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Abstract. This paper proposes a simple baseline framework for video-
based 2D/3D human pose estimation that can achieve 10× efficiency
improvement over existing works without any performance degradation,
named DeciWatch. Unlike current solutions that estimate each frame
in a video, DeciWatch introduces a simple yet effective sample-denoise-
recover framework that only watches sparsely sampled frames, taking
advantage of the continuity of human motions and the lightweight pose
representation. Specifically, DeciWatch uniformly samples less than 10%
video frames for detailed estimation, denoises the estimated 2D/3D poses
with an efficient Transformer architecture, and then accurately recovers
the rest of the frames using another Transformer-based network. Com-
prehensive experimental results on three video-based human pose esti-
mation, body mesh recovery tasks and efficient labeling in videos with
four datasets validate the efficiency and effectiveness of DeciWatch. Code
is available at https://github.com/cure-lab/DeciWatch.

Keywords: Human Pose Estimation, Video Analysis, Efficiency

1 Introduction

2D/3D human pose estimation [36,7,63] has numerous applications, such as
surveillance, virtual reality, and autonomous driving. Various high-performance
image-based pose estimators [40,51,48,25,30,29] are proposed in the literature,
but they are associated with substantial computational costs.

There are two main approaches to improving the efficiency of human pose
estimators so that they can be deployed on resource-scarce edge devices (e.g.,
smart cameras). A straightforward way to improve the efficiency is designing
more compact models, such as numerous light-weighted image-level pose esti-
mators [3,35,21,61,6,60,42,62,4,18,54] (see Fig. 1(a)(i)) and video-level pose esti-
mators [41,9] (see Fig. 1(a)(ii)) introduced in previous literature. However, when
estimating on a video, such approaches inevitably lead to a sub-optimal solu-
tion for efficiency improvement due to the frame-by-frame estimation scheme.
In contrast, a promising but rarely explored direction is leveraging the semantic
redundancy among frames of videos, where we can feed only keyframes to heavy

https://github.com/cure-lab/DeciWatch


2 A. Zeng et al.

(ⅰ) / (ⅱ)

Pose Estimation

Video Frames Estimated Poses

F

F

F

f

f

Frame t

Frame t-1

Frame t+1

P

P

PE

E

E

Pose t

Pose t-1

Pose t+1 F Video Frame

E Pose Estimator

f Feature

P Pose

(ⅰ) Single-Image Pose Estimator (ⅱ) Temporal Pose Estimator

F

F

F

Frame t

Frame t-1

Frame t+1

P

P

P

EL Pose t

Pose t-1

Pose t+1

Lightweight 

Pose Estimator

EL

EL

EL

(a) Compact Network Design for Pose Estimation

Keyframe Selection

Feature

Extractor

Feature Extraction

Video Frames Feature

Keyframe

Selector

Keyframe Mask Sampled Feature

Recovery &  

Estimation

Feature Recovery & Pose Estimation

Estimated Poses

(b) Keyframe-Based Efficient Pose Estimation

Sampling & Estimation

Video Frames

Pose 

Estimator

Noisy Poses Clean Poses

Recovery

Model

Recoverd Clean Poses

Denoise

Model

Pose Denoise Pose Recovery

(c) Our Sample-Denoise-Recover Framework (DeciWatch)

Fig. 1. The workflows of three types of efficient pose estimation frameworks. (a) is
compact model designs. The (green) pose estimation module has two design strategies:
(i) shows single-frame efficient methods [3,35,21,61,6,60,42,62,4,18] that use lightweight
models to reduce the costs of each frame; (ii) presents some temporal efficient strate-
gies [9,41] that utilize feature similarities among consecutive frames via RNNs to de-
crease feature extraction cost. (b) is the keyframe-based efficient framework[59,10].
They first select about 30%∼40% keyframes in a video by watching all frames, then
recover the whole sequence based on features of selected keyframes. (c) is the proposed
efficient sample-denoise-recover framework DeciWatch with 5%∼10% frames watched.

and high-performance modules and recover or estimate the rest of the frames
with light-weighted modules [59,10] (see Fig. 1(b)). While the computational ef-
ficiency of these works is improved due to the use of keyframes, they still need to
conduct costly feature extraction on each frame for keyframe selection, making
it hard to further reduce their computational complexity.

