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I. Some details of Model

About SPGSN architectures. The entire SPGSN is constructed by cascaded
MPGSBs, where we note that all the MPGSBs use distinct parameters without
weight-sharing. The non-shared MPGSBs flexibly extract multi-level features to
enrich the representation, just like ResNet uses distinct residual blocks to learn
the hierarchical features.

Since the MPGSBs are formed in cascade, the input of the second MPGSB
is the output of the first MPGSB, H′, integrating the features from spatial
and spectrum domains. We use IDCT to transform the output features to the
predicted sequences.

About experimental scenarios. The coordinates of all the body-joints denote
the relative positions of distinct body-joints to a central joint (e.g. chest). In this
benchmark, all the studies target to predict the pure poses, regardless of the body
positions in a global space.

II. Protocol Modification of STSGCN

Published in ICCV 2021, STSGCN [9] is one of the practical algorithms of human
motion prediction, which leverages both spatial and temporal graph convolution
on the different network stages. According to the official codes5, however, the
experimental protocols have two main differences from most previous works [8,
4, 2, 3, 7, 5, 6], leading to their reported results having very different means:

• First, to evaluate the prediction performance at each timestamp, STSGCN
learns a specific and unique model; that is, STSGCN uses different pre-trained
models to generate poses at different timestamps such as 80ms and 160ms. How-
ever, most previous models use only one model to forecast the whole pose se-
quences directly and just calculate the errors at different timestamps based on

5 https://github.com/FraLuca/STSGCN
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(a) Human 3.6M. (b) CMU Mocap. (c) 3DPW.

Fig. 1. The body separation strategies on various datasets, where we color the bones
on upper bodies in green and the bones on lower bodies in blue.

the same model. The difference is that previous models generate one sequence
only once to achieve low errors at any timestamps, while STSGCN builds specific
models towards specific prediction timestamps, and the models are supervised
by the target sequences within the corresponding timestamps.

• Second, to present the MPJPE at each timestamp, previous methods di-
rectly calculate the instant errors at the corresponding timestamp. However, ac-
cording to the STSGCN’s test codes, at a certain timestamp, STSGCN presents
the average MPJPE before this timestamp instead of the instant one; that is,
the 1000ms-MPJPE reported by STSGCN is the average MPJPE across all the
prediction frames from the 0ms to the 1000ms.

To achieve a fair comparison, we modify the STSGCN codes to directly gen-
erate the whole sequence using only one model and reported the instant MPJPE
at each timestamp in our manuscript.

III. The Body Separation

Here we illustrate the body separation strategies on the three datasets: Human
3.6M, CMU Mocap and 3DPW. We show the decomposed upper bodies and
lower bodies in Fig. 1. We color the bones on the separated upper bodies in
green, and the bones on the lower bodies in blue. Different datasets show dif-
ferent predefined body structures, thus we should use specific body separation
strategies to obtain valid body-parts.

IV. Effects of the spectrum aggregation

To study the proposed graph spectrum aggregation, we first compare our method
to two common feature aggregation operations. First, directly averaging all
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Table 1. SPGSNs with different spectrum aggregation methods.

Average MAE

Model 80 160 320 400 560 1000

SPGSN (average) 10.54 22.48 47.73 58.91 79.20 112.14
SPGSN (self-att.) 10.82 22.79 47.65 59.13 79.61 114.08

SPGSN 10.44 22.33 47.07 58.26 77.40 109.64
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Fig. 2. Spectrum importance scores on different actions.

the channels; second, summing up channels with an inner-product-based inter-
channel self-attention. Table 1 presents the prediction results of SPGSN with
various aggregation methods on H3.6M. We see that, the proposed graph spec-
trum aggregation outperforms the two variants. Note that, the self-attention
mixes up various channels before aggregation but loses the spectrum diversity,
leading to larger errors.

