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Abstract. Reconstructing 3D hand meshes from monocular RGB im-
ages has attracted increasing amount of attention due to its enormous
potential applications in the field of AR/VR. Most state-of-the-art meth-
ods attempt to tackle this task in an anonymous manner. Specifically,
the identity of the subject is ignored even though it is practically avail-
able in real applications where the user is unchanged in a continuous
recording session. In this paper, we propose an identity-aware hand mesh
estimation model, which can incorporate the identity information repre-
sented by the intrinsic shape parameters of the subject. We demonstrate
the importance of the identity information by comparing the proposed
identity-aware model to a baseline which treats subject anonymously.
Furthermore, to handle the use case where the test subject is unseen, we
propose a novel personalization pipeline to calibrate the intrinsic shape
parameters using only a few unlabeled RGB images of the subject. Ex-
periments on two large scale public datasets validate the state-of-the-art
performance of our proposed method.
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1 Introduction

Hand pose estimation has been one of the most popular computer vision prob-
lems because of its critical role in many applications, including hand gesture
recognition, virtual and augmented reality, sign language translation and human-
computer interaction [3]. With recent advances in deep learning techniques [17,
33,40] and development of large hand pose datasets [39,51,54,56], 2D hand pose
estimation has been extensively investigated and deployed in real-time applica-
tions with compelling results [6, 19, 39]. However, 3D hand pose estimation still
remains a challenging problem due to the diversity of hand shapes, occlusion
and depth ambiguity when monocular RGB image is used.

Current state-of-the-art methods for 3D hand reconstruction from RGB im-
ages either try to directly regress 3D vertices of the hand mesh [9,11,22,24,25], or
utilize the parametric MANO model [38] by regressing the low-dimensional pa-
rameters [2,4,16,50,52]. While these methods could generalize reasonably across
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different subjects, nearly all of them estimate the 3D hand pose in an anonymous
manner. The identity information of the subject, which is practically available
in real applications, is typically ignored in these methods. In many real-world
use cases, such as virtual and augmented reality, the device is often personal and
the user is typically identifiable.

We ask the question, can 3D hand reconstruction from RGB images be further
improved with the help of identity information? If so, how should we calibrate
the personalized hand model for unseen subjects during the test phase, using
only RGB images? In depth image based hand tracking systems, the hand model
personalization has been well studied and its benefits on improving hand tracking
performance has been demonstrated [42, 43]. However, using only RGB images
to perform personalization is underexplored.

To close this gap and answer the above question, we investigate the problem
of hand model personalization from RGB images and design a simple yet effec-
tive network to incorporate the identity information. Specifically, we propose an
identity-aware hand mesh estimation model, which can take in the personalized
hand model along with the input RGB image. Motivated by MANO [38], we
choose to use MANO shape parameters to represent the hand model. To enable
a fair comparison, we then construct a strong baseline by adapting our proposed
identity-aware network slightly. Instead of being given the groundtruth hand
shape parameters, the baseline regresses the shape parameters directly from the
input image via a multi-layer perceptron. We show through experiments that
with ground truth shape parameters, more accurate 3D hand reconstruction can
be obtained. Lastly, we propose a novel personalization method which can cali-
brate the hand model for unseen subjects, using only unannotated RGB images.
The calibrated hand model can then be utilized in our identity-aware network.
Our main contributions are summarized as follows:

– Our work is the first to systematically investigate the problem of hand mesh
personalization from RGB images and demonstrate its benefits to hand mesh
and keypoints reconstruction.

– For unknown subjects that are not seen in training, we develop a novel hand
model personalization method that is capable of calibrating the hand model
using a few unannotated images of the same subject.

– We demonstrate that our method outperforms existing methods on two large-
scale public datasets, showing the benefit of utilizing the identity informa-
tion, which is an underexplored topic in the field.

– We design a simple but competitive baseline that features the same opti-
mization augmented inference step and further validate the effectiveness of
leveraging the identity information.

2 Related Work

There are many research works on human/hand pose estimation [24, 25, 28–30,
46–48], including well-developed 2D hand pose estimation algorithms [6, 10, 19–
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21,39,45] and fast developing 3D hand pose estimation algorithms [1,5,12,41,55].
In this section, we will mainly discuss literature on 3D hand mesh reconstruction.

