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In Sec. 1, we present dataset descriptions. Next, we present results of efficient
labeling in Sec. 2 and the generalization ability of DeciWatch in Sec. 4. Then,
we show more ablation studies on different sampling ratios, model designs of
DenoiseNet and RecoverNet, and hyper-parameters in Sec. 5. Moreover, we show
qualitative comparison results in Sec. 6 to demonstrate why DeciWatch works.
Last, in Sec. 7, we discuss some failure cases in this method to motivate further
research.

1 Dataset Descriptions

– Sub-JHMDB JHMDB[3] is a video-based dataset for 2D human pose esti-
mation. For a fair comparison, we only conduct our experiments on a subset of
JHMDB called sub-JHMDB. It contains 316 videos and the average duration
is 35 frames. For each frame, it provides 15 annotated body keypoints. We use
the bounding box calculated from the puppet mask provided by [9]. Following
the settings [17, 1], we mix 3 original splitting schemes for training and testing
together in 2D pose estimation experiments.
– Human3.6M [2] Human3.6M is a large-scale indoor video dataset with 15
actions from 4 camera viewpoints. It has 3.6 million frames and a frame rate of 50
fps. 3D human joint positions are captured accurately from a high-speed motion
capture system. Following previous works [15, 11, 12, 16], we use the standard
protocol with 5 actors (S1, S5, S6, S7, S8) as the training set and another 2
actors (S9, S11) as the testing set.
– 3DPW [10] 3DPW is a challenging in-the-wild dataset consisting of more than
51k frames with accurate 3D poses and shapes annotation. The sequences are
30fps. This dataset is usually used to validate the performance of model-based
body recovery methods [5, 7, 4, 6].
– AIST++ [8] is a challenging dataset with diverse and fast-moving dances
that comes from the AIST Dance Video DB [13]. It contains 3D human motion
annotations of 1, 408 video sequences at 60 fps, which is 10.1M frames in total.
The 3D human keypoint annotations and SMPL parameters it provides cover 30
different actors in 9 views. We follow the original settings to split the training
and testing sets based on actors and actions.
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2 An application: Efficient Pose Labeling in Videos

Due to the efficiency and smoothness of the pose sequences recovered by Deci-
Watch, reducing the need for dense labeling could be a potential application.
We verify the effectiveness of this application on the Human3.6M and AIST++
dataset by directly inputting the sparse ground-truth 3D positions into the
RecoverNet of DeciWatch. In Table 1, we compare DeciWatch with the most
used spline interpolation, linear interpolation, and quadratic interpolation. Our
method has a slower error growth as the interval N gets larger. To be specific,
it is possible to label one frame every 10 frames with only 2.89mm position
errors in slow movement videos (e.g., in Human3.6M [2]) and label one frame
every 5 frames with only 4.03mm position errors in fast-moving videos (e.g., in
AIST++ [8]). This application can improve annotation efficiency by more than
10×.

Table 1. Comparison of MPJPE on efficient pose labeling that labels one
frame in every N frames on Human3.6M [2] and AIST++ [8] dataset.

Human3.6M AIST++

Interval N 2 5 10 15 20 2 5 10 15 20

Linear 2.21 6.55 10.81 24.15 35.20 7.21 21.31 27.72 73.69 99.04
Quadratic 1.26 4.31 10.05 17.22 22.85 2.04 8.33 23.59 43.13 61.16
Cubic-Spline 0.18 0.99 5.36 18.42 29.21 0.89 5.12 18.31 45.32 77.39
DeciWatch 0.25 1.33 2.89 6.21 10.59 0.83 4.03 11.25 20.12 41.25

3 Additional Evaluation Metrics for 2D Pose Estimation

As is shown in Tab. 1 in the main paper, the results of DeciWatch have achieved
nearly 99% accuracy on PCK@0.2. However, qualitative visualization shows that
an awful lot of errors still exist in the recovery results. We attribute it to the fact
that PCK@0.2 is quite loose for accuracy measurement, which only requires the
detected keypoints to be within 20% of the bounding box size under pixel level.
As a result, we use two additional evaluation metrics, PCK@0.1, and PCK@0.05,
for better localization evaluation. More specifically, PCK@0.1 and PCK@0.05
restrict the matching threshold to 10% and 5% of the bounding box size. Tab. 2
shows the results of DeciWatch and SimplePose[14] on these three metrics. In
future work, we recommend using PCK@0.05 as the main metrics for 2D pose
estimation.
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Table 2. Comparison of DeciWatch and SimplePose[14] on PCK@0.2,
PCK@0.1, and PCK@0.05. In future work, we recommend using PCK@0.05 as
the main metrics for 2D pose estimation.