To achieve highly efficient 2D/3D pose estimation without the need of watch-
ing every frame in a video, we propose a novel framework based on the continu-
ity of human motions, which conducts pose estimation only on sparsely sampled
video frames. Since these detected poses ineluctably contain various noises, they
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will affect the effectiveness of the recovery. Subsequently, poses of those sampled
frames should be denoised before recovered, where we formulate the three-step
sample-denoise-recover framework. By doing so, the problem in the recover stage
is similar to the long-standing motion completion task in the computer graph-
ics literature [31,24,46,28,2,8]. However, there are two main differences: (i). our
objective is to achieve highly efficient pose estimation, and hence we could only
afford lightweight models for pose recovery on frames that are not processed
by pose estimators; (ii). most existing motion completion works assume ground-
truth poses on the given keyframes. In contrast, the visible frames in our task
could have untrustworthy poses with challenging occlusion or rarely seen actions.

This work proposes a simple yet effective baseline framework (see Fig. 1(c))
that watches sparsely sampled frames for highly efficient 2D and 3D video-based
human pose estimation. We empirically show that we could maintain and even
improve the pose estimation accuracy, with less than 10% frames calculated with
the costly pose estimator. We name the proposed framework DeciWatch, and
the contributions of this work include:

– To the best of our knowledge, this is the first work that considers sparsely
sampled frames in video-based pose estimation tasks. DeciWatch is com-
patible with any given single-frame pose estimator, achieving 10× efficiency
improvement without any performance degradation. Moreover, the pose se-
quence obtained by DeciWatch is much smoother than existing solutions as
it naturally models the continuity of human motions.

– We propose a novel sample-denoise-recover pipeline in DeciWatch. Specif-
ically, we uniformly sample less than 10% of video frames for estimation,
denoise the estimated 2D/3D poses with an efficient Transformer architec-
ture named DenoiseNet, and then accurately recover the poses for the rest of
the frames using another Transformer network called RecoverNet. Thanks to
the lightweight pose representation, the two subnets in our design are much
smaller than the costly pose estimator.

– We verify the efficiency and effectiveness of DeciWatch on three human pose
estimation, body recovery tasks, and efficient labeling in videos with four
widely-used datasets and five popular single-frame pose estimators as back-
bones. We also conduct extensive ablation studies and point out future re-
search directions to further enhance video-based tasks’ efficiency.

2 Related Work

2.1 Efficient Human Pose Estimation

Efficient attempts at human pose estimation can be divided into image-based and
video-based. Image-based efficient pose estimators [3,35,21,61,6,60,42,62,4,54]
mainly focus on employing well-designed network structures [3,60,42,62,4,54,56],
knowledge distillation [35,21,18], or low-resolution features [61,6,33] to reduce
model capacity and decrease spatial redundancies, where they may suffer from
accuracy reduction, especially in the cases of complex and rare poses. Moreover,
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when dealing with videos, these methods reveal their limitations for having to
estimate poses frame-by-frame. Their outputs also suffer from unavoidable jitters
because they lack the capability of using temporal information.

To cope with video inputs, other attempts exploit temporal co-dependency
among consecutive frames to decrease unnecessary calculations. However, only a
few video-based efficient estimation methods [9,41,59,10] are proposed in the lit-
erature, and they mainly target on 2D pose estimation. In particular, DKD [41]
introduces a lightweight distillator to online distill the pose knowledge via lever-
aging temporal cues from the previous frame. In addition to using local infor-
mation of adjacent frames, KFP [59] designs a keyframe proposal network that
selects informative keyframes after estimating the whole sequence, and then ap-
plies a learned dictionary to recover the entire pose sequence. Lastly, MAPN [10]
exploits the readily available motion and residual information stored in the com-
pressed streams to dramatically boost the efficiency, and all the residual frames
will be calculated by a dynamic gate.

These proposed methods reduce computation costs by employing adaptive
operations on different frames, i.e., complex operations on indispensable frames
and simple ones on the rest. Despite obtaining efficiency improvement, they still
fail to push the efficiency to a higher level since they ignore the fact that it is
not necessary to watch each frame. What’s more, relying on image features as
intermediate representation is heavy for calculation.

2.2 Motion Completion

Motion completion is widely explored in the area of computer graphics, gen-
erally including motion capture data completion [20,44,32,12,50,1,31,24,46] and
motion in-filling [11,14,15,14,17,28,2,8,55], which has great significance in the
film, animation, and game applications. To be specific, points or sequences miss-
ing often occur in motion capture due to technical limitations and occlusions of
markers. Accordingly, existing approaches include traditional methods (e.g. lin-
ear, Cubic Spline, Lagrange, and Newton’s polynomial interpolation, low-rank
matrix completion) [20,44,32,12] and learning-based methods (e.g., Recurrent
Neural Networks (RNNs)) [31,24]. Motion in-filling aims to complete the absent
poses with specific keyframe constraints. RNNs [11,14,15,14,52] and convolu-
tional models [53,28] are commonly used in motion in-filling. Recently, Genera-
tive adversarial learning [17,27] and autoencoder [28,2] are also introduced for
realistic and naturalistic output. Some recent works[8,19] also introduce self-
attention models to infill the invisible frames.