Model-based methods. The popular model-based method usually rely on
the MANO model [38], developed from the SMPL human model [27]. As a pa-
rameterized model, the MANO model factorizes the hand mesh into shape and
pose parameters, by utilizing principal component analysis. Massive literature
has tried to predict the MANO parameters in order to reconstruct the hand
mesh. Boukhayma et al [4] regressed the MANO shape and pose parameters
from 2D keypoint heatmaps. This was the first end-to-end deep learning based
method that can predict both 3D hand shape and pose from RGB images in the
wild. Zhang et al [52] proposed to use an iterative regression module to regress
the MANO parameters in a coarse-to-fine manner. Baek et al [2] also exploited
iterative refinement. In addition to that, a differentiable renderer was also de-
ployed, which can be supervised by 2D segmentation masks and 3D skeletons.
Hasson et al [16] exploited the MANO model to solve the task of reconstructing
hands and objects during manipulation. Yang et al [50] proposed a multi-stage
bisected network, which can regress the MANO params using 3D heatmaps and
depth map.

Model-free methods. In [30], Moon et al designed I2L-MeshNet, an image-
to-lixel prediction network. Many other works are based on graph convolutional
network, directly regressing the vertex locations. In [11], Ge et al proposed a
graph neural network based method to reconstruct a full 3D mesh of hand sur-
face. In [23], Lim et al proposed an efficient graph convolution, SpiralConv, to
process mesh data in the spatial domain. Leveraging spiral mesh convolutions,
Kulon et al [22] devised a simple and effective network architecture for monocu-
lar 3D hand pose estimation consisting of an image encoder followed by a mesh
decoder. Most recently, Chen et al [9] exploited the similar architecture, with
more advanced designs. They divide the camera-space mesh recovery into two
sub-tasks, i.e., root-relative mesh recovery and root recovery. To estimate the
root-relative mesh, the authors proposed a novel aggregation method to collect
effective 2D cues from the image, and then are decoded by a spiral graph con-
volutional decoder to regress the vertex coordinates. Apart from graph neural
network, Transformer [44] has also been introduced into the field of computer
vison, solving different tasks [7,26,49]. Several methods [14,24,25,34] have been
proposed for hand pose and mesh reconstruction.

Hand model personalization. Tan et al [42] and Tkach et al [43] stud-
ied hand model personalization in the scenario where multiple depth images are
available, and successfully demonstrated its importance in hand tracking. Ham-
pali et al [13] used the same method to generate annotations when creating a
new dataset. However, hand model personlization from RGB images has been
underexplored. Qian et al [37] focused on hand texture personalization from RGB
images. While hand model (mesh) personalization is also performed, the effec-
tiveness of mesh personalization is not validated by quantitative results. There
is also no investigation on whether the personalized mesh model can be used to
improve hand pose estimation. Moon et al [31] proposed to personalize each sub-
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ject using a randomly generated Gaussian vector. The subject ID vectors were
generated prior to training and experiments were performed where all subjects
in the test set were already seen in the training set. The trained model is only
applicable to known subjects and there exists no principle way to handle unseen
subjects during the testing phase. MEgATrack [15] is a multi-view monochrome
egocentric hand tracking system that calibrates the hand model for unseen users,
but the calibration is limited to a single hand scaling factor.

To our best knowledge, our work is the first to systematically investigate the
hand model personalization from RGB images and its benefits to 3D hand pose
estimation and mesh reconstruction.

3 Method

We first review the MANO hand model which is used extensively in this work,
and then propose our identity-aware hand mesh estimation method that takes as
input the identity information represented by the hand MANO shape parameters
along with the input image. Next, by a slight modification of our method, we
propose the baseline which would be compared with. Lastly, to address the
practical use case where the hand model is not provided for the test subject, we
propose a novel personalization pipeline that estimates the hand model for an
unseen subject using only a few unannotated images.

3.1 MANO Model

MANO [38] is a popular parameterized hand model extended from the 3D human
model SMPL [27]. The MANO model factorizes the hand mesh into two groups
of parameters: the shape parameters and the pose parameters. The shape pa-
rameters control the intrinsic shape of the hand, e.g., size of the hand, thickness
of the fingers, length of the bones, etc. The pose parameters represent the hand
pose, i.e., how the hand joints are transformed, which subsequently deforms the
hand mesh. Mathematically, the model is defined as below:

M(β, θ) = W (TP (β, θ), J(β), θ,W) (1)

where a skinning function W is applied to an articulated mesh with shape
TP , joint locations J , pose parameter θ, shape parameter β, and blend weights
W [38].