Sub-JHMDB dataset - 2D Pose Estimation

Sampling Ratio Evaluation Metric PCK@0.2 ↑ PCK@0.1 ↑ PCK@0.05 ↑
SimplePose 93.92% 81.25% 56.88%

20%
DeciWatch 99.11% 95.43% 82.66%

SimplePose 93.94% 81.61% 57.30%
10%

DeciWatch 98.75% 94.05% 79.44%

SimplePose 92.38% 82.79% 58.95%
5%

DeciWatch 97.50% 91.76% 73.02%

4 Generalization Ability

DeciWatch learns the patterns of noisy human motions since motion distribution
could be overlapped among some datasets, making it has potential generalization
ability. We further test DeciWatch trained on 3DPW-PARE across various back-
bones and datasets in Tab. 3, where DeciWatch still achieves competitive pose
estimation results with 10x efficiency. We attribute it to the fact that DeciWatch
effectively learns the continuity of motions, which is applicable for different sorts
of motions.

Table 3. Cross-backbone and cross-dataset results from DeciWatch check-
points trained on 3DPW-PARE.

Dataset/Estimator MPJPE↓ Accel.↓

3DPW/EFT
Estimator (100%) 90.3 32.8
DeciWatch (10%) 87.2↓3.1(3.4%) 7.2↓25.6(77.9%)

3DPW/SPIN
Estimator (100%) 96.9 34.6
DeciWatch (10%) 98.3↑1.4(1.4%) 7.1↓27.5(79.5%)

AIST++/SPIN
Estimator (100%) 107.7 33.8
DeciWatch (10%) 101.8↓5.9(5.5%) 6.2↓27.6(81.7%)

5 Ablation Study

Impact of sampling ratio and input window size. Both input window size
and sampling ratio will affect inference efficiency and performance of DeciWatch.
With the same input window size, the lower the sampling ratio is, the more ef-
ficient the inference process will be. We present the comparison of original pose
estimator (Ori.)and DeciWatch with sampling ratio from 100% to 5% (sampling
interval N changes from 1 to 20) in Fig. 1(a). When the sampling ratio is 100%,
DeciWatch can be regarded as a denoise model. As shown in Fig. 1(a), the chang-
ing trends of MPJPE are similar for all three estimation methods (PARE [6],
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EFT [4], SPIN [7]). Surprisingly, we find that MPJPEs first drop before rising,
and they are smallest when the sampling ratio is about 20%, with improvements
of 4.9%, 3.4%, and 4.9% for PARE, EFT, and SPIN respectively. This gives us
a new perspective that in pose estimation, not every frame has to be watched
to achieve better performance. The reason behind this is the different degrees of
noise in estimated poses. It may be harder to eliminate these diverse degrees of
errors in all frames than only denoise some of the frames and recover the rest
by temporal continuity. Besides, the MPJPEs of DeciWatch is worse than that
of the original pose estimator when the sampling ratio is larger than 8% due to
too limited input information.

With the sampling ratio fixed at 10%, we further explore the influence of
window size. In Fig. 1(b), we test window sizes from 11 to 201. Results indicate
that our framework is robust to different window sizes.
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Fig. 1. Comparing effects of different (a) sampling ratios and (b) window
sizes. Sampling interval N is from 1 to 20. We compare MPJPEs of the three original
(Ori.) pose estimators [6, 4, 7] to our framework on the 3DPW dataset.

To serve for future research, we report results, including MPJPEs and Accels,
of 3D pose and body estimation on 3DPW, Human3.6M, and AIST++ datasets
in Table 4. All results show similar trends in the change of precision (MPJPEs)
and smoothness (Accels). In addition, DeciWatch utilizes the natural smoothness
of human motions to recover the detected poses. As a result, the Accels decreases
steadily when the interval N increases, indicating DeciWatch can enhance the
smoothness of the existing backbone methods.

