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Abstract. Predicting the object’s 6D pose from a single RGB image
is a fundamental computer vision task. Generally, the distance between
transformed object vertices is employed as an objective function for pose
estimation methods. However, projective geometry in the camera space
is not considered in those methods and causes performance degradation.
In this regard, we propose a new pose estimation system based on a
projective grid instead of object vertices. Our pose estimation method,
dynamic projective spatial transformer network (DProST), localizes the
region of interest grid on the rays in camera space and transforms the
grid to object space by estimated pose. The transformed grid is used as
both a sampling grid and a new criterion of the estimated pose. Addi-
tionally, because DProST does not require object vertices, our method
can be used in a mesh-less setting by replacing the mesh with a recon-
structed feature. Experimental results show that mesh-less DProST out-
performs the state-of-the-art mesh-based methods on the LINEMOD and
LINEMOD-OCCLUSION dataset, and shows competitive performance
on the YCBV dataset with mesh data. The source code is available at
https://github.com/parkjaewoo0611/DProST.

Keywords: 6D Pose Estimation; Spatial Transformer Network; 3D Re-
construction

1 Introduction

Single image object pose estimation attempts to predict the transformation from
the object space to the camera space based on an observed RGB image. Because
the transformation can be expressed as rotation and translation, each having
three degrees of freedom (DoF), it is also called the 6-DoF pose estimation.
Finding the pose is commonly required in augmented reality (AR) [23], robot
grasping problems [6, 38,39,46], and autonomous driving [4, 43].

Recently, deep learning-based methods have shown outstanding performance
in complex computer vision problems. Therefore, researchers have proposed
methods for applying deep learning to the object pose estimation problem with
great performance [2,8,14,15,19,21,22,26,28,31,32,37,40,41]. Some of these state-
of-the-art methods use the point matching (PM) loss for pose estimation [19,21].
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Fig. 1. Key idea and perspective effect: (a) Point matching loss is based on the
distance between object vertices in camera space. The estimated pose is represented
by T , while the ground-truth pose is denoted by T̄ . (b) Grid matching loss is based
on the distance between cone-beam grid in object space. The region of interest grid is
localized in camera space and transformed to object space by inverse transformation
T−1. We colorize the grid in blue and brown for each prediction and ground-truth. (c)
The superimposed examples of each perspective and orthographic projection visualize
the shape variance due to projective geometry.

In particular, they used the pair-wise distance of the transformed object vertices
by predicted pose and ground-truth pose in camera space. The PM loss is a trivial
approach in the camera space. However, although the PM-based methods assume
the camera’s focal length and principal point available, the perspective effect is
ignored because they only consider the vertices on the rigid object as shown in
Fig. 1(a). Consequently, the perspective effect is treated as a noisy shape vari-
ance as shown in Fig. 1(c) that degrades the pose estimation performance. On
the other hand, image-space representation based methods [5, 22, 28, 29, 31, 41]
may learn the perspective effect implicitly by the projected image. However, they
also fail to address the projective geometry in their loss function and suffer from
z-direction translation error because of 3D information loss.

Meanwhile, projective spatial transformer (ProST) network has been pro-
posed in [9], which first considered the projective geometry in spatial trans-
former network [17] to reflect the perspective effect. As the target of ProST is
CT/radiograph registration, it dealt with only the limited camera pose, where
the distance from the camera to the view frustum is fixed. However, since the
region-of-interest (RoI) on camera space is vastly distributed in the object pose
estimation, the ProST approach is not directly applicable because of memory
and computation issues. In other words, to apply ProST on the object pose
estimation, dynamically focusing the grid on the localized RoI is necessary.

