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1 Detailed Inductions, Proofs and Expressions

In this section, we provide detailed inductions, proofs of the property and the
lemma, and expressions of some important constants in the main paper. Note
that the equation numbers are continued on the main paper, so the numbers
begin from 17 in this material, and smaller numbers refer to equations proposed
in the main paper.

1.1 Detailed Expression of Eq. (7)

In Section 3.2 of the main paper, we mention that if all bone vectors (b) are
known, then the optimal root joint position (x0) can be represented in form of

x0 = Qb+ p.

where Q ∈ R3×3n and p ∈ R3 are both constants.
To validate this, we start from the formulated optimization problem, i.e.,

min
x0,x1,...,xn

g(x) =

n∑
i=0

c∑
k=1

w′
i,k

∥∥P u
k H(xi)− x̂i,k

(
p⊤
k H(xi)

)∥∥2, (17)

s.t. ∥xi − xj∥ = Lj ,∀(i, j) ∈ B. (18)

If all bone vectors are fixed, then constraints in Eq. (18) are already satisfied,
the only problem need to be considered is how to solve Eq. (17) without con-
straints. Since w′

i,k is treated as constant, the problem is a trivial unconstrained
quadratic optimization problem. The conclusion is obviously correct, and now
we want to provide the analytical expressions of Q and p by detailed inductions.

Before starting, we need to first regulate some notations of camera parame-
ters. For the kth camera, use Rk ∈ R3×3 and tk ∈ R3 to represent the rotation
and translation, and Kk ∈ R3×3 for the intrinsic matrix. Then the projection
matrix is:

Pk =
[
KkRk | −KkRktk

]
. (19)
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Split Pk by row, and also by column in the way like (19), which produces:

Pk =

[
P u

k

p⊤
k

]
=

pu⊤
1,k

pu⊤
2,k

p⊤
k

 =

r⊤1,k t1,k
r⊤2,k t2,k
r⊤3,k t3,k

 , (20)

where KkRk = [r1,k, r2,k, r3,k]
⊤ and −KkRktk = [t1,k, t2,k, t3,k]

⊤.

Let x̂i,k = [ui,k, vi,k]
⊤, then

∥∥P u
k H(xi)− x̂i,k

(
p⊤
k H(xi)

)∥∥2 =
(
(pu

1,k − ui,kpk)
⊤H(xi)

)2
+
(
(pu

2,k − vi,kpk)
⊤H(xi)

)2
. (21)

And the first term on the right side can be reformulated as

(pu
1,k − ui,kpk)

⊤H(xi) = (r1,k − ui,kr3,k)
⊤xi + t1,k − ui,kt3,k (22)

=
[
1 0 −ui,k

]
KkRkxi −

[
1 0 −ui,k

]
KkRktk (23)

=
[
1 0 −ui,k

]
KkRk (xi − tk) . (24)

Likewise,

(pu
2,k − vi,kpk)

⊤x̃i =
[
0 1 −vi,k

]
KkRk (xi − tk) (25)

Then, g(x) can be reformulated as follows:

g(x) =

n∑
i=0

c∑
k=1

w′
i,k

(
((pu

1,k − ui,kpk)
⊤x̃i)

2 + ((pu
2,k − vi,kpk)

⊤x̃i)
2
)

(26)

=
1

2

n∑
i=0

c∑
k=1

2w′
i,k

(
(xi − tk)

⊤
R⊤

k K
⊤
k 1 0 −ui,k

0 1 −vi,k
−ui,k −vi,k u2

i,k + v2i,k

KkRk (xi − tk)

 (27)

def
=

1

2

n∑
i=0

c∑
k=1

(xi − tk)
⊤
Mi,k(xi − tk) (28)

def
=

1

2
x⊤Dx−m⊤x+ s. (29)

Eq. (29) is of standard quadratic form, and the above definitions are listed
below:
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Mi,k = 2w′
i,kR

⊤
k K

⊤
k

 1 0 −ui,k

0 1 −vi,k
−ui,k −vi,k u2

i,k + v2i,k

KkRk (30)

D = diag

{
c∑

k=1

M0,k,

c∑
k=1

M1,k, . . . ,

c∑
k=1

Mn,k

}
(31)

m =

( c∑
k=1

M0,ktk

)⊤

,

(
c∑

k=1

M1,ktk

)⊤

, . . . ,

(
c∑

k=1

Mn,ktk

)⊤
⊤

(32)

s =
1

2

n∑
i=0

c∑
k=1

t⊤k Mi,ktk (33)