Analyses on the phenomenon: fewer samples with better performance.
When the inputs of DeciWatch are ground-truth poses, the performance deteri-
orates with decreased sampling ratio (see Table 1 above). However, in practice,
the inputs of DeciWatch are noisy detected poses, and some of them have high
errors (e.g., due to occlusion). Consequently, considering the detected poses’
errors, two factors affect the recovered poses.

1) On the one hand, not considering/aggregating the highly noisy poses can
improve performance by reducing the impact of noisy poses on both DenoiseNet



DeciWatch 5

Table 4. Results of original (Ori.) estimators [6, 4, 7, 11] and DeciWatch un-
der different sampling ratios. Ori. is the watch-every-frame pose estimator. Sam-
pling interval N is set from 1 to 20. The best results are in bold.

Metrics/N Ori. 1 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PARE [6] Backbone on 3DPW dataset

MPJPE 78.9 75.7 75.0 75.1 75.2 75.4 76.0 76.4 77.2 77.7 78.4 79.4 80.3 80.7 81.7 82.5 83.5 84.4 85.3
Accel 25.7 25.2 9.2 7.7 7.4 7.2 7.1 7.0 6.9 6.9 6.8 6.8 6.7 6.7 6.7 6.7 6.6 6.6 6.6

EFT [4] Backbone on 3DPW dataset

MPJPE 90.3 88.0 87.2 87.2 87.3 87.6 88.3 88.4 89.0 89.8 90.3 91.5 92.3 92.3 93.1 94.0 94.6 95.4 96.1
Accel 32.8 32.7 10.2 8.0 7.5 7.3 7.1 6.9 6.8 6.8 6.7 6.7 6.6 6.6 6.5 6.5 6.5 6.4 6.4

SPIN [7] Backbone on 3DPW dataset

MPJPE 96.9 93.8 92.9 92.2 92.7 92.6 93.2 93.4 93.3 94.2 95.0 95.3 96.6 96.7 97.4 97.6 98.8 99.2 100.2
Accel 34.6 33.5 10.5 8.2 7.7 7.5 7.3 7.2 7.1 7.0 6.9 6.9 6.9 6.9 6.8 6.9 6.8 6.8 6.8

FCN [11] Backbone on Human3.6M dataset

MPJPE 54.6 53.3 53.0 52.8 52.6 52.3 52.5 52.6 52.8 53.0 53.2 53.2 53.4 53.5 53.9 53.8 54.0 54.2 54.4
Accel 19.2 15.4 3.1 2.0 1.8 1.6 1.6 1.5 1.5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

SPIN [7] Backbone on AIST++ dataset

MPJPE 107.7 67.2 66.6 67.6 68.4 69.7 71.2 71.6 71.3 76.1 77.1 79.0 80.2 82.3 84.3 85.2 87.0 88.9 90.8
Accel 33.8 7.6 7.6 6.6 6.3 6.1 6.0 5.9 5.7 5.7 5.6 5.6 5.5 5.5 5.5 5.5 5.4 5.3 5.3

and RecoverNet. 2) On the other hand, dropping too many frames would lead
to performance degradation due to information insufficiency.

Generally speaking, when the sampling ratio is high (e.g., >20%), we could
easily recover intermediate poses thanks to the continuity of motions. And for
those dropped intermediate poses, the denoised and recovered poses via Deci-
Watch obtain lower error compared to their original noisy estimation. Conse-
quently, the overall MPJPEs would drop with the increase of intervals (i.e., the
decrease of sampling ratio) in the beginning. However, when the sampling ratio
becomes too low (e.g., <5%), the highly sparse poses do not provide sufficient
information for motion recovery, and the MPJPEs would go up under such cir-
cumstances. In other words, there would be a “sweet spot” for the sampling ratio
with the minimum MPJPEs. This phenomenon is also present in the traditional
interpolation method, where MPJPE first drops (from 107.7mm to 105.8mm)
before rising.

Table 5. Comparison results with different denoise network designs on 3DPW dataset
with the state-of-the-art pose estimator Pare [6] (MPJPE is 78.9mm).