In this regard, we propose a dynamic projective spatial transformer network
(DProST) that estimates object pose based on the localized RoI cone-beam
grid covering the object in object space. This grid leverages the 3D information
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while considering the projective geometry, as shown in Fig. 1(b). Additionally,
we propose the grid distance (GD) loss and the grid matching (GM) loss to train
the model based on grid correspondence. The grid-based approach has four ma-
jor advantages. First, the shape of the cone-beam grid reflects the projective
geometry. Second, because the grid has 3D coordinates, grid matching shows
accurate z-axis translation estimation. Third, because the grid is uniformly dis-
tributed, it is relatively free from the object shape biases. Finally, since it does
not use object vertices, it can be applied in mesh-less settings and shows excel-
lent performance even with a simple space carving-based voxel feature instead
of mesh. We confirm that our method shows state-of-the-art performance in
LINEMOD [12], LINEMOD-OCCLUSION [1], and comparable performance in
YCBV [42] datasets.

Our contributions are summarized as follows:

– We propose DProST based on a localized grid in the object space for pose
estimation.

– We propose GM loss and GD loss considering projective geometry.
– We confirm that our method can be used in a mesh-less environment based on

space-carving feature that was extracted from reference images and masks.
– We confirm that our method shows state-of-the-art performance on LINEMOD,

LINEMOD-OCCLUSION, and competitive performance on YCBV bench-
marks.

2 Related Work

Recently proposed deep learning-based single image object pose estimation meth-
ods can be divided into three types. The first is to estimate the 3D intermediate
representation and then find the matching pose using the perspective-n-point
(PnP) algorithm [20]. For example, [15, 32] used the corners of a 3D bounding
box, [31,37] detected projected 3D keypoints of an object, and [28] used 2D-3D
coordinates to train the network.

The second type used gradient updates to minimize the difference between
latent features or projected texture. For example, [5,16] updated the pose by min-
imizing the difference between 2D reconstruction result and the observed image.
Furthermore, as sophisticated novel view synthesis methods like [24, 25, 36] are
proposed, pose estimation methods based on 3D view projection such as [27,44]
are also suggested, which also use the gradient update over the view projection
models. In particular, [27] shows both RGB-based and RGBD-based results,
and considers mesh-less unseen object scenario. However, view projection-based
methods require a lot of computation overhead to learn the 3D feature. Addition-
ally, although an unseen and mesh-less scenario in [27] has great generalizability,
it is not as accurate as the state-of-the-art methods based on mesh-based seen
object. Considering the pros and cons of the above-referenced methods, to im-
prove the generalizability without compromising the performance, we focus on
mesh-less seen object scenario by replacing the mesh with the reference feature.
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Fig. 2. Overview of DProST: Space carving extracts a reference feature from im-
ages and masks. Given the reference feature and detected object, the object’s pose is
iteratively refined by DProST. Grid generator converts the pose to the object space
grid visualized in red dots. The projector outputs estimated appearance based on the
grid and the reference feature. Then, the pose estimator refines the pose based on ap-
pearance. Grid is also used as a comparison target for GM loss during the training
phase.

Additionally, to reduce the computation overhead of 3D reconstruction, we use
a simple space-carving method instead of a deep learning model.

The last type directly estimates the pose from the network. For example,
[8, 22, 40, 45] proposed a learning method to use both 2D-3D coordinate repre-
sentation and direct pose regression. [21] used the rendered object image and
the observed object image as inputs to iteratively refine the pose. Also, in this
method, the disentangled representation of rotation and translation greatly im-
proved the performance. Based on an iterative fashion and disentangled repre-
sentation similar to [21], the single view method in [19] showed the most superior
performance in the object pose estimation challenge [13] using a large synthetic
image dataset. However, because these methods are based on point matching
loss, they fail to address the projective geometry in objective function. We com-
bine the iterative pose refining configuration with ProST [9] to consider both
projective geometry and the performance.

3 Method

3.1 Framework Overview

The overall process of DProST is shown in Fig. 2. We follow the zoom-in setting
used in [19, 21, 22]. Hence, the off-the-shelf detector is first used to find the
bounding box area of the object IB from the overall image I, where the bounding
box is B = (x, y, w, h).