Although both general motion completion and our target are to recover the
full pose sequence, there are two main differences. On the one hand, the objective
of motion completion is to generate diverse or realistic motions under certain
assumptions, e.g., a recurring or repeated motion like walking. They may fail
when motions are aperiodic and complex. In contrast, our goal is to achieve high
efficiency in video-based pose estimation, where the benchmarks are usually from
real-life videos. On the other hand, motion completion assumes having ground-
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truth poses as inputs rather than estimated poses. Current designs may not be
able to handle unreliable and noisy poses generated from deep models.

3 Method

3.1 Problem Definition and Overview

Given an input video I = {It}Tt=1 of length T , a pose estimation framework

computes the corresponding sequence of poses P̂ = {P̂t}Tt=1, aiming to minimize

the distance between the estimated poses P̂ and the ground-truth poses P. P̂t

could be any human pose representation, including 2D keypoint position, 3D
keypoint position, and 6D rotation matrix.

The main target of this work is to set a baseline for efficient video-based
pose estimation without compromising accuracy. As shown in Fig. 1(c), we de-
vise a three-step sample-denoise-recover flow to process video-based pose es-
timation efficiently and effectively. As adjacent frames usually contain redun-
dant information and human motion is continuous, DeciWatch first samples a
small percentage of frames (e.g., 10%) Isampled and applies existing pose es-
timators [51,39,25,30,29] thereon to obtain the corresponding poses. However,
recovering the full pose sequence from sparsely observed poses is challenging,
especially when the poses are estimated by networks and often contain noise.
Relying on a few poses to recover the entire sequence, the quality of sampled
poses is the key. To tackle the challenge, we introduce two subnets, DenoiseNet
and RecoverNet. Specifically, DenoiseNet refines sparse poses from pose esti-
mator. Then RecoverNet performs motion recovery based on the refined sparse
poses to recover the whole pose sequence, with the intuition that humans can
perceive complete motion information through a small number of keyframes.
With this new mechanism, the computation cost can be reduced significantly by
watching only a small number of frames, which replaces high-cost image feature
extraction and pose estimation with a low-cost pose recovery.

3.2 Getting Sampled Poses

Different from the previous keyframe-based efficient frameworks [59,10] using
each frame’s feature to select keyframes, we use a uniform sampling that watches
one frame in everyN frame to select sparse frames Isampled as a baseline strategy.
Due to the redundancy in consecutive frames and continuity of human poses,
a uniform sampling strategy under a certain ratio is capable of keeping enough
information for recovery. Then we can estimate Isampled by any existing pose
estimators, such as SimplePose [51] for 2D poses, FCN [39] for 3D poses, and

PARE [29] for 3D body mesh recovery, to get sparse poses P̂sampled
noisy ∈ R T

N ×(K·D).
K is the number of keypoints, and D is the dimensions for each keypoint.
Notably, we experimentally show that uniform sampling can surpass complex
keyframe selection methods from both efficiency and accuracy in Sec. 4.2.
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Fig. 2. Illustration of the denoise and recovery subnets. First, we denoise the sparsely
sampled poses P̂sampled

noisy into a clean poses P̂sampled
clean by a transformer-based DenoiseNet

to handle the dynamically various noises. Then, after a preliminary pose recovery, we
embed the sequence into temporal semantic pose tokens and put them into another
transformer-based RecoverNet that can leverage spatio-temporal correlations to recover
realistic and natural poses.

3.3 Denoising the Sampled Poses

Motion completion often resorts to ground-truth sparse poses for infilling the
whole sequence. However, in our scenario, the sampled poses are obtained by
single-frame pose estimators, inevitably leading to noisy, sparse poses. Conse-
quently, the quality of sparse poses is crucial for motion recovery. Before recover-
ing the full motion, we develop a denoising network to refine the sampled poses
P̂sampled

noisy to clean poses P̂sampled
clean . Due to the temporal sparseness and noisy

jitters, the key designs of DenoiseNet lie in two aspects: (i) A dynamic model
for handling diverse possible pose noises; (ii) Global temporal receptive fields to
capture useful Spatio-temporal information while suppressing distracting noises.
Based on these two considerations, local operations, like convolutional or recur-
rent networks, are not well suited. Intuitively, Transformer-based models [49]
are capable of capturing the global correlations among discrete tokens, so we use
Transformer-based encoder modules to relieve noises from the sparse poses. The
denoise process can be formulated as:

F̂sampled
clean = TransformerEncoder

(
P̂sampled

noisy WDE + Epos

)
(1)

As demonstrated in the left block of Fig. 2, after being encoded through a linear
projection matrix WDE ∈ R(K·D)×C , summed with a positional embedding
Epos ∈ R T

N ×C , and then processed by the TransformerEncoder composed of

M Multi-head Self-Attention blocks as in [49], input noisy poses P̂sampled
noisy are

embedded into a clean feature F̂sampled
clean ∈ R T

N ×C , where C is the embedding
dimension. Dropout, Layer Normalization, and Feedforward layers are the same
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as the original Transformer. Lastly, we use another linear projection matrix
WDD ∈ RC×(K·D) to obtain refined sparse poses.