Next, we visualize the learned spectrum importance of different actions. We
show the importance scores calculated by the last MPGSB on actions ‘Sitting’
and ‘Walking’; see Fig. 2, where the x-axis denotes the graph scattering branch
with different filter combinations. We see that, different actions lead to different
importance distributions. For ‘Sitting’, the poses show slow movements, thus
the low-pass features dominate the spectrum to stabilize pattern learning; for
‘Walking’, poses keep large movements, thus some high-frequency bands are
emphasized.

V. Feature Responses of the Adaptive Graph Scattering
Decomposition

To study the effects of the proposed adaptive graph scattering decomposition and
provide a more interpretable analysis, we consider showing the feature responses
of the adaptive graph scattering decomposition given the input motion sequence.
We select a sample of the action ’direction’, where the subject has a static body
torso as well as performs hand raising and leg swaying. Since each body joint
carries a DCT-formed multidimensional feature vector, we collect the second
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Pose sequence

Fig. 3. Feature responses after the proposed adaptive graph scattering decomposition
of a pose sequence of the action ’directions’.

DCT coefficients of all the joints as a graph signal, on which we perform the graph
scattering. The second DCT coefficients carry large values at the highly dynamic
joints but carry small values at relatively fixed joints, according to empirical
tests. Therefore, it is convenient to reflect on how much information about the
dynamic joints is preserved. Moreover, the selected graph signal also shows the
difference between nodes, which can reflect graph scattering extract the feature
at various graph spectral bands, and better demonstrate the performance of the
model.

The feature responses at each channel in each layer of the graph scattering
decomposition are visualized in Fig. 3. We crop a sub-tree of graph scattering
decomposition from the pre-trained model, where each non-leaf channel has only
two child branches instead of three child branches in the original model, for
clearer presentation. We use two filters at each non-leaf channel; that is h(0)(Ã),

a basic graph convolution, and h(1)(Ã), an adaptive graph wavelet; see Eq. (2) in
our manuscript. We also apply the feature transform parameterW and nonlinear
activation σ(·) at each channel. In Fig. 3, the amplitude of the graph signals is
plotted on the corresponding body-joints in the form of a histogram.

Fig. 3 reveals that, given the motion data with large signal values at moving
joints and small values at static joints, the graph convolution tends to aver-
age their features, close their difference and derive a smoother signal; especially
in H(0,0), the differences between the high-speed limbs and the fixed torso are
hardly reflected. This means that always using deep graph convolution will not
be able to accurately describe the characteristics of different body joints, and
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it is difficult to provide rich and detailed information for pattern recognition.
As for graph wavelet filtering, the difference between joints could be effectively
preserved; that is, in this sample, the graph wavelet filtering focuses on the high-
frequency information to push joints farther and magnify their gaps. Note that,
in the graph scattering, all the filtered channels covering both low-frequency
and high-frequency bands are important, since the large spectrum contains sig-
nificantly comprehensive information to promote pattern learning and motion
prediction.

VI. Effects of Skip-connections across the Model

Table 2 compares SPGSN with and without the skip-connections on the H3.6M
dataset. Skip-connections force to learn the feature displacements from observa-
tions to predictions, obtaining much smaller MPJPEs (especially in the short-
term prediction) than the model without skip-connections that directly generates
the poses.

VII. More Quantitative Results

Here we present the prediction results on all the contained actions in H3.6M and
CMUMocap for both short-term and long-term prediction. These results provide
sufficient information for a detailed comparison of the algorithm development in
future works.

First, we present the MPJPE of various models on H3.6M for short-term mo-
tion prediction, where the detailed results of any actions are shown in Table 3.
We see that, the proposed SPGSN with spatial and spectrum feature decomposi-
tion could effectively outperform baselines at most actions, as well as achieve the
best results in terms of the average prediction errors. Moreover, using the sep-
arated body parts could improve the prediction compared to the model variant
using only the whole body.

Also, we show the prediction MPJPEs on H3.6M for long-term motion pre-
diction, which are presented in Table 4. We see that, SPGSN obtains the effective
performance in long-term motion prediction, since SPGSN shows lower MPJPEs
on most actions as well as the lowest average MPJPE over all actions.

