1 Appendix

Table 1: Improvements on MPII validation set.

Method	Input size	Head	Sho.	Elb.	Wri.	Hip	Knee	Ank.	Mean
HRNet-W32 [2]	256×192	97.1	95.9	90.3	86.4	89.1	87.1	83.3	90.3
+ PoseTrans (Ours)	256×192	97.2	96.2	90.9	86.3	89.8	87.1	83.3	90.5
HRNet-W48 [2]	256×192	97.2	96.1	90.8	86.3	89.3	86.6	83.1	90.4
+ PoseTrans (Ours)	256×192	97.2	96.2	91.0	86.4	89.5	87.1	83.2	90.6

MPII [1] dataset is a popular dataset for evaluating pose estimation models. It contains 40k person samples, each labeled with 16 joints. We followed the standard train/val/test split as in [3] and use PCKh@0.5 for evaluation. The training settings are the same as we use for the MS-COCO dataset. Table 1 shows the performance improvement on the MPII dataset, where HRNet-W32 and HRNet-W48 with the input size of 256×192 are adopted as the baselines. From the table, we can observe that PoseTrans consistently boosts the performance of the baselines.

References

- Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: New benchmark and state of the art analysis. In: IEEE Conf. Comput. Vis. Pattern Recog. (2014) 1
- Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. arXiv preprint arXiv:1902.09212 (2019) 1
- Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional network and a graphical model for human pose estimation. Advances in neural information processing systems 27 (2014) 1