Then, the space-carving-based reconstruction stage generates a reference
feature F in the object space’s unit sphere based on the reference set R ={(

IRk ,MR
k , T̄R

k ,KR
k

)
|k ∈

[
1, NR]}

consists ofNR tuples of images IRk and masks
MR

k with known poses T̄R
k and intrinsic matrices KR

k sampled from training set,
which can be written as

F = fcarv(R). (1)
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Fig. 3. Substeps in grid generator: (a) The grid inside a unit sphere is generated in
camera space on the ray to the 3D image plane. (b) The RoI grid is extracted based on
the bounding box. (c) The grid is pushed by ∥t∥2 along the ray to cover the object in
camera space. (d) The grid is transformed by T−1 from camera space to object space.

We will discuss the details about the reconstruction stage in Section 3.3.
Subsequently, we iteratively refine the initial pose T0 based on the F and IB .

Each pose refinement iteration i consists of three submodules. First, based on a
bounding box B, object pose Ti = {Ri, ti}, and intrinsic camera parameter K,
grid generator extracts a localized RoI grid as

Gobj
i = fgrid(B, Ti,K) (2)

on the rays from the camera to the image plane in object space. Grid generator
is composed of four sub-steps, grid forming, grid cropping, grid pushing, and
grid transformation, and we will discuss the details of each step in Section 3.2.

The projector renders object appearance Xi of each iteration by sampling
features from F based on Gobj

i that can be written as

Xi = fproj(Gobj
i ,F). (3)

The projection stage plays a similar role to mesh rendering in [19,21]. It can also
be replaced with mesh rendering methods when the reference pose is not diverse
enough to carve the object shape in the reconstruction stage.

Finally, to refine the pose, the pose estimator network of the i-th iteration
with parameter θi predicts the relative pose ∆Ti between Xi and IB as

∆Ti = fθi(Xi, IB). (4)

The details of the projection stage and pose estimator are discussed in Section
3.4. Finally, we will address the overall objective function in Section 3.5.

3.2 Object Space Grid Generator

Grid generator in DProST converts the given intrinsic matrix (K), object pose
(T ), and bounding box (B) to the RoI grid in object space (Gobj). Two key ideas
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are used for RoI grid localization. First, as the object’s projection is included
in the bounding box, the object in camera space is in the ray’s direction, which
passes through the bounding box area. Second, the distance to the object is the
size of the translation vector in object pose.

Grid Forming: We first generate the grid on the rays from the camera (origin)
to the image plane pixel’s 3D location I ∈ RH×W×3 in the camera space and
match the principal point to (0, 0,−f) as shown in Fig. 3(a). The initialized grid
with the given the focal length f and principal point p = (px, py) can be written
as follows:

I (l,m) = (l − px,m− py,−f), (5)

Gform (l,m, n) =
I (l,m)

∥I (l,m) ∥2

(
2n

Nz
− 1

)
, (6)

where (l,m) is the (x, y) index of a pixel in I, the Gform ∈ RH×W×Nz×3 is formed
grid, Nz is the number of points in the grid on each ray, and n ∈ [0, Nz − 1] is
the index of the points on each ray, respectively.

Grid Cropping: Bounding box is used as a direction indicator from camera
to object in camera space. As shown in Fig. 3(b), we used the RoI align [10]
method to extract the grid on the rays that are projected into the bounding box
B = (x, y, w, h) to focus the grid near the object, which can be written as

Gcrop = RoIAlign
(
Gform, B

)
, (7)

where Gcrop ∈ Rh×w×Nz×3 is the extracted RoI grid.

Grid Pushing: We then push the grid on the rays as much as the distance to
object ∥t∥2 towards the I to cover the object in camera space, as shown in Fig.
3(c), which can be written as

Gpush =
{
g − ∥t∥2

g

∥g∥2
sign ((g)z) |g ∈ Gcrop (l,m, n)}, (8)

where Gpush ∈ Rh×w×Nz×3 is the pushed grid in camera space, and the sign
function is used to invert the pushing direction of grid in +Z to −Z direction.