3.2 Identity-aware Hand Mesh Estimation

Existing methods assume that the subject in every image frame is anonymous,
even though the input is recorded in a continuous session. To fully leverage
the fact that the subject is often fixed within each recording session in real
applications, we propose a new hand mesh estimation pipeline. In addition to
the input image, we also feed the user’s identity information into the network.
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Fig. 1: Overview of our proposed identity-aware hand mesh estimation model.
The model mainly contains three parts, i.e., the iterative pose regressor, the 2D
detector and the optimization module. Note that in our proposed model, along
with the RGB image, we also feed the user’s identity information, i.e. the ground
truth or calibrated MANO shape parameters of the user.

There are various ways to represent the identity of a subject. The most
straightforward method is to label each subject with a unique identifier, such as
a high-dimensional random vector [31]. However, identity information that does
not have physical meaning can be hard for the model to utilize. More importantly,
models trained with this type of identity information usually only generalize to
known subjects included in the training set. In this work, we are interested in
an identity representation that allows generalizing to unseen subjects.

Inspired by MANO model [38], we utilize the MANO shape parameters as
the identity information for a specific subject. As shown in Fig. 1, our proposed
identity-aware hand mesh estimator takes in directly the ground truth or cali-
brated MANO shape parameters, enabling the network to be subject-aware. The
main parts of our proposed model is explained as follows.

MANO pose parameter regressor.Motivated by [52], the pose parameter
θ is obtained by using an iterative pose regressor. We include the global rotation
in θ, and use the 6D rotation representation [53] to represent the rotation of
each joint. With 15 hand joints and the global rotation, θ is a vector in R96. Let
F ∈ RN denote the image feature after the encoder and θ(i) denote the estimated
pose after i iterations. Initially, we set θ(0) as the rotation 6D representation of
identity matrices. Then, the pose is predicted iteratively as follows

∆θ(i) = MLPθ

(
cat(F , θ(i−1))

)
(2)

θ(i) = ∆θ(i) ⊕ θ(i−1), (3)

where ⊕ means adding the new rotation increment onto the predicted rotation
from the previous iteration. The operator ⊕ is implemented by transforming
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both ∆θ(i) and θ(i−1) from rotation 6D representations to rotation matrices,
then multiplying them, and finally converting the result back to rotation 6D
representation. We adopt three iterations in the experiments.

Optimization Augmented Inference. During inference time, we can fur-
ther improve the estimated hand mesh by enforcing the consistency between the
3D pose and the 2D pose predictions. The 2D predictions are obtained via a
stacked hourglass-style neural network [33].

Let xd ∈ R21×2 denote the 2D keypoints predictions, fMANO(·) represent
the mapping function from (β, θ) to 3D keypoints positions, P(·) denote the
projection operator from 3D space to image space, and r ∈ R3 denote the root-
position of the hand. We aim to optimize the following energy function

E(θ, r, β) =
∥∥xd − P(fMANO(β, θ) + r)

∥∥
2
. (4)

We adopt a two-stage optimization procedure. In the first stage, we optimize
r only. In the second stage, we optimize θ and r jointly. Note that the MANO
parameters are not optimized from scratch. The prediction from the MANO
parameter regressor is used as the initial guess.

3.3 Baseline Method

To further validate that the accuracy improvement of hand mesh reconstruc-
tion is a result of leveraging the identity information, we construct a base-
line by slightly modifying our identity-aware model. Instead of feeding ground
truth/calibrated shape parameters into the model, we use an extra MLP to
regress the shape parameters from the input image. For a fair comparison, all
the other modules from our identity-aware model are kept the same in this
baseline model. Formally, let F ∈ RN denote the image feature produced by
the encoder. The MANO shape parameter β ∈ R10 is directly regressed by a
multilayer perceptron from F as

β = MLPβ(F). (5)

3.4 Personalization Pipeline

In most practical applications, the test subject is usually unknown and there
is no corresponding hand model (shape parameters) available for the proposed
identity-aware hand mesh estimation pipeline. To handle this practical issue, we
propose a novel hand model personalization method, which could calibrate the
hand model from a few unannotated RGB images.