P̂sampled
clean = F̂sampled

clean WDD (2)

The learnable parameters in DenoiseNet are trained by minizing P̂sampled
clean with

sampled ground-truth poses Psampled.

3.4 Recovering the Sampled Poses

After getting the sparse clean poses P̂sampled
clean ∈ R T

N ×(K·D), we use another
Spatio-temporal subnet, RecoverNet, to recover the absent poses. In order to
learn the consistent temporal correlations, a simple temporal upsampling (e.g.,

a linear transformation WPR ∈ RT× T
N ) is applied to perform preliminary se-

quence recovery to get P̂preliminary
clean ∈ RT×(K·D).

P̂preliminary
clean = WPRP̂

sampled
clean (3)

To make the recovery more realistic and accurate, we adopt another transformer-
based network for detailed poses recovery. Unlike the previous pose transform-
ers [64], we bring temporal semantics into pose encoding to encode the neighbor-
ing D frames’ poses into pose tokens via a temporal 1D convolutional layer. The
main architecture of RecoverNet is also the same as Transformer, which employs
M multi-head self-attention blocks.

P̂ = TransformerDecoder
(
Conv1d

(
P̂preliminary

clean

)
+ Epos, F̂

sampled
clean

)
WRD, (4)

where the pose decoder is WRD ∈ RC×(K·D). As illustrated in the second block
marked as RecoverNet in Fig.2, we draw key information in the Cross-Attention
block by leveraging denoised features F̂sampled

clean .

Efficiency calculation. The computational costs of DeciWatch is from three
parts: (i) using existing backbones to estimate the sampled poses P̂sampled

noisy , (ii)

using DenoiseNet to get clean sampled poses P̂sampled
clean , and (iii) using Recover-

Net to recover the clean sampled poses to the complete pose sequence P̂t. To
summarize, FLOPs of DeciWatch is:

FLOPs =
1

T
(T/N ∗ f(E) + T ∗ (f(D) + f(R))), (5)

where f(·) calculates the model’s per frame FLOPs. f(E), f(D) and f(R) rep-
resent per frame FLOPs of pose estimators, DenoiseNet and RecoverNet, re-
spectively. Using poses instead of image features as representation makes two
subnets computational efficient. Notably, (f(D) + f(R)) ≪ f(E) (more than
104×. Details can be find in Table 1 and 2). Since DeciWatch samples very few
frames in step 1, the mean FLOPs can be reduced to 1/N compared with those
watch-every-frame methods, resulting in a 10× speedup overalls.
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3.5 Loss Function

We follow recent 3D pose estimation methods [43,57] to apply a simple L1 re-

gression loss to minimize the errors between Pt and P̂t for 2D or 3D pose esti-
mation. Particularly, to learn the noisy patterns from sampled estimated poses,
we further add an L1 loss between sparse estimated poses P̂sampled

clean and the
corresponding ground-truth poses Psampled. Therefore, the objective function is
defined as follows.

L = λ(
1

T

T∑
t=1

|P̂t −Pt|) +
1

(T/N)

T/N∑
n=1

|P̂sampled(n)
clean −Psampled(n)|, (6)

where λ is a scalar to balance the losses between RecoverNet and DenoiseNet.
We set λ = 5 by default.

