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1 Introduction

This document provides additional details and qualitative results to supplement
the main paper. Section 2 provides more details about the PressureVisionDB
dataset. Section 3 gives more details about training PressureVisionNet, and Sec-
tion 4 provides further results.

2 PressureVisionDB Details

2.1 Table of Actions

During data collection of PressureVisionDB, participants complete a list of ac-
tions once for one hand, then repeat for the other hand. These actions are listed
in Table 3.

2.2 Data Sampling Rate

Data from four OptiTrack Prime Color cameras is captured at 1080p resolution
at 60 Hz, and 185x105 pressure images are collected from the Sensel Morph at
approximately 115 Hz. Due to the large size of the dataset, the data is subsam-
pled to 15 Hz for all experiments.

2.3 Lighting Combinations

The capture setup used during the collection of PressureVisionDB includes four
RGB cameras and three light sources: “left”, “center”, and “right” (see Figure
1). Figure 2 shows images captured from each camera for each lighting condition.
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Fig. 1. The top of the capture setup includes four OptiTrack Prime Color cameras and
three OptiTrack eStrobe light sources. The light sources can be turned on or off in any
combination.

3 PressureVisionNet Details

PressureVisionNet was implemented using the PyTorch library [5] and used the
SE-ResNeXt50 encoder [2,3,7] and FPN decoder [4] implementations from the
segmentation-models-pytorch project [8]. The encoder network weights are ini-
tialized from pretraining on ImageNet [1], while the decoder weights are ran-
domly initialized.

PressureVisionNet is optimized with the Adam optimizer with a batch size
of 8. The network is trained with a learning rate of 1e − 3 for 100k iterations,
then with a learning rate of 1e− 4 for 500k iterations. No data augmentation is
performed during training.

3.1 Input Images

Images are cropped to include a 50-pixel border around the pressure sensor, and
are resized to 480x384 pixels for the network. During experiments with reduced
image quality (Section 4.3), images are first downsampled, then upsampled, such
that the network architecture may remain constant.

The pressure image from the pressure sensor is warped into image space using
a homography transform.

4 Further PressureVisionNet Results

4.1 Qualitative Results

Further results from PressureVisionNet are included in Figures 3-8. These results
are randomly selected from frames in the test set. As there a large number of
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frames where the hand is not present or is not near the object, frames with no
ground truth pressure are not shown.

4.2 Temporal PressureVisionNet

Motion can be useful for machine perception of human activities [6]. To evaluate
if motion provides salient cues for visual hand pressure estimation, we extend our
base model to incorporate temporal information. The PressureVisionNet (PV-
Net) structure is modified by concatenating the encoded features from multiple
frames before the decoder module. The encoder networks have tied weights.
The network was trained and tested on sequences of 4 frames, 0.2 sec apart. As
expected, this temporal network outperforms our base model (Table 1). However,
due to the ease of use and similar performance of the single-frame model, we focus
on this for all experiments. Notably, the single-frame model may still leverage
some motion cues by perceiving motion blur present in our RGB images.

Table 1. A version of PressureVisionNet incorporating temporal information slightly
outperforms our single-frame model.

Method Frames Temporal Acc Contact IoU Vol. IoU MAE

PV-Net 1 96.2% 55.8% 41.3% 39.9 Pa

PV-Net-Temporal 4 96.8% 56.6% 43.1% 39.4 Pa

4.3 Degraded Imagery

We also evaluated the performance of our network trained and tested with de-
graded images (Table 2). PressureVisionNet uses 480x384 images around the con-
tact surface, captured in a controlled, well-lit setting. We show the performance
of a model trained and tested with monochrome images. The drop in Volumetric
IoU performance suggests that the model uses color when inferring pressure, but
other information is sufficient for contact estimation. We also evaluated models
trained and tested with lower resolution images. There was a modest drop in
performance until the resolution went below 120x96 pixels. This suggests that
our approach may be applicable to images captured in a less controlled setting
in which hands occupy a smaller part of the image.
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Table 2. Performance decreases slowly as resolution decreases. Evaluating on
monochrome images shows a reduction in Volumetric IoU.

Method Temporal Acc Contact IoU Volumetric IoU MAE

Zero Guesser 53.7% 0.0% 0.0% 51.9 Pa

RGB-15x12 78.9% 17.6% 11.7% 55.0 Pa

RGB-30x24 91.4% 38.5% 28.0% 49.6 Pa

RGB-60x48 94.9% 50.5% 36.2% 45.5 Pa

RGB-120x96 95.8% 53.6% 39.5% 42.8 Pa

RGB-240x192 95.9% 54.2% 39.3% 40.2 Pa

Mono-480x384 96.1% 53.2% 37.7% 40.9 Pa

PressureVisionNet
RGB-480x384

96.2% 55.8% 41.3% 39.9 Pa
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Fig. 2. Data is captured with four cameras. Three lights are turned on and off to create
seven lighting conditions.
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Table 3. The list of actions executed for each hand during the collection of PressureVi-
sionDB. For actions where the force level is given, the participant is prompted to apply
the specified amount of force. For actions where it is not specified, the participant may
apply any force level.

Action name Repetitions Force Level

Calibration routine 1 -

Press index finger 5 Low

Press index finger 5 High

Press index finger 5 No Contact

Index finger, pull towards 5 -

Index finger, push left 5 -

Index finger, push away 5 -

Index finger, push right 5 -

Press palm 5 Low

Press palm 5 High

Press palm 5 No Contact

Press palm and fingers 5 Low

Press palm and fingers 5 High

Press palm and fingers 5 No Contact

Press fingers 5 Low

Press fingers 5 High

Press fingers 5 No Contact

Press finger one by one, flat 3 Low

Press finger one by one, flat 3 High

Press finger one by one, cupped 3 Low

Press finger one by one, cupped 3 High

Fingertips down, push away 5 -

Fingertips down, pull towards 5 -

Grasp edge, thumb down, uncurled fingers 5 -

Grasp edge, thumb up, uncurled fingers 5 -

Grasp edge, thumb down, curled fingers 5 -

Grasp edge, thumb up, curled fingers 5 -

Pinch, thumb down 5 Low

Pinch, thumb down 5 High

Pinch, thumb down 5 No contact

Pinch, thumb up 5 Low

Pinch, thumb up 5 High

Pinch, thumb up 5 No contact

Draw word 5 -

Pinch-zoom 5 -
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Fig. 3.Qualitative results randomly selected from the test set. Only frames with ground
truth pressure are shown.
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Fig. 4.Qualitative results randomly selected from the test set. Only frames with ground
truth pressure are shown.
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Fig. 5.Qualitative results randomly selected from the test set. Only frames with ground
truth pressure are shown.
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Fig. 6.Qualitative results randomly selected from the test set. Only frames with ground
truth pressure are shown.
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Fig. 7.Qualitative results randomly selected from the test set. Only frames with ground
truth pressure are shown.
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Fig. 8.Qualitative results randomly selected from the test set. Only frames with ground
truth pressure are shown.
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