Finally, we present the MPJPEs of various methods on all the actions of
CMU Mocap; see Table 5. The experiment results also verify the effectiveness of
the proposed SPGSN.

Table 2. Prediction with/without using skip-connections.

Average MPJPE

millisecond 80 160 320 400 560 1000

No-skip 23.19 31.81 54.15 64.05 81.90 115.22
Skip 10.44 22.33 47.07 58.26 77.40 109.64
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Fig. 4. The generated motion sequence of ‘walking dog’ in H3.6M

VIII. More Qualitative Results

Besides the Figure 5 in our manuscript, here we illustrate the predicted samples
on the other action: walking dog, where we compare the proposed SPGSN to
previous CSM [4] and Traj-GCN [7]; see Figure 4. We see that, compared to
the baselines, SPGSN generates more precise and reasonable future poses that
are close to the ground truth in both short-term and long-term. For CSM, the
predicted motion shows large errors after the 360th ms; that is, the poses collapse
to static where the right feet (green) are always lifted; see the red box. As for
Traj-GCN, the generated poses keep static to lean to the left after the 720th ms;
see the orange box.
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Table 3. Prediction MPJPEs of various models for short-term motion prediction on
H3.6M and the average MPJPEs across all the actions.

Motion Walking Eating Smoking Discussion
millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res-sup [8] 29.36 50.82 76.03 81.52 16.84 30.60 56.92 68.65 22.96 42.64 70.24 83.68 32.94 61.18 90.92 96.19
CSM [4] 21.70 43.56 66.29 75.48 14.50 26.13 47.47 55.63 19.42 37.70 62.49 68.55 26.35 53.41 79.12 83.01

SkelNet [3] 20.49 34.36 59.64 68.76 11.80 22.38 39.88 48.11 11.33 23.71 45.30 52.85 21.79 40.24 65.93 77.91
DMGNN [5] 17.32 30.67 54.56 65.20 10.96 21.39 36.18 43.88 8.97 17.62 32.05 40.30 17.33 34.78 61.03 69.80
Traj-GCN [7] 12.29 23.03 39.77 46.12 8.36 16.90 33.19 40.70 7.94 16.24 31.90 38.90 12.50 27.40 58.51 71.68
HisRep [6] 10.53 19.96 34.88 42.05 7.39 15.53 31.26 38.58 7.17 14.54 28.83 35.67 10.89 25.19 56.15 69.30

MSR-GCN [1] 12.16 22.65 38.64 45.24 8.39 17.05 33.03 40.43 8.02 16.27 31.32 38.15 11.98 26.76 57.08 69.74
STSGCN* [9] 16.26 24.63 40.06 45.94 14.32 22.14 37.91 45.03 13.10 20.20 37.71 44.65 14.33 24.28 52.62 68.53

SPGSN (1body) 10.13 19.51 35.52 44.67 7.13 15.02 31.87 41.18 6.83 13.94 28.77 36.78 10.42 23.90 54.13 69.99
SPGSN 10.14 19.39 34.80 41.47 7.07 14.85 30.48 37.91 6.72 13.79 27.97 34.61 10.37 23.79 53.61 67.12

Motion Directions Greeting Phoning Posing
millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res-sup [8] 35.36 57.27 76.30 87.67 34.46 63.36 124.60 142.50 37.96 69.32 115.00 126.73 36.10 69.12 130.46 157.08
CSM [4] 27.07 44.72 63.94 75.37 28.63 60.69 119.25 139.92 25.66 40.13 63.06 78.01 22.02 40.34 93.65 119.32