Back to the problem we discussed in the beginning: solving the optimal root
position x0 with respect to given bone vectors b. With Eq. (6), we can write
an objective function p(x0) which equals g(x) so that the only unknown x0 is
isolated.

p(x0) = g

(
G−1

[
x0

b

])
=

1

2

[
x⊤
0 b⊤

]
G−⊤DG−1

[
x0

b

]
−m⊤G−1

[
x0

b

]
+ s (34)

where G−⊤ = (G−1)⊤.
The first order necessary condition to minimize p(x0) produces

∇x0p(x0) =

[
I3 0
0 03n×3n

]
G−⊤

(
DG−1

[
x0

b

]
−m

)
= 0, (35)

where 0p×q ∈ Rp×q means a matrix of p× q whose elements all equal 0.
By definition, G−1 is of the following form

G−1 =

[
I3 03×n

I
(n)⊤
row F

]
(36)

where I
(m)
row = [I3, I3, · · · , I3] (repeated m times), and F ∈ R3n×3n just repre-

sents the above part of G−1. Obviously,[
I3 0
0 03n×3n

]
G−⊤ = I(n+1)

row . (37)

Since D is block diagonal, we have

I(n+1)
row D =

[
c∑

k=1

M0,k,

c∑
k=1

M1,k, · · · ,
c∑

k=1

Mn,k

]
def
= Mrow. (38)

Then we can induct from Eq. (35) that
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MrowG−1

[
x0

b

]
− I(n+1)

row m = 0. (39)

Let MS =
∑n

i=0

∑c
k=1 Mi,k, then

MSx0 +MrowFb− I(n+1)
row m = 0. (40)

Therefore,

x0 = −M−1
S MrowFb+M−1

S I(n+1)
row m. (41)

So the expressions of constants in Eq. (7) are

Q = −M−1
S MrowF , (42)

p = M−1
S I(n+1)

row m. (43)

1.2 Proof of Property 1

In this section we provide detailed proof and concrete expressions of constants
in Property 1.

Property 1. The optimization problem in Eq. (1) and (2) is formulated as

min
b

f(b) =
1

2
b⊤Ab− β⊤b+ d (44)

s.t. hi(bi) = ∥bi∥2 = L2
i , i = 1, 2, . . . , n. (45)

where A ∈ R3n×3n is a symmetric positive semi-definite constant matrix, β ∈
R3n and d ∈ R are constants. A is singular if and only if ∃i = 0, 1, . . . , n, there
holds ∀k1, k2 = 1, 2, . . . , c, li,k1

//li,k2
.

Proof. First, the objective function is reformulated as Eq. (17), along with some
approximations. And from the previous section, we see that Eq. (17) can be
further formulated as Eq. (29), which is the beginning of this proof.

Now we need to convert joint position vector x to bone vector b, involving
Eq. (6) and Eq. (7).

Define Q̃ = [Q⊤, In]
⊤ and p̃ = [−p⊤,01×3n]

⊤, then

f(b) = g

(
G−1

[
x0

b

])
= g

(
Q̃b− p̃

)
(46)

=
1

2
(Q̃b− p̃)⊤G−⊤DG−1(Q̃b− p̃)−m⊤G−1(Q̃b− p̃) + s (47)

def
=

1

2
b⊤Ab− β⊤b+ d. (48)
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It is the form in (44) where

A = Q̃⊤G−⊤DG−1Q̃; (49)

β = Q̃⊤G−⊤DG−1p̃+ Q̃⊤G−1m; (50)

d = s+
1

2
p̃⊤G−⊤DG−1p̃+m⊤G−1p̃. (51)

And the constraints in Eq. (2) are trivially equivalent to Eq. (45). Therefore,
the formulation is done.

Now we want to prove that A is symmetric positive semi-definite, and that
the condition when A becomes singular is as stated in Property 1. In the follow-
ing proof, “⪰ 0” means positive semi-definite.

We can conclude directly from definition Eq. (49) that A is congruent to D.
Therefore the key is to make sure D is symmetric and positive semi-definite.
Since D is block diagonal, it is sufficient to prove each block matrix on its
diagon has that property. We can even prove a stronger proposition, i.e., ∀i =
0, 1, . . . , n; k = 1, 2, . . . , c, s.t. M⊤

i,k = Mi,k and Mi,k ⪰ 0.
In (30), apparently Mi,k is congruent to

Ni,k =

 1 0 −ui,k

0 1 −vi,k
−ui,k −vi,k u2

i,k + v2i,k

 (52)

Ni,k is symmetric. The eigen values of Ni,k are

λ1 = 0, λ2 = 1, λ3 = 1 + u2
i,k + v2i,k.