Confidence Predictor. Our personalization pipeline takes in multiple images
of a same subject and perform a joint attention-based optimization to get the
personalized shape parameter. Naively, the images can be treated equally and
contribute the same weight during the optimization. However, images usually
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Fig. 2: Proposed personalization pipeline with attention mechanism. Images used
for personalization capture the same subject who is never seen during training.

differ from each other in terms of quality, view angles, occlusions and so on. Thus,
the images should be attended with different importance. To achieve this goal,
we propose a light weight confidence predictor on top of the baseline network, as
shown in Fig. 2 (a). The confidence predictor takes as input the feature extracted
by the ResNet50 encoder and outputs a scalar via one fully connected layer. The
predicted confidence value indicates the quality of the predicted shape parameter
from the input image. Note that our confidence predictor is only trained on the
training split. Subjects in the test split are different from the training split and
are not seen during the training phase.

Joint Optimization with Attention. Fig. 2 (b) illustrates the whole process
during the personalization phase. Denote the collection ofK unannotated images
from the same user as I = {I1, I2, · · · , IK}. The images are fed into the baseline

model equipped with confidence predictor, which outputs {ci, β̂i, θ̂i} for each

image Ii, where ci ∈ R is the confidence value, β̂i, θ̂i are the predicted MANO
shape and pose parameters. The confidence values {ci}Ki=1 then go through a
SoftMax layer, which generates the attention weights {wi}Ki=1 as following

wi =
eci/T∑K

k=1 e
ck/T

, (6)

where T is the temperature parameter. Afterwards, {wi, β̂i, θ̂i}Ki=1 are sent into
the attention based optimization module, where the following optimization is
solved

min
β̃

K∑
k=1

wk · ∥M(β̃, θ̂k)−M(β̂k, θ̂k)∥F , (7)
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where M(·) is the MANO model. Note that, now all the K images from the
same subject share same shape parameter β̃. After the personalization process,
β̃ would be used as the identity information for the subject.

3.5 Loss Functions

The baseline. To train the baseline, we apply loss terms on the predicted 3D
hand mesh, following [9], and also on the predicted MANO shape and pose
parameters.

a) Loss functions on hand mesh. Denote the vertices and faces of the hand
mesh as V and Ω. We impose L1 loss on the predicted hand mesh, and also
deploy edge length loss and normal loss, following [9]. The loss functions on the
mesh can be expressed as

Lmesh =

N∑
i=1

∥V̂i − Vi∥1

Lnorm =
∑
ω∈Ω

∑
(i,j)⊂ω

∣∣∣∣∣ V̂i − V̂j

∥V̂i − V̂j∥2
· nω

∣∣∣∣∣
Ledge =

∑
ω∈Ω

∑
(i,j)⊂ω

∣∣∣∥V̂i − V̂j∥2 − ∥Vi − Vj∥2
∣∣∣ ,

(8)

where the nω is the unit normal vector of face ω ∈ Ω.
b) Loss function on MANO parameters. We use Lpose = ∥θ̂−θ∥1 and Lshape =

∥β̂ − β∥1, where θ and β are ground truth MANO pose and shape parameters.

The θ̂ is the predicted pose parameter from the last iteration of the iterative
pose regressor.

c) Loss function on 2D heatmap. A binary cross entropy function is imposed
on 2D heatmaps of hand keypoints as in Lpose2D = BCE(Û , U), where Û and U
are the predicted and ground truth 2D heatmaps of each keypoint, respectively.
The groud-truth heatmap U is generated with a Gaussian distribution.

The 2D detector is trained by using Lpose2D . The other parts are trained
under the following loss function

Ltotal = Lmesh + 0.1 · Lnorm + Ledge + Lpose + Lshape. (9)

Our identity-aware model. Since for our identity-aware model, the subject iden-
tity information (the MANO shape parameter) is provided, either ground truth
or calibrated, the loss function is given by Eq. (10) with the shape loss removed,

L
′

total = Lmesh + 0.1 · Lnorm + Ledge + Lpose. (10)

Confidence Predictor. We use margin ranking loss for training of the confidence
predictor. Given Nb images in the batch, the baseline model equipped with
confidence predictor would output confidence values {ci}Nb

i=1 and MANO shape
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parameter predictions {β̂i}Nb
i=1. With ground truth shape parameters {βi}Nb

i=1, the
difference li between the predicted and ground truth shape parameters can be
calculated as li = |βi−β̂i|1. We generate Nb×(Nb−1)/2 pairs of {(ci, li), (cj , lj)},
and calculate ranking loss on each pair [36]. The total loss is the sum of ranking
losses from all pairs.

