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1 The Effect of Training Schedules

In this section, we conduct experiments to show the effect of training schedules
on the Poseur’s performance, as shown in Tab. 1. In our paper, we use a longer
training schedule (i.e., 325 epochs in total) than other methods, e.g., RLE [2]
(270 epochs in total). In Tab. 1, we show that Poseur trained by 275 epochs or
250 epochs can also achieve impressive performance, which is only slightly lower
than the fully-trained one in our paper. Thus, a longer training schedule is not
the main reason for our superior performance.

Epoch APkp APkp
50 APkp

75 APkp
M APkp

L

150 74.1 90.1 81.3 67.4 76.8
175 74.6 90.2 81.7 67.9 77.2
200 74.8 90.3 81.7 68.0 77.6
225 75.0 90.3 81.8 68.2 77.8
250 75.2 90.7 82.3 68.4 78.0
275 75.3 90.3 82.3 68.5 78.2
300 75.4 90.4 82.6 68.6 78.4
325 75.5 90.7 82.7 68.7 78.3

Table 1: The effect of training schedules on the COCO val set

2 The Effect of Self-attention

In this section, we perform experiments to explore the effect of the self-attention
module in the Poseur decoder. As shown in Tab. 2, the performance drops sig-
nificantly from 75.5 AP to 74.0 AP when the self-attention module is removed
from the decoder. Thus, we conjecture that the self-attention module can ef-
fectively model the relationship between different keypoints, improving Poseur’s
performance.
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Ground Truth Mask R-CNN Ours

Fig. 1: Qualitative comparison
on truncations. Heatmap-based
methods (e.g.Mask R-CNN) can
only predict keypoints within
the bounding box, while Poseur
can predict keypoints outside the
bounding box

Fig. 2: Visualization of the self-
attention weights between keypoint
queries for left shoulder. Dots repre-
sent the keypoints. Lines depict atten-
tion weights between different joints.
Thicker line indicates larger attention
weight

Self-Attn. APkp APkp
50 APkp

75 APkp
M APkp

L

74.0 90.2 80.9 66.8 77.2
✓ 75.5 90.7 82.7 68.7 78.3

Table 2: The effect of self-attention module on the COCO val set

Share weight Param. APkp APkp
50 APkp

75 APkp
M APkp

L

32.3M 75.5 90.7 82.7 68.7 78.3
✓ 26.2M 75.0 90.3 81.9 68.0 77.7

Table 3: The parameter reduction technique on the COCO val set

Moreover, We also visualize the self-attention weights across queries in Fig. 2.
The left shoulder query attends to the most relevant keypoints, including left
elbow, left wrist and left ear.

3 Reducing the Number of Parameters

Former works, e.g. Deeppose [5] and RLE [3], use fully-connected layers as de-
coder to regress keypoints, while Poseur has a transformer-based decoder. As
the number of decoder layers increases, the model parameters increases rapidly,
which may limit the deployment of Poseur for real-time applications that run on
mobile devices.

In this section, we explore reducing the parameters of Poseur by sharing
weights between different decoder layers. As shown in Tab. 3, the number of pa-
rameters of Poseur is significantly reduced, while the performance of Poseur only
drops by 0.5 AP. Notably, the number of parameters of the backbone (ResNet-
50) is 23.5 M, which means Poseur with weight sharing only introduces 2.7 M
parameters.
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type GFLOPs (Dec.) APkp APkp
50 APkp

75 APkp
M APkp

L

MSDA 1.25 73.6 89.8 80.6 66.6 75.5
EMSDA 0.44 73.6 89.6 80.1 66.7 75.4

Table 4: Comparison between EMSDA and MSDA on the COCO val set.
“GFLOPs (Dec.)”: computatuional cost of the decoder

Method backbone GFLOPs FPS Mem. Consumption APkp

RLE HRNet-w32 7.1 62 1456M 74.3
Poseur R-50 4.6 94 1386M 75.4

Table 5: Comparison between RLE and Poseur on the COCO val set. “Mem.
Consumption”: memory consumption of one image during the training stage

4 Computational Cost of EMSDA

Let us denote the number of queries by K, and denote the number of pixels in
the input feature maps {xl}Ll=1 as P , and other notations follow our paper. The
complexity of MSDA can be written as O(KC2 + PC2 + 5KSC). Since P is
much larger than K, C and S (i.e., P = 4080 when the input image resolution
is 256 × 192 and the feature maps from Res2 to Res5 are taken as the input),
the computational cost mostly comes from the factor O(PC2). In our design, the
EMSDA module significantly reduces the complexity to O(KC2+KC2+5KSC),
where K ≪ P (17 vs. 4080). As shown in Tab. 4, the performance of EMSDA
is almost the same with that of MSDA, while EMSDA significantly reduces the
computational cost from 1.25 GFLOPs to 0.44 GFLOPs.

5 Comparing the Performance of Poseur and RLE

As shown in Tab. 5, Poseur with ResNet-50 backbone achieves higher perfor-
mance than RLE with HRNet-w32 backbone (75.4 AP vs. 74.3 AP), and has a
faster inference speed than RLE (94 FPS vs. 62 FPS). The memory consumption
of Poseur during the training is lower then that of RLE (1386 M vs. 1456 M).
Although the memory consumption of Poseur during the testing is sightly higher
than that of RLE (86.25 M vs. 68.12 M), the memory consumption of the whole
system during the test (human detector and pose estimator) is exactly the same
(∼ 2000 M) for most of methods in Tab.10 of the paper, including both Poseur
and RLE.

6 Verifying the Effect of Keypoint Encoder and Query
Decoder in Poseur

Compared to RLE [3], the proposed keypoint encoder and query decoder (with-
out uncertainty estimation) can boost the performance by 3.8 AP on COCO [4].
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This ablation study is performed with ResNet-50 [1]; all the settings are strictly
aligned.

7 The Explanation of the Positional Encoding in
Keypoint Encoder

Positional encoding in the proposed keypoint encoder transforms the coarse pro-
posal µ̂f ∈ RK×2 from the x-y coordinates to the sine-cosine positional embed-
ding. Denote an element in µ̂f as pos, which is normalized to [0, 2π], The po-

sitional encoding function can be written as PE(pos, 2i) = sin(pos/100002i/d);
PE(pos, 2i+ 1) = cos(pos/100002i/d), where d = 128, 2i and 2i+ 1 are the 2ith

and (2i + 1)th dimension. In this way, a pair of x-y coordinates is transferred
to two positional embeddings representing x and y axis respectively, which are
concatenated to be the final encodings µ̂∗

f ∈ RK×256.

8 Robustness to Truncation

Truncation is very common in real world scenes. We conduct qualitative visual-
ization to show the superiority of our method. As depicted in Fig. 1, heatmap-
based Mask R-CNN can only detect the joints inside the predicted boxes, while
our method can infer the joints outside the boxes since the queries can attend
to the whole input image.
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