Grid Transformation: Finally, to cover the F in object space with the grid,
as shown in Fig. 3(d), we transform the pushed grid from camera space to object
space with inverse of pose transformation as

Gobj = T−1
(
Gpush

)
, (9)

where Gobj ∈ Rh×w×Nz×3 is the RoI grid that tightly wraps around the F . Note
that unlike point matching-based and render-and-compare-based methods [19,
21], which require transformation twice for each loss computation and rendering,
Gobj can be used for both grid sampling in projector and loss function in our
method.
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Fig. 4. 3D Feature reconstruction: We visualize the object shaping and coloring
process of generating reference feature. (a) Only the voxels projected into each reference
object mask remain positive, while others are cut off. (b) The values in reference images
are averaged to extract the RGB value of reference voxels.

3.3 3D Feature Reconstruction

In this section, we present a non-learning-required and a simple space-carving-
based reference feature generation method. To generate the reference feature
F in the unit sphere of the object space, we use pose-known reference images
{Xk|k ∈ [1, NR]} and corresponding masks {Mk|k ∈ [1, NR]} sampled from the
training set. The reference quality is improved when the various views and fine
details are included. Hence, we set the first reference image as the sample with
the largest object mask in the training set. Then, based on the geodesic distance
of the rotation matrix, we use the farthest point sampling (FPS) algorithm in [31]
to select the other reference images. We generate a 3D canvas as a normalized
voxel grid A ∈ RS×S×S×3, which is divided uniformly into S3 voxels, and each
contains the coordinates of itself. Then, for each reference mask and image, A
is projected with the given K and the pose of the k-th reference T̄ k to find the
region where the canvas grid is projected. Hence, we assign the projected canvas
location in Ak as

Ak = π
(
T̄ k (A) ,K

)
, (10)

where π(p,K) represents the projection of the point p with the intrinsic matrix
K in the pinhole camera model. Then, using Ak as a grid, we apply the grid sam-
pling method proposed in [17] to generate a 3D RGB feature X k ∈ RS×S×S×3

from Xk and a 3D mask feature Mk ∈ RS×S×S×1 from Mk as follows:

X k = Xk
((

ak
)
x
,
(
ak

)
y

)
, (11)

Mk = Mk
((

ak
)
x
,
(
ak

)
y

)
, (12)

where
(
ak

)
x
and

(
ak

)
y
are (x, y) coordinates in Ak. Note that we use nearest-

neighbor interpolation to extract values from non-integer locations. Then, we
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average the X k∈[1,NR]’s to obtain the integrated 3D RGB feature X , and multiply

Mk∈[1,NR]’s to get the shape-carved 3D mask featureM. Finally, the 3D features
of the object are calculated as

F = M⊙X , (13)

where F ∈ RS×S×S×3 is an RGB 3D feature with a carved shape with the
object information in voxel fashion, and ⊙ is an element-wise multiplication.
The concept of carving process is visualized in Fig. 4.

3.4 Projector and Pose Estimator

With the Gobj obtained from grid generator and the reference feature F , we
apply the grid sampling [9], which can be written as

F interp = interp(F ,Gobj), (14)

where F interp ∈ Rh×w×Nz×3 is the sampled feature of the object and interp is
the trilinear interpolation-based grid sampling function.

Then, to compare the estimated pose and IB , we project F interp into a 2D
feature F ∈ Rh×w×3 by choosing the closest valid point to the camera on each
ray as

F = F interp
(
l,m,min

n
{δ (l,m)}

)
, (15)

where δ (l,m) = {n|F interp (l,m, n) ̸= 0}.
For each iteration i, we use a ResNet34 [11] based pose estimator to refine

the pose Ti−1 to Ti to match the projected reference Fi−1 to the detected object
image IB . The last layer of ResNet34 is replaced with a fully connected layer that
outputs nine values, each of which is image space translation, scale factor, and
two axis-based relative rotation representation as in [19]. See the supplementary
materials for more details about the pose estimator’s output format.