4 Experiments

4.1 Experimental Setups

Datasets.We conduct experiments on two large-scale public hand pose datasets,
i.e., HUMBI [51] and DexYCB [8]. There are two major reasons why these two
datasets are chosen. First, they both have a diverse collection of subjects, which
allows us to split the datasets into different subject groups for training and eval-
uating our identity-aware pipeline. More importantly, they annotate the shape
parameters of the same subject in a consistent way. Each hand image in the
dataset is associated with a subject ID and all the hands from the same sub-
ject share the same MANO shape annotation. Note that our method cannot
be directly evaluated on other popular benchmarks such as FreiHAND [56] or
InterHand [32] because they either do not associate images with subject IDs or
guarantee consistent shape parameters for the same subject.

HUMBI is a large multiview image dastaset of human body expressions with
natural clothing. For each hand image, the 3D mesh annotation is provided, along
with the fitted MANO parameters. The shape parameters are fitted across all
instances of the same subject. This means that the same shape parameters are
shared among all the hand meshes from the same subject. In our experiments, we
use all the right hand images from the released dataset. We split the dataset into
training (90%) and test (10%), by subjects. The split results into 269 subjects
(474,472 images) in the training set and 30 subjects (50,894 images) in the test
set. Note that none of the subjects in the test set appear in the training set.

DexYCB is a large dataset capturing hand grasping of objects. The dataset
consists of 582K RGB-D frames over 1,000 sequences of 10 subjects from 8 views.
It also provides MANO parameters for each hand image. Same as the HUMBI
dataset, the hand shape parameters for each subject are calibrated and fixed
throughout each subject’s sequences. While object pose estimation is beyond
the scope of this work, extra occlusions introduced by the objects makes the
DexYCB dataset more challenging for hand mesh estimation. In our experi-
ments, similar to the set up for the HUMBI dataset, we use the provided split
in [8] which splits the dataset by subjects. In this set up, there are 7, 1, 2 subjects
in the training, validation and test set, respectively.

Metrics for 3D Hand Estimation. Following the protocol used by existing
methods, we use the following two metrics, both in millimeter.

a) Mean Per Joint Position Error (MPJPE) measures the Euclidean dis-
tance between the root-relative prediction and ground truth 3D hand keypoints.



10 D. Kong et al.

b) Mean Per Vertex Position Error (MPVPE) measures the Euclidean dis-
tance between the root-relative prediction and groud-truth 3D hand mesh.

Metrics for Hand Shape Calibration. We propose three metrics to
evaluate the performance of the calibrated hand shape.

a) MSEmano measures the mean square error between the estimated MANO
shape parameters and the ground truth values.

b) W-error measures the mean hand width error between the calibrated
hands and the ground truth hands at the flat pose, which is defined as the
distance between the metacarpophalangeal joints of index finger and ring finger.

b) L-error measures the mean hand length error between the calibrated hands
and the ground truth hands at the flat pose, which is defined as the distance
between the wrist joint and the tip of middle finger as the hand length.

Implementation Details. We implement our model in PyTorch [35] and
deploy ResNet50 [17] as our encoder. Input images are resized to 224×224 before
being fed into the network. We use the Adam optimizer [18] and a batch size
of 32 to train all the models except for the confidence predictor. For a fair
comparison, both the baseline model and our proposed identity-aware model are
trained using the same learning rate schedule. On the HUMBI dataset, both
models are trained for 15 epochs, with an initial learning rate of 1e-4 which is
dropped by a factor of 10 at the 10-th epoch. On the DexYCB dataset, models
are also trained for 15 epochs, with the same initial learning rate, while the
learning rate is dropped at the 5-th and 10-th epochs. With the baseline model
trained and frozen, the lightweight confidence predictor is trained with a batch
size of 128, with the intuition that larger batch size allows more image pairs
to train the ranking loss. The temperature parameter is set to 0.33 in Eq. (6).
During all the training, input images are augmented with random color jitter and
normalization. In the inference stage, we use the Adam optimizer in PyTorch to
optimize Eq. (4). Specifically, 200 and 60 iterations are performed with learning
rate of 1e-2 and 1e-3 in the first and second optimization stages, respectively. On
one Titan RTX graphics card, it takes 8 minutes to process all test images (50k)
in HUMBI dataset, and 7.5 minutes for those (48k) in DexYCB dataset. We
emphasize again that all our experiments are conducted in the scenarios where
there is no overlap between the subjects in the test set and the training set.