SkelNet [3] 16.06 27.12 62.97 72.75 24.71 56.90 111.74 134.25 18.91 34.69 59.34 72.09 18.51 34.67 80.83 106.39
DMGNN [5] 13.14 24.62 64.68 81.86 23.30 50.32 107.30 132.10 12.47 25.77 48.08 58.29 15.27 29.27 71.54 96.65
Traj-GCN [7] 8.97 19.87 43.35 53.74 18.65 38.68 77.74 93.39 10.24 21.02 42.54 52.30 13.66 29.89 66.62 84.05
HisRep [6] 7.77 18.23 41.34 51.61 15.47 34.04 73.77 88.90 9.78 20.98 39.81 50.87 13.23 27.70 63.68 81.82

MSR-GCN [1] 8.61 19.65 43.28 53.82 16.48 36.95 77.32 93.38 10.10 20.74 41.51 51.26 12.79 29.38 66.95 85.01
STSGCN* [9] 14.24 24.27 44.24 53.21 15.02 30.70 67.11 87.63 14.88 21.40 46.55 52.03 15.01 25.69 58.38 73.08

SPGSN (1body) 7.38 17.48 40.54 53.09 15.16 33.61 71.89 88.74 8.78 18.50 39.85 51.53 10.92 25.46 61.38 78.87
SPGSN 7.35 17.15 39.80 50.25 14.64 32.59 70.64 86.44 8.67 18.32 38.73 48.46 10.73 25.31 59.91 76.46

Motion Purchases Sitting Sitting Down Taking Photo
millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res-sup [8] 36.33 60.30 86.53 95.92 42.55 81.40 134.70 151.78 47.28 85.95 145.75 168.86 26.10 47.61 81.40 94.73
CSM [4] 25.69 47.85 82.49 93.90 22.25 34.67 58.72 75.80 23.67 51.76 102.93 119.47 20.29 38.92 61.14 77.40

SkelNet [3] 21.04 40.59 79.97 88.66 15.55 28.70 49.35 62.87 17.64 38.88 85.30 101.71 15.74 32.83 48.62 63.90
DMGNN [5] 21.35 38.71 75.67 82.74 11.92 25.11 44.59 50.20 14.95 32.88 77.06 93.00 13.61 28.95 45.99 58.76
Traj-GCN [7] 15.60 32.78 65.72 79.25 10.62 21.90 46.33 57.91 16.14 31.12 61.47 75.46 9.88 20.89 44.95 56.58
HisRep [6] 14.63 32.81 65.18 78.27 10.21 20.36 43.68 53.62 15.54 29.97 59.31 72.25 9.09 20.10 44.60 55.72

MSR-GCN [1] 14.75 32.39 66.13 79.64 10.53 21.99 46.26 57.80 16.10 31.63 62.45 76.84 9.89 21.01 44.56 56.30
STSGCN* [9] 15.26 26.26 63.45 74.25 15.19 22.95 46.82 58.34 16.70 28.05 56.15 72.03 16.61 24.84 45.98 61.79

SPGSN (1body) 12.78 28.86 62.59 77.01 9.25 19.58 43.47 56.32 14.34 28.10 58.23 74.44 8.72 18.95 42.62 55.22
SPGSN 12.75 28.58 61.01 74.38 9.28 19.40 42.25 53.56 14.18 27.72 56.75 70.74 8.79 18.90 41.49 52.66

Motion Waiting Walking Dog Walking Together Average
millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res-sup [8] 30.62 57.82 106.22 121.45 64.18 102.10 141.07 164.35 26.79 50.07 80.16 92.23 34.66 61.97 101.08 115.49
CSM [4] 19.14 33.11 69.72 95.21 58.67 97.36 129.74 158.57 22.60 38.51 71.13 84.37 25.17 45.92 78.08 93.33

SkelNet [3] 16.31 29.90 63.86 84.59 54.61 93.23 124.12 155.79 19.01 32.40 63.35 73.18 20.23 38.04 69.35 84.25
DMGNN [5] 12.20 24.17 59.62 77.54 47.09 93.33 160.13 171.20 14.34 26.67 50.08 63.22 16.95 33.62 65.90 79.65
Traj-GCN [7] 11.43 23.99 50.06 61.48 23.39 46.17 83.47 95.96 10.47 21.04 38.47 45.19 12.68 26.06 52.27 63.51
HisRep [6] 10.58 23.75 49.30 60.26 21.77 43.38 78.53 90.21 9.88 19.51 35.91 42.60 11.60 24.40 49.75 60.78