4 Experiments1

4.1 Experimental Settings

Datasets. We verify our baseline framework on three tasks. For 2D pose es-
timation, we follow existing video-based efficient methods [59,10] using dataset
Sub-JHMDB [23]. For 3D pose estimation, we choose the most commonly used
dataset Human3.6M [22]. For 3D body recovery, we evaluate on an in-the-wild
dataset 3DPW [38] and a dance dataset AIST++ [34] with fast-moving and
diverse actions.
Evaluation metrics. For 2D pose estimation, we follow previous works [41,59,10]
adopting the Percentage of the Correct Keypoints (PCK ), where the matching
threshold is set as 20% of the bounding box size under pixel level. For 3D pose
estimation and body recovery, following [26,30,29,39,58], we report Mean Per
Joint Position Error (MPJPE ) and the mean Acceleration error (Accel) to re-
spectively measure the localization precision and smoothness. Besides, we report
efficiency metrics mean FLOPs (G) per frame, the number of parameters and
the inference time tested on a single TITAN Xp GPU.
Implementation details. To facilitate the training and testing in steps 2 and
3, we first prepare the detected poses on both training and test sets offline. The
uniform sampling ratio is set to 10% by default, which means watching one frame
in every N = 10 frames in videos. To deal with different input video lengths, we
input non-overlapping sliced windows with fixed window sizes. It is important to
make sure the first and last frames are visible, so the input and output window
sizes are both (N ∗ Q + 1), where Q is the average number of visible frames in
a window. We set Q = 1 for 2D poses due to the short video length of the 2D
dataset and Q = 10 for others. We change embedding dimension C and video
length T to adapt different datasets and estimators, which influence FLOPs

1 Due to the limit of pages, we present data description, comprehensive results
of different sampling ratios, the effect of hyper-parameters, generalization ability,
qualitative results, and failure cases analyses in the supplementary material.
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slightly. For DenoiseNet, we apply M = 5 transformer blocks with embedding
dimension C = 128 by default. For RecoverNet, we use the same settings as
DenoiseNet. The temporal kernel size of the semantic pose encoder is 5. For
more details, please refer to the supplementary material. All experiments can be
conducted on a single TITAN Xp GPU.

4.2 Comparison with Efficient Video-based Methods

Existing efficient video-based pose estimation methods [41,59,10] only validate
on 2D poses. In this section, we compare the accuracy and the efficiency of
DeciWatch with SOTAs. We follow their experiment settings for fair comparisons
and use the same pose estimator SimplePose [51].

Table 1. Comparison on Sub-JHMDB [23] dataset with existing video-based
efficient methods [41,59,10] for 2D pose estimation. R stands for ResNet back-
bone [16]. Ratio represents the sampling ratio. The pose estimator of DeciWatch is the
single-frame model SimplePose (R50) [51]. Best results are in bold.

Sub-JHMDB dataset - 2D Pose Estimation

Methods Head Sho. Elb. Wri. Hip Knee Ank. Avg. ↑ FLOPs(G) ↓ Ratio

Luo et al. [37] 98.2 96.5 89.6 86.0 98.7 95.6 90.0 93.6 70.98 100%
DKD (R50) [41] 98.3 96.6 90.4 87.1 99.1 96.0 92.9 94.0 8.65 100%

KFP (R50) [59] 95.1 96.4 95.3 91.3 96.3 95.6 92.6 94.7 10.69† 44.5%

KFP (R18) [59] 94.7 96.3 95.2 90.2 96.4 95.5 93.2 94.5 7.19† 40.8%
MAPN (R18) [10] 98.2 97.4 91.7 85.2 99.2 96.7 92.2 94.7 2.70 35.2%

SimplePose [51] 97.5 97.8 91.1 86.0 99.6 96.8 92.6 94.4 11.96 100%

DeciWatch 99.8 99.5 99.7 99.7 98.7 99.4 96.5 98.8 1.196+0.0005‡ 10.0%

DeciWatch 99.9 99.8 99.6 99.7 98.6 99.6 96.6 98.9 0.997+0.0005‡ 8.3%

DeciWatch 98.4 98.3 98.2 98.7 97.5 98.3 95.2 97.5 0.598+0.0005‡ 5.0%
† The results are recalculated according to Ratio and their tested FLOPs for SimplePose (i.e., 11.96G).
‡ Tested with ptflops v0.5.2 [47].

As shown in Table 1, our approach shows significantly increased accuracy
with the highest efficiency, achieving more than 20× improvement in the com-
putation cost on the Sub-JHMDB dataset. Compared to the SOTA method [10],
we surpass them by 4.3% and 4.4% on average PCK (Avg.) with 55.7% and
77.9% reduction in FLOPs. Our improvement mainly comes from elbows (Elb.)
(from 91.7% to 99.6%) and ankles (Ank.) (from 92.2% to 96.6%) under a 8.3%
ratio. These outer joints usually move faster than inner joints (e.g., Hips), which
may cause motion blur and make estimators hard to detect precisely. However,
previous efficient video-based pose estimation methods did not consider a denois-
ing or refinement strategy. DeciWatch uses DenoiseNet to reduce noises. Then,
RecoverNet interpolates the sparse poses using the assumption of continuity of
motion without watching blurry frames, showing the superiority of DeciWatch.
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To further verify the effectiveness of the denoise scheme in DeciWatch, we
input the full sequence of outputs from SimplePose, which means the Ratio is
100%, and the result of PCK is 99.3. The additional improvement in accuracy
shows that DeciWatch can also be used as an effective denoise/refinement model
to further calibrate the output positions. Based on the above observations, using
a lightweight DeciWatch in a regression manner to further refine heatmap-based
2D pose estimation methods can be a promising refinement strategy. For effi-
ciency, the total number of parameters in DenoiseNet and RecoverNet is 0.60M
and the inference time is about 0.58ms/frame.