Metrics No DenoiseNet TCNs [12] MLPs [16] Ours

MPJPE 79.8 80.5 79.5 77.2

Study on different denoise networks. As a baseline framework, we try to
explore the performance of different network designs of the two subnets, De-
noiseNet and RecoverNet. In the second step, we use DenoiseNet with Trans-
former architecture to relieve noises from single-frame estimators. We first re-
move this network to validate its effectiveness. Table 5 shows a 2.1mm reduction
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of MPJPE without DenoiseNet, indicating this step is essential to the recov-
ery of more precise poses. Then, we try to simply replace the Transformer with
TCNs [12], with zero paddings to make the input and output length the same,
and MLPs [16] along temporal axes. Results show these models are incapable
of handling the discrete diverse noises, making the final recovery results worse
than the original result.

Table 6. Comparison results with different recovery network designs on
3DPW dataset with the state-of-the-art pose estimator PARE [6](MPJPE is 78.9mm).

Metrics Linear TCNs [12] TCNs w/MLPs MLPs [16] Ours

MPJPE 79.8 172.3 99.5 78.0 77.2

Study on different recovery methods. Lastly, we analyze possible designs
of the recovery process in the third step. First, we try the simple Linear inter-
polation, which shows more significant errors compared with the original PARE
since it loses the non-linear motion dynamics. Then, we adopt TCNs [12], which
have local temporal receptive fields (e.g., 3) in each layer to recover the missing
values with the interval N as 10, and it leads to the worst results. After adding
MLPs [16] at the last layer to enhance long-term temporal coherence, the error
reduces from 172.3mm to 99.5mm (by 42.3% improvement), but the error is still
far from satisfactory. MLPs [16] can utilize the continuity of temporal dimen-
sion to learn non-linear fitting curves from sampled points. Still, they do not
aggregate spatial information, which makes them get a slightly worse result.

Table 7. Comparison results of different loss weight λ on 3DPW dataset with
the state-of-the-art pose estimator Pare [6](MPJPE is 78.9mm).

λ 1 2 5 10

MPJPE 78.0 77.6 77.2 77.5

Study on different hyper-parameters. We also show the effects of hyper-
parameters in DeciWatch. λ is used in the loss function to balance the losses
between RecoverNet and DenoiseNet. Results in Table 7 show that MPJPEs
are robust to diverse loss values. Therefore, we set it to 5 by default. Moreover,
we use the same embedding dimension C and block number M in transformer
blocks. We show the results of different C in Table 8 and M in Table 9. Fewer
parameters, such as C = 12 and M = 1, will lead to performance degradation.
As the model becomes deeper (larger M) and wider (larger C), the performance
will meet saturation. By default, we set C = 64 and M = 5 for all experiments.
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Table 8. Comparison results of different embedding dimension C on 3DPW
dataset with the state-of-the-art pose estimator Pare [6].

C 12 32 64 128 256

MPJPE 78.0 77.2 77.4 77.6 77.4

Table 9. Comparison results of different block number M on 3DPW dataset
with the state-of-the-art pose estimator Pare [6].

λ 1 3 5 10

MPJPE 79.3 77.5 77.2 77.6

6 Qualitative Results

We demonstrate three typical successful cases of DeciWatch to understand why
DeciWatch uses fewer frames with higher efficiency but gets better performance
than existing single-frame methods.

First, cases in Fig. 2 show that DeciWatch can improve not only efficiency but
also effectiveness on the 3D body recovery task. The estimated body in the yellow
boxes are inputs of DeciWatch, where the interval N is set to 10. Existing SOTA
models, like PARE [6], will fail (illustrated in red boxes) when the frames have
heavy body occlusions, human interactions, or poor image quality. Interestingly,
DeciWatch skips some frames (inputs are in yellow boxes) to avoid the negative
effect. Therefore, compared with the watch-every-frame model [6], DeciWatch
may reduce the effects of unreliable and noisy estimated poses by a temporal
recovery scheme to obtain the rest of the results.

What happens if there are mistakes in the visible frames? In Fig. 3, we show
the impact of denoising scheme in DeciWatch on 2D pose estimation. Given
a sliding window of 31 frames, we mainly demonstrate the visible four frames
(highlighted in yellow boxes) with their detected 2D poses by SimplePose [14].
We observe that there are left-right flipped keypoint detection in the 1th and
21th frames of Fig. 3(a), which sometimes happens when the input image is
the back of the person. In the 31th frame of Fig. 3(d), high errors occur due
to heavy self-occlusion. Our method utilizes long temporal effective receptive
fields to denoise the noisy input poses and then recover the clean sparse poses
to get the final sequence poses, making the output poses smooth and precise in
an efficient way.