The corresponding unit eigen vector of λ1 is

αi,k =
1√

1 + u2
i,k + v2i,k

ui,k

vi,k
1

 , (53)

which is the basic solution to x⊤Ni,kx = 0. And according to Eq. (30), the base
solution to x⊤Mi,kx = 0 is R⊤

k K
−1
k αi,k.

All eigen values are non-negative, so Ni,k ⪰ 0. And because of congruence,
there also holds that Mi,k ⪰ 0.

Consider the condition when D is singular. As mentioned before, D ⪰ 0, so
|D| = 0 ⇔ ∃y ∈ R3(n+1),y ̸= 0, s.t. y⊤Dy = 0. Let y = [y⊤

0 ,y
⊤
1 , . . . ,y

⊤
n ]

⊤.
Because D is block diagonal and positive semi-definite, the above proposition
equals to: ∃i = 0, 1, . . . , n,yi ∈ R3 and yi ̸= 0, s.t. y⊤

i

∑c
k=0 Mi,kyi = 0. And

because Mi,k ⪰ 0, k = 1, 2, . . . , c, there holds

y⊤
i

c∑
k=0

Mi,kyi = 0 ⇔ y⊤
i Mi,kyi = 0, k = 1, 2, . . . , c (54)

⇔ yi//R
⊤
k K

−1
k αi,k, k = 1, 2, . . . , c. (55)
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According to the definition of intrinsic Kk and extrinsic Rk, the expression
in (55) is parallel to the line connecting camera optic center and the estimated
point on image plane, which are marked as li,k in the main paper. Note that i
is already fixed, so we can further put the proposition in (54) equivalently as:

∀k1, k2 = 1, 2, . . . , c, li,k1
//li,k2

. (56)

Because of congruence, the above condition is also the necessary and sufficient
condition when |A| = 0. That completes the proof.

1.3 Proof of Lemma 1

Lemma 1. Suppose A,B ∈ Rn×n and A is non-singular. ∥ · ∥ is the spectral
norm of a matrix. If ∥A−1B∥ < 1, then A−B is non-singular and we have the
following inequality:∥∥(A−B)−1 −

(
A−1 +A−1BA−1

)∥∥ ≤
∥∥A−1B

∥∥2 ∥∥A−1
∥∥

1− ∥A−1B∥
. (57)

Proof. We first introduce Neumann Lemma:

Lemma 2 (Neumann Lemma). Suppose E ∈ Rn×n, In ∈ Rn×n stands for
identity matrix. ∥ · ∥ is a matrix norm that satisfies ∥In∥ = 1. If ∥E∥ < 1, then
I −E is non-singular and the following equation holds:

(In −E)
−1

=

∞∑
k=0

Ek. (58)

Because A is non-singular, we have

(A−B)−1 = (In −A−1B)−1A−1. (59)

Because the spectral norm of In is 1, Neumann Lemma is applicable here.
We can extract (In −A−1B)−1 in series form, i.e.,

(A−B)−1 =

∞∑
k=0

(A−1B)kA−1 (60)

= A−1 +A−1BA−1 + (A−1B)2
∞∑
k=0

(A−1B)kA−1. (61)

According to the properties of matrix norm, there holds∥∥(A−B)−1 − (A−1 +A−1BA−1)
∥∥ =

∥∥∥∥∥(A−1B)2
∞∑
k=0

(A−1B)kA−1

∥∥∥∥∥ (62)

≤
∥∥A−1

∥∥∥∥A−1B
∥∥2 ∞∑

k=0

∥∥A−1B
∥∥k (63)

=

∥∥A−1B
∥∥2 ∥∥A−1

∥∥
1− ∥A−1B∥

. (64)
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That completes the proof.