3.5 Objective Functions

Instead of PM loss based on the mesh vertices of the object, we propose GM loss
for mesh-less training. For each iteration i, we use the Euclidean distance of the
object space grid as the GM loss, which can be written as

LGM
i =

1

|Gobj
i |

∑∥∥∥Ḡobj − Gobj
i

∥∥∥
2
, (16)

where |Gobj
i | is the number of points in the grid, Ḡobj is a grid from the ground-

truth pose T̄ , and Gobj
i is the predicted object space grid. Note that, as the

DProST module is based on fully differentiable operations, the i-th GM loss is
used as an objective function for the i-th pose estimator, as shown in Fig. 2.
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Additionally, to help the pose estimator determine the distance from the
camera to the object in the grid pushing step, we use an auxiliary loss called
GD loss as

LGD
i =

∥∥∥t̄∥2 − ∥ti∥2
∥∥
1
, (17)

which is the absolute difference between the predicted distance and ground-truth
distance in the grid pushing step.

Finally, the overall loss Li for training our network on each iteration i is the
combination of the above two losses as

Li = LGM
i + λGDLGD

i , (18)

where λGD is the balance factor. The Li is applied to outputs of each iterations’
pose estimator.

4 Experiments

4.1 Datasets and Evaluation Metrics

The performance is tested on LINEMOD (LM) [12], LINEMOD-OCCLUSION
(LMO) [1], and YCB-video (YCBV) dataset [42]. The LM consists of 13 objects
with approximately 1.2K images per object. We follow the settings described
in [2], which uses 15% of the data for training and the rest for testing. The
LMO dataset is a subset of the LM dataset consisting of eight objects in more
cluttered scenes. The YCBV dataset consists of 21 objects with between 10k
and 20k real images per object. The YCBV dataset is very hard compared to
the LM dataset because of the hard occluded samples. Also, the views in YCBV
dataset are not as various as the LM dataset. We used the official pbr dataset
from the BOP challenge [13] in training along with the real image training set.
For the LM dataset, we also report the performance trained on the synthetic
training dataset introduced from [21].

The ADD(-S) score [12] is used to measure the performance, which is the
most widely employed metric in the object pose estimation [16,21,37,37,40,42].
In particular, we use the ADD score for non-symmetric objects, which computes
the pair-wise distance of vertices transformed by the predicted pose and ground-
truth pose. And we use the ADD-S score for symmetric objects, which measures
the nearest distance of transformed vertices by predicted pose and ground-truth
pose. The predicted pose is considered correct if the mean distance is less than
the threshold ratio thr of the object diameter in the ADD(-S)thr metric. The
area-under-curve of the ADD(-S) metric [42] is additionally used for the YCBV
dataset.

We also compare the projection error Proj2D [21], which measures the pixel-
level discrepancy of the projected vertices in the image space.
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4.2 Experiment Setup

Implementation Details. Our pipeline is implemented based on the Pytorch
[30] and Pytorch3d [33] framework. We used the ADAM optimizer [18] with
a learning rate of 0.0001. Because the number of real training images is much
smaller than the number of synthetic training images, we construct half of each
mini-batch from real images and the other half from synthetic images to focus
on the real dataset. The pose estimator is trained for 3,000 epochs based on the
real dataset, and we divide the learning rate by ten on the 2,000th epoch for the
LM and LMO dataset. Similarly, we train on the YCBV dataset for 300 epochs
and divide the learning rate on the 200th epoch.

The pretrained ResNet34 [11] on ImageNet [7] is used as the backbone of the
pose estimator. To prevent the object from being out of sight in the initial pose,
we set the initial translation vector to fit the projection of the 3D reference
feature into the bounding box with the identity matrix as the initial pose’s
rotation as implemented in [19]. For more details about the initial pose, check
the supplementary materials. Additionally, we use distinct weights for the pose
estimator in each iteration to teach the models to work in a cascade fashion [3],
that shows better performance than that of iterative models. We use λGD = 1
in Equation (18).

In the reconstruction stage, we use eight reference images (NR = 8) to
generate reference features for each object and the number of voxels along the
axis is 128 (S = 128) because we used a 128 × 128 image size for the pose
estimator. In the grid generator, 64-grid points (Nz = 64) per ray are used and
confirmed that the quality of the projection is saturated when Nz is greater than
64. Details about hyperparameter experiments are given in the ablation study.