In addition to being able to do better motion sequence recovery, can Deci-
Watch still learn motion prior? In some cases, even if all visible frames are
inaccurate, DeciWatch can still recover accurate poses by learning motion prior.
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Fig. 2. Visualization results of estimated body recovery from two video sequences with
eleven frames in (a) and (e) rows. (b) and (f) are estimated poses from the existing
SOTA model PARE [6]. We highlight the input poses of DeciWatch in the yellow boxes
and the high-error poses in the red boxes. (c) and (g) are output poses of our proposed
DeciWatch, the sampling ratio is 10% in this framework. (d) and (h) show the ground
truth of the corresponding poses.

As shown in Fig. 4, (a) shows the original video frames of AIST++ with an in-
terval of 10, which is all the visible frames in one slide window (a sliding window
with the length of 101 has 11 visible frames). (b) is the corresponding SMPL
pose detected by SPIN [7]. Large errors occur in the actor’s occluded right arm
and hand. In Fig. 4(c), DeciWatch can successfully correct the errors and out-
puts smooth poses leveraging dancing action prior and human motion continuity,
which are hard for existing single-frame estimators to estimate occluded body
parts. (d) shows the ground truth poses of the video frames.

For more visualization of 2D pose estimation, 3D pose estimation as well as
body recovery, please refer to our website1.

1 Website: https://ailingzeng.site/deciwatch
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1!" 𝑓𝑟𝑎𝑚𝑒 11!" 𝑓𝑟𝑎𝑚𝑒 21!" 𝑓𝑟𝑎𝑚𝑒 31!" 𝑓𝑟𝑎𝑚𝑒

(d)

(e)

(f)

2!"～10!" 𝑓𝑟𝑎𝑚𝑒s

2!"～10!" 𝑓𝑟𝑎𝑚𝑒s

Fig. 3. Visualization the impact of denoising scheme in DeciWatch on calibrating the
wrong detected poses on four visible frames from the single-frame backbone. We demon-
strate the cases via two video sequences and simply ignore the invisible frames. (a) and
(d) rows show estimated poses from the popular model SimplePose [14], where the
sampling interval is 10. Inputs of DeciWatch are highlighted in the yellow boxes. (b)
and (e) are output poses of our proposed DeciWatch, which can denoise and smooth
the input poses by the proposed DenoiseNet and RecoverNet. (c) and (f) show the
ground truth of the corresponding poses.

7 Failure Case Analyses

There are two types of failure cases in DeciWatch, which motivates the two
corresponding future directions.

– When the sampling rate is lower than the motion frequency of some body
parts, it will be difficult to supplement the actual motion. Human body is
articulated. Thus different body parts have different movement frequencies
and distribution. For example, the moving frequency and amplitude of hands
and feet will be greater than that of the trunk. Our method adopts the same
sampling rate for the whole body without considering that the motion dis-
tribution of different keypoints is different. In some actions, such as playing
the guitar, only the hand will move at high frequency, but most other joints
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（a）

（d）

（b）

（c）

Fig. 4. Visualization of the recovery results on high-error estimated poses from
AIST++ dataset. Only visible frames are shown, which are sampled with an interval
of 10. Images in the row (a) are the original input frames at the 1th, 11th, 21th,...,101th
frame. (b), (c), (d) show the poses detected by SPIN [7], poses recovered by DeciWatch,
and the corresponding ground truth.

will not move, so the detailed information recovery of hand movement will
be lost. Therefore, adaptive sampling strategies, especially on different body
parts or keypoints, will be beneficial.

– If the estimated poses of most visible frames in the sliding window are in large
errors, it is hard for DeciWatch to recover the correct poses. As shown in
Fig. 3, although our method can correct the noisy poses to some extent, this
is the advantage of learnable methods. That is, the traditional interpolation
method can not fix them. However, if most of the visible poses are noisy, our
output may also tend to have similar (but smooth) errors. Thus, it is still
essential to continuously improve the performance and robustness of pose
estimation methods, especially in extreme scenes. At the same time, we can
also consider using additional lightweight information, such as IMUs, to help
improve performance.
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