1.4 Detailed Process to Find Solution from KKT Condition

The KKT condition of the optimization problem in Property. 1 produces

∇bl(b,λ) = (A+ 2Λ)b− β = 0; (65)

∇λl(b,λ) = h(b)−L = 0. (66)

By combining Eq. (65) with the given approximation in Eq. (13), we have

b = (A+ 2Λ)−1β (67)

≈ (In − 2A−1Λ)A−1β (68)

= (In − 2A−1Λ)b(0). (69)

We can take a particular bone vector from b(0) by matrix multiplication:

b
(0)
i = [03×3(i−1), I3,03×3(n−i)]b

(0). (70)

Define Eii ∈ R3n×3n as

Eii =

03(i−1)×3(i−1) 03(i−1)×3 03(i−1)×3(n−i)

03×3(i−1) I3 03×3(n−i)

03(n−i)×3(i−1) 03(n−i)×3 03(n−i)×3(n−i)

 , (71)

Then,

∥bi∥2 = b⊤Eiib (72)

= b(0)⊤(In − 2ΛA−1)Eii(In − 2A−1Λ)b(0) (73)

=
∥∥∥b(0)i

∥∥∥2 − 4b(0)⊤(EiiA
−1Λ)b(0) + 4b(0)⊤ΛA−1EiiA

−1Λb(0), (74)

where the unknown λ is of second-order in the last term. If ∥2A−1Λ∥ ≪ 1, then
the term is very small compared to the former two. So we can abandon it and
derive the following equation:

∀i = 1, 2, . . . , n, s.t. 4b(0)⊤(EiiA
−1Λ)b(0) =

∥∥∥b(0)i

∥∥∥2 − ∥bi∥2. (75)

Similar to 0p×q, 1p×q ∈ Rp×q means a matrix of p×q whose elements all equal

1. Define D
(3×1)
n = diag{13×1,13×1, . . . ,13×1}, where the vector 13×1 repeated

n times.
Then we can reformulate (75):

[0⊤
3(i−1), b

⊤
i ,0

⊤
3(n−i)]A

−1diag{b(0)}D(3×1)
n λ =

1

4
(L

(0)2
i − L2

i ). (76)
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(a) 17-joint subset in
Human3.6M

 

(b) Full 21-joint model
in Total Capture

 

(c) 16-joint subset in
Total Capture

Fig. 1: Joint indices of 3 different skeletal models. Joints with the same indices
are treated as corresponding ones. Note that blue joints are ignored in our tests.

For i vary from 1 to n, we concatenate all (76) together and get

D(3×1)⊤
n diag{b(0)}A−1diag{b(0)}D(3×1)

n λ =
1

4
(L(0) −L), (77)

which directly produces Eq. (14) in the main paper.

2 Joint Correspondences between labels of Human3.6M
and Total Capture

Fig. 1 shows the skeletal models used in two datasets, and Table. 1 shows the
corresponding joint names.

3 Detailed Experiment Settings and Full Results

3.1 Lagrangian Algorithm and Relative Hyperparameter Settings

Lagrangian Algorithm for optimization problems with equality constraints is
based on Lagrangian multiplier. It updates both the variable and the multiplier
in a dual process. In this section, we describe the process of how our problem
(Eq. (8) and (9)) is solved by Lagrangian Algorithm and how the hyperparam-
eters are set. Detailed introduction of the algorithm can be found in [1].

Consistent with the main paper, we use λ to represent the multiplier and
Eq. (10) for the Lagrangian function. Use b(i) and λ(i) for the value in ith
iteration, and i = 0 refers to the initial value. Then we can write the update
process as:
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Table 1: Joint names and correspondences, where “Index” stands for joint in-
dices in Fig. 1, “H36M” means Human3.6M dataset while “TC” means Total
Capture Dataset. The numbers inside parentheses refer to the joint numbers in
corresponding skeletal models.

Index H36M (17) TC (21) TC (16) Index H36M (17) TC (21) TC (16)

0 Hips Hips Hips 11 RElbow RightForeArm RightForeArm
1 RKnee RightLeg RightLeg 12 RShoulder RightArm RightArm
2 RHip RightUpLeg RightUpLeg 13 LShoulder LeftArm LeftArm
3 LHip LeftUpLeg LeftUpLeg 14 LElbow LeftForeArm LeftForeArm
4 LKnee LeftLeg LeftLeg 15 LWrist LeftHand LeftHand
5 LFoot LeftFoot LeftFoot 16 Neck \ \
6 RFoot RightFoot RightFoot 17 \ Spine1 \
7 Spine Spine2 Spine2 18 \ Spine2 \
8 Thorax Neck Neck 19 \ Spine3 \
9 Head Head Head 20 \ RightSholder \
10 RWrist RightHand RightHand 21 \ LeftSholder \

b(k+1) = b(k) − α
(
∇f(b(k)) +∇h(b(k))⊤λ(k)