4.2 Quantitative Evaluation

3D Hand Estimation. We evaluate the benefit of our pipeline under two set-
tings, i.e., with and without the optimization module during inference time.
As shown in Table 1, our proposed pipeline improves the baseline consistently
across different datasets. With calibrated hand model, our proposed method can
achieve close performance to that with ground truth hand model, which validates
the effectiveness of our personalization pipeline. Furthermore, our method also
achieves the state-of-the-art performance, as shown by Table 1 and Table 2. To
ensure fair comparison, same data augmentation are applied to all the methods,
i.e., random color jitter and normalization. All the models are trained for 15
epochs including ours, with the exception of Metro [24] which is trained for 70
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Table 1: Numerical results on DexYCB and HUMBI datasets.

Method
DexYCB HUMBI

MPJPE ↓ MPVPE ↓ MPJPE ↓ MPVPE ↓
CMR-PG [9] 20.34 19.88 11.64 11.37

Without Optimization at Inference Time

Baseline 21.58 20.95 12.13 11.82
Ours, GT shape 18.83 18.27 11.41 11.11
Ours, Calibrated 18.97 18.42 11.51 11.21

With Optimization at Inference Time

Baseline 18.03 17.92 10.75 10.60
Ours, GT shape 16.60 16.29 10.17 9.94
Ours, Calibrated 16.81 16.55 10.31 10.28

Table 2: Comparison with existing methods on
Dex-YCB.

Methods MPJPE↓ MPVPE ↓
Boukhayma et al. [4] 27.94 27.28

Spurr et al [41] + ResNet50 22.71 -
Spurr et al [41] + HRNet32 22.26 -

Boukhayma et al. [4] † 21.20 21.56
CMR-PG [9] 20.34 19.88
Metro [24] 19.05 17.71

Ours, Calibrated 16.81 16.55

Table 3: Performance of hand
model calibration.

Metrics HUMBI DexYCB

MSEmano 0.07 0.04
W-error (mm) 0.88 1.02
L-error (mm) 1.71 1.20

epochs, as transformers are much harder to converge. The superscript † in Table 2
means adding our optimization module on top of the original method. It shows
that our optimization module can be generalized to other model-based methods
efficiently. We emphasize that, none of the existing methods produces consistent
shape estimation across images originating from the same subject. In contrast,
our method guarantees shape consistency with zero hand shape variation.

Hand Shape Calibration. Table 3 reports the performance of our person-
alization pipeline, which achieves less than 2 mm in terms of hand width and
hand length errors, by calibrating on 20 unannotated images.

Our proposed method inherently guarantees the hand shape consistency
among different images from the same subject. Fig. 3 demonstrates this ad-
vantage of our method over the baseline model. As shown in Fig. 3, for a specific
subject, the baseline model outputs hand meshes with big variations in terms
of hand length, up to 20 mm. This is because the baseline model is subject-
agnostic and predicts hand shape parameters based on a single input image.
Even if the input images are from the same user, the baseline model could pre-
dict hand meshes with big variations in size. In contrast, our proposed method
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Fig. 4: Impact of the number of images used in calibration.

outputs consistent hand shape inherently, with zero hand shape variation across
images from the same user. Also shown in Fig. 3, the hand size calibrated by
our proposed method stays close to the ground truth hand size in most cases.

4.3 Ablation Study

Number of images used for personalization. Fig. 4 shows hand size errors
(in mm) when different number of images are utilized during calibration. With
K = 20 images, the hand model can already be well calibrated with length error
less than 2 mm and width error less than 1 mm. In all the other experiments,
we use K = 20 images for hand model calibration.
Attention during calibration. During the calibration, different weights are
imposed across the input images according to their confidence values, as formu-
lated in Eq. (7). We compare the calibration performance of our attention-based
method with the non-attention method, as shown in Table. 4. Specifically, non-
attention means to treat each image equally and set wi = 1/K in Eq. (7) for all
images. As shown by Table. 4, our attention-based calibration can improve the
performance by a noticeable margin comparing to the naive calibration.
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Table 4: Effectiveness of confidence-valued based attention mechanism.

