end gait recognition framework termed Gait-
Edge that can solve the performance degradation in cross-domain situation.
Specifically, we design a Gait Synthesis module to mask the fixed body with
tunable edges obtained by morphological operation. Besides, a differentiable
alignment module named GaitAlign is proposed to solve the body position jitter
caused by the upstream pedestrian detection task. We also conduct extensive
and comprehensive experiments on two datasets, including CASIA-B* and our
newly built TTG-200. Experimental results show that GaitEdge significantly
outperforms the previous methods, indicating that GaitEdge is a more practical
end-to-end paradigm that can effectively block RGB noise. Moreover, this work
exposes the cross-domain problem neglected by previous studies, which provides
a new perspective for future research.
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