MSR-GCN [1] 10.68 23.06 48.25 59.23 20.65 42.88 80.35 93.31 10.56 20.92 37.40 43.85 12.11 25.56 51.64 62.93
STSGCN* [9] 16.30 27.33 48.12 59.79 16.48 37.63 70.60 86.33 11.38 22.39 39.90 47.48 15.34 25.52 50.64 60.61

SPGSN (1body) 9.24 20.02 43.80 56.80 18.31 38.12 73.63 86.74 8.91 18.46 34.88 42.98 10.55 22.63 48.21 60.96
SPGSN 9.21 19.79 43.10 54.14 17.83 37.15 71.74 84.91 8.94 18.19 33.84 40.88 10.44 22.33 47.07 58.26
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Table 4. Prediction MPJPEs of methods for long-term prediction on H3.6M and the
average MPJPEs across all the actions.

Motion Walking Eating Smoking Discussion Directions Greeting Phoning Posing
millisecond 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k

Res-sup [8] 81.73 100.68 79.87 100.20 94.83 137.44 121.30 161.70 110.05 152.48 156.32 184.29 143.92 186.79 165.41 236.79
CSM [4] 78.04 94.58 72.14 96.87 66.61 89.80 108.20 142.13 97.80 132.82 151.50 175.37 83.46 127.55 137.72 210.90

SkelNet [3] 73.58 91.84 63.58 90.88 58.96 80.53 98.28 135.68 93.77 124.89 148.38 168.06 75.42 113.34 131.90 196.21
Traj-GCN [7] 54.05 59.75 53.39 77.75 50.74 72.62 91.61 121.53 71.01 101.79 113.87 145.19 69.55 104.19 114.52 171.10
DMGNN [5] 71.36 85.82 58.11 86.66 50.85 72.15 81.90 106.32 102.06 135.75 144.51 170.54 71.33 108.37 125.45 188.18
MSR-GCN [1] 52.72 63.05 52.54 77.11 49.45 71.64 88.59 117.59 71.18 100.59 116.24 147.23 68.28 104.36 116.26 174.33
STSGCN* [9] 57.64 66.74 58.46 75.08 55.55 74.13 84.20 107.74 75.61 109.89 79.32 103.75 79.19 109.88 80.82 107.58

SPGSN 46.89 53.59 49.76 73.39 46.68 68.62 89.68 118.55 70.05 100.52 110.98 143.21 66.70 102.52 110.34 165.39

Motion Purchases Sitting SittingDown TakingPhoto Waiting WalkingDog WalkingToge Average
millisecond 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k 560 1k

Res-sup [8] 119.36 176.92 166.20 185.16 197.09 223.58 107.03 162.38 126.70 153.14 173.61 202.31 94.51 110.48 129.19 164.96
CSM [4] 113.44 167.61 98.04 134.70 148.87 196.75 94.75 144.52 106.03 125.60 168.71 183.42 93.90 106.60 107.94 141.95

SkelNet [3] 109.51 155.72 84.76 127.11 125.89 184.24 86.43 130.41 90.49 112.02 166.65 176.79 79.07 99.25 99.11 132.46
Traj-GCN [7] 99.24 137.28 77.63 118.36 100.91 157.32 78.73 120.06 79.08 103.83 138.24 150.63 51.67 61.10 81.07 113.01
DMGNN [5] 104.86 146.09 75.51 115.44 118.04 174.05 78.38 123.65 85.54 113.68 183.20 210.17 70.46 86.93 93.57 127.62
MSR-GCN [1] 101.63 139.15 78.19 120.02 102.83 155.45 77.94 121.87 76.33 106.25 111.87 148.21 52.93 65.91 81.13 114.18
STSGCN* [9] 87.10 119.26 82.32 119.83 92.60 129.67 87.70 119.79 86.41 118.04 86.79 118.33 75.33 95.83 80.66 113.33