Metrics MSEmano W-error (mm) L-error (mm)

No attention 0.084 1.00 1.93
Ours, with attention 0.070 0.88 1.71

Improvement 16% 12% 11%

Table 5: Evaluating models trained with 3D keypoints instead of mesh supervi-
sion on DexYCB and HUMBI datasets.

Method
DexYCB HUMBI

MPJPE↓ MPVPE ↓ MPJPE ↓ MPVPE ↓

Without Optimization at Inference Time

Baseline 21.85 20.26 12.34 12.02
Ours, GT Shape 18.92 18.35 11.61 11.30

With Optimization at Inference Time

Baseline 17.71 17.58 10.80 10.95
Ours, GT Shape 16.63 16.32 10.37 10.12

Optimization augmented inference from scratch. In this experiment, we
remove the MANO parameter regressor from the model in Fig. 1. Without be-
ing initialized by the MANO parameter regressor, the initial pose is set to the
neutral pose prior to optimization. This pure optimization procedure results in
an MJPJE > 50mm on both DexYCB and HUMBI datasets. This validates the
necessity of the MANO parameter regressor, which can give good initial values
of MANO parameters for later optimization.

Training model with 3D keypoints instead of 3D mesh supervision. In
Table. 5, we report the performance of the baseline and our proposed identity-
aware model when trained with 3D keypoints supervision, instead of 3D mesh.
Under this setting, our identity-aware method still improves the accuracy.

Qualitative Results. The qualitative results of our personalization method
and the identity-aware hand mesh estimator are shown in Fig. 5. On the left side,
it can be seen that the calibrated hand mesh is very close to the ground truth
hand mesh. On the right side, qualitative results of our identity-aware model
are demonstrated. When generating the third row, we align the predicted mesh
with ground truth root position before projecting the mesh back to the image
space. As seen from Fig. 5, our model can robustly recover the hand mesh under
moderate occlusion and can handle a wide range of hand poses.

Limitations. The guarantee of consistent hand shape primarily comes from
explicitly incorporating a 3D hand model i.e., the MANO in our pipeline. A
future direction is to explore model free approaches to enforce shape consistency
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Subject-241 

HUMBI

Subject-122 

HUMBI

Subject-29 

HUMBI

Subject-8 

DexYCB

Subject-277 

HUMBI

Subject-9 

DexYCB

Examples of good cases of hand mesh estimation by our model. Example of bad cases. Calibrated hand mesh (yellow) versus ground-truth hand mesh (blue).

Subject-53 HUMBI Subject-254 HUMBI

Subject-340 HUMBI Subject-9 DexYCB

Fig. 5: Qualitative results. a) Left: calibrated hand model versus ground truth
hand model. b) Right: visualization of our identity-aware hand mesh estimator.
From top row to bottom row are the input RGB images, the projected ground
truth meshes, the projected predicted meshes, and the predicted meshes viewed
from two different angles.

at inference time. We also observe that images with severe occlusions and blurs
may affect the quality of shape calibration. We currently mitigate this issue by
predicting confidence values, which helps lower the importance of these subop-
timal images greatly. A better approach might be to detect and remove these
images prior to the calibration step.

5 Conclusion

In this paper, we propose an identity-aware hand mesh estimation pipeline for
3D hand mesh recovery from monocular images. Different from existing methods
which estimate the hand mesh anonymously, our method leverages the fact that
the user is usually unchanged in real applications and identity information of
the subject can be utilized for 3D hand mesh recovery. More specifically, our
model not only takes as input the RGB image, but also the identity information
represented by the intrinsic shape parameters of the subject. We also design
a novel personalization pipeline, through which the intrinsic shape parameters
of an unknown subject can be calibrated from a few RGB images. With the
personalization pipeline, our model can operate in scenarios where ground truth
hand shape parameters of subjects are not provided, which are common in real
world AR/VR applications. We experimented on two large-scale public datasets,
HUMBI and DexYCB, demonstrating the state-of-the-art performance of our
proposed method.
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