Besides, we argue that PCK@0.05 with lower thresholds will be better to
reflect the effectiveness of the methods since the commonly used metric PCK@0.2
appears saturated. We report PCK@0.05 and PCK@0.1 of DeciWatch in Supp.

4.3 Boosting Single-frame Methods

The used single-frame pose estimators: We compare DeciWatch with the
following single-frame pose estimators [39,30,25,29] that watch each frame when
estimating a video. We first introduce these methods as follows.

– FCN [39] is one of the most important 2D-to-3D methods with multiple fully
connected layers along the spatial dimension.

– SPIN [30] is one of the most commonly used methods, which combines SMPL
optimization in the training process.

– EFT [25] is trained on augmented data compared with SPIN [30] to get better
performance and generalization ability.

– PARE [29] proposes a part-guided attention mechanism to handle partial oc-
clusion scenes, achieving the state-of-the-art on many benchmarks.

The comparisons: We demonstrate the comparison results in Table 2 at sam-
pling ratios of 10% (N = 10) and 6.7% (N = 15). To be specific, when the
sampling ratio is 10%, DeciWatch can reduce MPJPE by about 2% to 3% for
most estimators and reduce Accel by about 73% to 92%, indicating DeciWatch
achieves higher precision and smoothness with about 10% FLOPs. Moreover,
with 6.7% watched frames, DeciWatch still has the capability to recover the
complete pose sequence with competitive results. For the AIST++ dataset, we
surprisingly find that training on sparse poses and recovering them can signif-
icantly improve output qualities by 33.8% and 23.6% with a sampling ratio of
10% and 6.7% respectively. This indicates that our method is capable of datasets
with fast movements and difficult actions, such as Hip-hop or Ballet dances.

In general, we attribute the high efficiency of DeciWatch to the use of
lightweight and temporal continuous poses representation rather than the heavy
features used by previous works [41,59,10]. Meanwhile, the superior effective-
ness, especially for motion smoothness, comes from its ability to capture spatio-
temporal dynamic relations in the denoising and recovery process and the well-
designed sample-denoise-recover steps. Additionally, the inference speeds in step
2 and 3 are about 0.1ms/frame, significantly faster than image feature extraction.
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Table 2. Comparing DeciWatch with existing single-image 3D pose esti-
mators on Human3.6M [22], 3DPW [38], and AIST++ [34] datasets. Pose
estimators used in DeciWatch keep the same as the corresponding methods.

Methods MPJPE ↓ Accel ↓ FLOPs(G)↓ Ratio

Human3.6M [22] - 3D Pose Estimation

FCN [39] 54.6 19.2 6.21 100.0%
DeciWatch 52.8↓1.8(3.3%) 1.5↓17.7(92.2%) 0.621+0.0007 10.0%
DeciWatch 53.5↓1.1(2.0%) 1.4↓17.8(92.7%) 0.414+0.0007 6.7%

3DPW [38] - 3D Body Recovery

SPIN [30] 96.9 34.7 4.13 100.0%
DeciWatch 93.3↓3.6(3.7%) 7.1↓27.6(79.5%) 0.413+0.0004 10.0%
DeciWatch 96.7↓0.2(0.2%) 6.9↓27.8(80.1%) 0.275+0.0004 6.7%

EFT [25] 90.3 32.8 4.13 100.0%
DeciWatch 89.0↓1.3(1.4%) 6.8↓26.0(79.3%) 0.413+0.0004 10.0%
DeciWatch 92.3↑2.0(2.2%) 6.6↓26.2(79.9%) 0.275+0.0004 6.7%

PARE [29] 78.9 25.7 15.51 100.0%
DeciWatch 77.2↓1.7(2.2%) 6.9↓18.8(73.2%) 1.551+0.0004 10.0%
DeciWatch 80.7↑1.8(2.2%) 6.7↓18.6(73.9%) 1.034+0.0004 6.7%

AIST++ [34] - 3D Body Recovery

SPIN [30] 107.7 33.8 4.13 100.0%
DeciWatch 71.3↓36.4(33.8%) 5.7↓28.1(83.1%) 0.413+0.0007 10.0%
DeciWatch 82.3↓25.4(23.6%) 5.5↓28.3(83.7%) 0.275+0.0007 6.7%

All estimation results are re-implemented or tested by us for fair comparisons.