SPGSN 96.53 133.88 75.00 116.24 98.94 149.88 75.58 118.22 73.50 103.62 102.37 137.96 49.84 60.86 77.40 109.64

Table 5. Prediction MPJPEs of different methods on the 8 actions of CMU Mocap
for both short-term and long-term motion prediction. We also present the average
prediction results across all the actions.

Motion Basketball Basketball Signal Directing Traffic Jumping
millisecond 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Res-sup. [8] 15.45 26.88 43.51 49.23 88.73 20.17 32.98 42.75 44.65 60.57 20.52 40.58 75.38 90.36 153.12 26.85 48.07 93.50 108.90 162.84
DMGNN [5] 15.57 28.72 59.01 73.05 138.62 5.03 9.28 20.21 26.23 52.04 10.21 20.90 41.55 52.28 111.23 31.97 54.32 96.66 119.92 224.63
Traj-GCN [7] 11.68 21.26 40.99 50.78 97.99 3.33 6.25 13.58 17.98 54.00 6.92 13.69 30.30 39.97 114.16 17.18 32.37 60.12 72.55 127.41
MST-GCN [1] 10.28 18.94 37.68 47.03 86.96 3.03 5.68 12.35 16.26 47.91 5.92 12.09 28.36 38.04 111.04 14.99 28.66 55.86 69.05 124.79
STSGCN* [9] 12.56 23.04 41.92 50.33 94.17 4.72 6.69 14.53 17.88 49.52 6.41 12.38 29.05 38.86 109.42 17.52 31.48 58.74 72.06 127.40

SPGSN 10.24 18.54 38.22 48.68 89.58 2.91 5.25 11.31 15.01 47.31 5.52 11.16 25.48 37.06 108.14 14.93 28.16 56.72 71.16 125.20

Motion Running Soccer Walking Washing Window
millisecond 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000
Res-sup. [8] 25.76 48.91 88.19 100.80 158.19 17.75 31.30 52.55 61.40 107.37 44.35 76.66 126.83 151.43 194.33 22.84 44.71 86.78 104.68 202.73
DMGNN [5] 17.42 26.82 38.27 40.08 46.40 14.86 25.29 52.21 65.42 111.90 9.57 15.53 26.03 30.37 67.01 7.93 14.68 33.34 44.24 82.84
Traj-GCN [7] 14.53 24.20 37.44 41.10 51.73 13.33 24.00 43.77 53.20 108.26 6.62 10.74 17.40 20.35 34.41 5.96 11.62 24.77 31.63 66.85
MST-GCN [1] 12.84 20.42 30.58 34.42 48.03 10.92 19.50 37.05 46.38 99.32 6.31 10.30 17.64 21.12 39.70 5.49 11.07 25.05 32.51 71.30
STSGCN* [9] 16.70 27.58 36.15 36.42 55.34 13.49 25.24 39.87 51.58 109.63 7.18 10.99 17.84 22.61 44.12 6.79 12.10 24.92 36.66 69.48

SPGSN 10.75 16.67 26.07 30.08 52.92 10.86 18.99 35.05 45.16 99.51 6.32 10.21 16.34 20.19 34.83 4.86 9.44 21.50 28.37 65.08
Motion Average

millisecond 80 160 320 400 1000
Res-sup. [8] 24.21 43.75 76.19 88.93 139.00
DMGNN [5] 14.07 24.44 45.90 55.45 104.33
Traj-GCN [7] 9.94 18.02 33.55 40.95 81.85
MST-GCN [1] 8.72 15.83 30.57 38.10 79.01
STSGCN* [9] 10.80 18.19 31.18 41.05 81.76

SPGSN 8.30 14.80 28.64 36.96 77.82