)
, (78)

λ(k+1) = λ(k) + γ
(
h(b(k))−L

)
. (79)

Combining with Eq. (9) and Eq. (10), we can reformulate Eq. (78) to:

b(k+1) = b(k) − α
(
Ab(k) − β + 2diag{b(k)}D(3×1)

n λ(k)
)

(80)

Then, in each iteration, we update b by Eq. (80) and then λ by Eq. (79).
When iteration number gets the predefined upper limit Niter, the process is
terminated and b(Niter) is returned as the optimal solution.

In our experiment, the hyperparameters are: α = 2 × 10−9, γ = 0.5 and
Niter = 50.

3.2 Full Results of Absolute MPJPE on Human3.6M Dataset

The results of absolute MPJPE error in subjects are reported in Table 2.

3.3 Camera Parameters to Synthesize Data

When synthesizing data, all joint positions are measured in mm. The intrinsic
matrix K and extrinsic translation t of all cameras are:

K =

900 0.5 500
0 900 500
0 0 1

 ; t =

 0
0

2000


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Table 2: Full table of absolute MPJPE (mm) on Human3.6M Dataset. “AT”
and “VT” are short for Algobraic Triangulation and Volumetric Triangulation.
Results in our method are highlighted in light gray and “*” means the estimated
bone lengths are used.

Method Dire. Disc. Eat Greet Phone Photo Pose Purch.

AT by Iskakov[2] 18.06 20.56 17.70 17.06 18.75 19.30 17.50 19.12
VT by Iskakov[2] 17.08 18.39 16.92 16.49 17.53 18.29 16.52 17.81
Ours* (SCA) 18.81 20.01 16.44 17.26 18.68 18.59 17.52 18.67
Ours (w/o SCA) 16.58 18.75 15.50 16.29 17.96 18.03 16.56 17.88
Ours (SCA) 16.43 18.58 15.48 16.13 17.79 17.82 16.47 17.44

Method Sit SitD Smoke Wait Walk WalkD WalkT Avg

AT by Iskakov[2] 20.07 22.69 19.59 17.72 18.12 20.68 17.98 19.26
VT by Iskakov[2] 20.06 20.45 18.34 17.02 17.27 19.02 16.81 17.93
Ours* (SCA) 20.86 21.43 18.92 17.85 18.90 19.87 18.48 18.90
Ours (w/o SCA) 20.68 21.29 18.36 17.55 17.54 18.81 17.31 17.98
Ours (SCA) 20.06 20.63 18.19 16.74 17.52 18.67 17.34 17.78

3.4 Full Experiment Results on Synthesized Data

In this section, we report the full experiment result on synthesized data in Ta-
bles 3˜8. These tables are named in the form “criterion (unit) + camera setup”.
Note that σ is the standard deviation of Gaussian noise and c is the number of
cameras.
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1. Chong, E.K., Zak, S.H.: An introduction to optimization. John Wiley & Sons (2004)
2. Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y.: Learnable triangulation of hu-
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Table 3: Absolute MPJPE (mm) of Baseline + Round

σ (px)
c

2 3 4 5 6 7 8 9 10

2 15.05 5.58 4.41 3.90 3.52 3.26 3.04 2.87 2.73
4 45.19 11.22 8.85 7.82 7.06 6.54 6.11 5.75 5.49
6 72.60 16.88 13.24 11.72 10.59 9.78 9.16 8.67 8.22
8 110.32 22.35 17.71 15.65 14.10 13.09 12.21 11.58 10.98
10 121.36 27.99 22.15 19.62 17.75 16.42 15.36 14.47 13.75
12 166.04 33.64 26.58 23.65 21.33 19.72 18.44 17.43 16.58
14 220.95 39.10 31.15 27.48 24.89 22.99 21.67 20.44 19.45
16 222.95 44.86 35.61 31.66 28.66 26.58 24.85 23.47 22.37
18 269.95 50.44 40.13 35.57 32.16 30.10 28.01 26.48 25.24
20 395.90 56.37 44.64 39.82 36.11 33.47 31.35 29.65 28.34