4.4 Comparison with Motion Completion Techniques

The third step of DeciWatch is similar to motion completion/interpolation as
introduced in Sec. 2.2. To assess existing interpolation methods quantitatively,
we compare our model with four traditional methods and one of the latest
learning-based interpolation methods [2] based on Conditional Variational Auto-
Encoder(CVAE). The original experiments in the CAVE-based model are based
on the ground-truth of the Human3.6M dataset [22] (marked as CVAE [2]-R.⋆).
We compare two additional settings on the same dataset: (i). CVAE [2]-R. inputs
estimated 3D poses rather than ground-truth 3D poses and uses Random sam-
pling; (ii). CVAE [2]-U. inputs estimated 3D poses and use Uniform sampling,
which is the same setting as DeciWatch. For a fair comparison, we adjusted the
sampling ratio of training and testing to be consistent as 20%, 10%, and 5%.

In Table 3, DeciWatch outperforms all methods. Specifically, we find that
the results of the CVAE-based model are even twice as bad as the traditional
methods at all ratios, especially with estimated poses inputs and uniform sam-
pling. This is because CVAE-based methods try to encode a long sequence of
motion into an embedding and then recover them, which is practically difficult
to embed well and recover precisely for a specific video. Instead, our method and
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Table 3. Comparison of MPJPE with existing motion completion methods
on Human3.6M dataset [22] for 3D pose estimation. Noted that [2] is origi-
nally trained and tested on ground-truth 3D poses (noted by ⋆) with random sampling
(CVAE [2]-R.), we retrain their model with detected 3D poses to keep the same uni-
form sampling as us (CVAE [2]-U.). We use FCN [39] as the single-frame estimator to
generate the sparse detected results, and its MPJPE is 54.6mm.

Ratio Nearest Linear Quadratic Cubic-Spline CVAE-R.⋆ CVAE-R. CVAE-U. DeciWatch

20% 54.4 54.4 54.3 54.5 87.4 114.1 119.4 52.8↓1.8(3.2%)

10% 54.7 54.3 55.2 54.4 99.1 119.2 121.5 52.8↓1.8(3.2%)

5% 57.6 57.5 57.2 57.3 134.9 140.5 123.1 54.4↓0.2(0.3%)

All estimation results are re-implemented or tested by us for fair comparisons.

the traditional interpolation strategies directly utilize the continuity of human
poses as a priori, making the interpolation process easier.

Owing to the relatively low MPJPE and the slow motions in the Human3.6M
dataset, DeciWatch only have limited improvement over traditional methods.
We evaluate on a more challenging dance dataset AIST++ [34] in Table 4. A
tremendous lift is revealed to over 30% under a 10% ratio. The improvement of
DeciWatch is from: DeciWatch can learn to minimize errors with data-driven
training, especially poses with high errors, while traditional methods have no
such prior knowledge to decrease the errors from both visible and invisible poses.

Table 4. Comparison of MPJPE with traditional interpolation methods on
AIST++ dataset [34]. We use 3D pose estimator SPIN [30] as the single-frame
estimator, and its MPJPE is 107.7mm.

Ratio Nearest Linear Quadratic Cubic-Spline DeciWatch

20% 106.7 104.6 105.8 106.8 67.6↓39.7(37.0%)

10% 108.3 106.3 108.2 108.9 71.3↓36.0(33.6%)

5% 123.2 120.7 119.9 121.2 90.8↓16.5(15.4%)

4.5 Ablation Study

As a baseline framework, we do not emphasize the novelty of network design
but provide some possible designs in each step for further research. We have
explored the impact of different pose estimators in Table 1 and 2 in previous
sections. This section will explore how designs in steps 2 and 3 influence the
results. All experiments use the same input window length at 101 and a 10%
sampling ratio by default. We keep the same setting in both training and testing.
Impact of sampling ratio and input window size. Due to space limitation,
we discuss this part in Supp.. We summarize the key observations as follows :(i).
With the increase in sampling ratio, the MPJPEs first drop before rising, and
they are at the lowest when the sampling ratio is about 20%. Accels will decrease
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constantly. These observations give us a new perspective that in pose estimation,
it is not essential to watch all frames for achieving a better and smoother perfor-
mance. (ii). Besides, the MPJPE of DeciWatch surpasses the original baseline
even when the sampling ratio is about 8%. (iii). Lastly, DeciWatch is robust to
different window sizes from 11 to 201 frames.

Table 5. Comparison of MPJPE
with different sampling strategies on
3DPW dataset with EFT [25] pose es-
timator (MPJPE is 90.3mm). U.-2 and
U.-3 are uniform sampling 2 or 3 frames for
every N frames. U.-R. conducts both uni-
form sampling and random sampling. R. is
random sampling.

Ratio U.(Ours) U.-2 U.-3 U.-R. R.

20% 87.2 89.3 91.5 94.2 97.1
10% 89.0 96.3 103.4 101.3 104.4

Impact of sampling strategies.
Although we use uniform sampling
one frame for every N frame, there are
other sampling strategies that can be
adopted without watching each frame,
such as (i). uniform sampling 2 or 3
frames for every N frames, which con-
tains velocity and acceleration infor-
mation (named as U.-2 and U.-3 );
(ii). random sampling (R.); (iii). com-
bining uniform sampling with random
sampling (U.-R.). From Table 5, U.-2
and U.-3 get the worse results com-
pared to U.(Ours) because intervals
between visible frames become longer,
and the information in two or three
adjacent frames is too similar to be helpful for the recovery. Moreover, ran-
dom sampling shows is capable of recovery since a long invisible period may
appear, which is hard for model learning. Combining uniform sampling (half
of the frames) to avoid long invisible periods can slightly decrease the error in
random sampling. In summary, uniform sampling one frame for every N frame
(U.(Ours)) surpasses all other sampling strategies under the same model.
Impact of denoise and recovery subnets. In Table 6, we comprehensively
verify the effectiveness of DenoiseNet and RecoverNet at 10% sampling ratio on
three datasets. When we remove any part of the two subnets, the results deteri-
orate to various degrees. Removing RecoverNet means we only use a preliminary
recovery via a temporal linear layer, which leads to unsatisfying results as dis-
cussed in Sec. 4.4. In fact, RecoverNet is very important for the whole framework
since it is supervised by the entire sequence’s ground-truth, especially for the
fast-moving dance dataset AIST++ [34]. DenoiseNet can remove noises in ad-
vance while giving a better initial pose sequence to RecoverNet, which can reduce
the burden in the recovery stage. In summary, the two subnets are both essential
and effectively improve the final performance.

4.6 An application: Efficient Pose Labeling in Videos

A large amount of labeled data leads to the success of deep models. However,
labeling each frame in videos is labor-intensive and high cost. It is also hard to
guarantee continuity among adjacent frames, especially for 3D annotations. Due
to the efficiency and smoothness of the pose sequences recovered by DeciWatch,
reducing the need for dense labeling could be a potential application. We verify
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Table 6. Exploring impacts of the two DenoiseNet and RecoverNet subnets
with 10% sampling ratio on three dataset and the corresponding backbones.
Ori. means the original estimator (watching all frames) with 100% sampling ratio. No
RecoverNet is preliminarily recovered via a temporal linear layer.

Dataset w/Backbone Ori. (100%) No DenoiseNet No RecoverNet DeciWatch

Human3.6M w/FCN [39] 54.6 54.5 54.7 52.8
3DPW w/PARE [29] 78.9 79.8 81.0 77.2
AIST++ w/SPIN [25] 107.7 91.5 95.3 71.3

the effectiveness of this application on the Human3.6M and AIST++ dataset by
directly inputting the sparse ground-truth 3D positions into the RecoverNet of
DeciWatch. Due to limited pages, please see Supp. for details.

5 Conclusion and Future Work

This work proposes a sample-denoise-recover flow as a simple baseline frame-
work for highly efficient video-based 2D/3D pose estimation. Thanks to the
lightweight representation and continuity characteristics of human poses, this
method can watch one frame in every 10 frame and achieve nearly 10× improve-
ment in efficiency while maintaining competitive performance, as validated in
the comprehensive experiments across various video-based human pose estima-
tion and body mesh recovery tasks. There are many opportunities to further
improve the proposed baseline solution:
Adaptive sampling and dynamic recovery. In DeciWatch, we use a sim-
ple uniform sampling strategy for all the joints. In practice, the movements of
different joints under different actions vary greatly. Consequently, an adaptive
sampling strategy has the potential to further boost the efficiency of video-based
pose estimators. For instance, combining multi-modality information (e.g., WIFI,
sensors) to relieve visual computation can be interesting. Correspondingly, how
to design a dynamic recovery network that can handle non-uniformly sampled
poses is an interesting yet challenging problem to explore.
High-performance pose estimator design. While this work emphasizes the
efficiency of pose estimators, our results show that watching fewer frames with
our framework could achieve better per-frame precision compared with watching
each frame. This is in line with the recent findings on multi-view pose estimation
methods [5,13,45], showing better results without calculating every possible view
simultaneously. We attribute the above phenomena to the same intrinsic princi-
ple that it is likely to achieve better results by discarding some untrustworthy
estimation results. Therefore, designing such a strategy to achieve the best pose
estimation performance is an interesting problem to explore.
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