Table 4: Absolute MPJPE (mm) of Ours + Round

σ (px)
c

2 3 4 5 6 7 8 9 10

2 13.64 4.43 3.50 3.14 2.82 2.62 2.44 2.30 2.20
4 28.00 8.89 7.01 6.29 5.67 5.26 4.90 4.62 4.40
6 43.25 13.34 10.51 9.40 8.46 7.87 7.34 6.95 6.61
8 60.89 17.65 14.01 12.52 11.30 10.48 9.80 9.26 8.75
10 79.34 22.00 17.50 15.67 14.11 13.18 12.20 11.52 10.94
12 91.80 26.55 20.95 18.87 17.01 15.71 14.65 13.87 13.16
14 105.14 30.76 24.48 21.80 19.80 18.24 17.20 16.17 15.35
16 115.35 35.33 27.89 25.14 22.59 21.02 19.54 18.44 17.58
18 123.88 39.72 31.37 28.10 25.40 23.62 21.96 20.71 19.65
20 139.26 44.24 34.80 31.29 28.23 26.11 24.48 23.03 22.02

Table 5: Absolute MPJPE (mm) of Baseline + Half

σ (px)
c

2 3 4 5 6 7 8 9 10

2 8.45 5.91 4.83 4.17 3.75 3.43 3.19 2.98 2.82
4 16.86 11.86 9.63 8.39 7.48 6.92 6.36 5.98 5.62
6 25.25 17.73 14.51 12.58 11.30 10.32 9.57 8.93 8.45
8 33.82 23.67 19.33 16.72 15.05 13.81 12.81 12.01 11.28
10 42.29 29.63 24.23 21.01 18.88 17.28 16.06 14.99 14.21
12 50.50 35.59 29.16 25.25 22.71 20.79 19.36 18.14 17.06
14 59.21 41.53 33.88 29.55 26.51 24.31 22.63 21.34 20.17
16 67.58 47.50 38.94 33.94 30.37 27.93 26.04 24.35 23.17
18 76.17 53.56 43.97 38.44 34.43 31.64 29.42 27.60 26.08
20 84.48 59.56 48.82 42.67 38.27 35.32 32.81 30.86 29.07
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Table 6: Absolute MPJPE (mm) of Ours + Half

σ (px)
c

2 3 4 5 6 7 8 9 10

2 6.40 4.69 3.87 3.36 3.02 2.77 2.58 2.40 2.28
4 12.77 9.42 7.76 6.75 6.05 5.58 5.14 4.82 4.54
6 19.15 14.04 11.61 10.12 9.10 8.31 7.71 7.19 6.82
8 25.85 18.73 15.43 13.46 12.07 11.13 10.30 9.64 9.08
10 32.57 23.55 19.32 16.79 15.16 13.86 12.90 12.02 11.38
12 38.93 28.23 23.25 20.22 18.14 16.60 15.49 14.52 13.59
14 45.88 32.82 26.95 23.50 21.12 19.40 18.04 16.95 16.04
16 52.58 37.56 30.95 27.04 24.13 22.15 20.69 19.30 18.32
18 59.39 42.45 34.84 30.43 27.22 24.95 23.25 21.80 20.40
20 65.16 46.87 38.64 33.80 30.22 27.71 25.63 24.23 22.74

Table 7: Rate of cases our method outperforms Baseline (%) + Half

σ (px)
c

2 3 4 5 6 7 8 9 10

2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
6 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
8 99.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0
10 99.3 99.9 100.0 100.0 100.0 100.0 99.9 99.9 99.9
12 99.0 99.9 99.9 99.9 100.0 99.9 100.0 99.8 100.0
14 98.5 99.4 99.9 99.8 99.9 99.8 99.9 99.8 99.8
16 99.2 99.5 99.6 99.7 100.0 99.9 99.7 99.9 100.0
18 98.0 99.0 99.4 99.6 99.8 99.7 99.8 99.9 99.7
20 98.4 98.8 99.5 99.4 99.8 99.6 99.9 99.6 99.9

Table 8: Rate of cases our method outperforms Baseline (%) + Round

σ (px)
c

2 3 4 5 6 7 8 9 10

2 93.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
4 90.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
6 87.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
8 85.1 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
10 82.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
12 82.6 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
14 83.4 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0
16 85.1 98.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
18 84.9 98.8 99.9 99.9 100.0 100.0 100.0 100.0 100.0
20 85.6 99.1 100.0 99.8 100.0 100.0 100.0 100.0 100.0


	Supplementary Material for Structural Triangulation: A Closed-Form Solution to Constrained 3D Human Pose Estimation