Object Zoom-In. We zoom in [19, 21, 22, 40] the detected object to a fixed
size 128 × 128, while keeping the aspect ratio of the image. In particular, we
follow the dynamic zoom-in setting suggested in [22], where noisy ground-truth
bounding boxes are used in the training phase and off-the-shelf detectors [34,35]
are used in the test phase.

4.3 Comparison with the State-of-the-Art

Table 1 presents the results on the LM dataset. As shown in the table, our
method shows state-of-the-art accuracy on the LM dataset even without mesh
data. Compared to a point matching-based method [21], which uses mesh ver-
tices, our method shows more accurate results for almost every object.

Also, the accuracy of the LMO dataset is described in Table 2, and our
method shows state-of-the-art performance. Some qualitative results on the LMO
dataset are shown in Fig. 5. The figure shows that even the low-quality texture
reference from the simple space-carving is enough for most samples.

However, we confirm that the reference feature-based projection is vulnerable
to some conditions. For example, when the overall training view is similar, such
as a video-based training set, or when majority of the samples are occluded,
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Table 1. Results on the LM dataset. A comparison of other baseline methods and
our method in terms of the ADD(-S)0.1d score. Objects annotated with (∗) indicate
symmetric pose ambiguity. A.O represents a pose estimator trained on all objects.

Method
PoseCNN

[42]
DeepIM
[21]

HybridPose
[37]

GDR-Net
[40]

SO-Pose
[8]

RePOSE
[16]

DProST DProST DProST DProST

w/ Mesh w/o Mesh

A.O ✓ ✓ ✓ ✓ ✓ ✓
Training

Set
real
+syn

real
+syn

real
+syn

real
+syn

real
+syn

real
+syn

real
+syn

real
+syn

real
+pbr

real
+pbr

ape - 77.0 77.6 - - 79.5 91.4 91.5 91.1 91.6
benchwise - 97.5 99.6 - - 100.0 100.0 99.9 100.0 99.7

cam - 93.5 95.9 - - 99.2 98.8 98.4 99.1 98.2
can - 96.5 93.6 - - 99.8 99.5 99.5 99.9 99.6
cat - 82.1 93.5 - - 97.9 98.0 98.1 97.9 98.2

driller - 95.0 97.2 - - 99.0 99.5 97.0 99.2 98.4
duck - 77.7 87.0 - - 80.3 88.5 91.0 89.2 90.8

eggbox* - 97.1 99.6 - - 100.0 99.9 99.8 100.0 99.8
glue* - 99.4 98.7 - - 98.3 99.8 100.0 100.0 99.9

holepuncher - 52.8 92.5 - - 96.9 97.0 97.0 96.4 97.6
iron - 98.3 98.1 - - 100.0 99.5 98.8 100.0 99.1
lamp - 97.5 96.9 - - 99.8 99.6 99.7 100.0 99.8
phone - 87.7 98.3 - - 98.9 95.8 98.2 97.4 97.7

Average 62.7 88.6 94.5 93.7 96.0 96.1 97.5 97.6 97.7 97.7

the shape of the reference quality is degraded. Because the YCBV has these
characteristics, our reconstruction module fails to generate a plausible shape of
the reference feature of some objects as shown in Fig. 6(a), therefore we used the
mesh-based renderer in pytorch3d instead of our projector in the YCBV dataset.
As stated in Table 3, our model shows comparable performance to other state-of-
the-art methods on the YCBV dataset. We also visualize some qualitative results
of the YCBV dataset in Fig. 6(b). More qualitative results and comparisons with
the other state-of-the-art methods are included in the supplementary material.

4.4 Ablation Studies

We conduct several ablation studies on the LM dataset. First, we test our method
with the number of iterations as shown in Table 4 left. The result shows that the
performance is improved in the second iteration but saturates in more iterations.
We visualize an example of iterative refinement in Fig. 6(c).

We also visualize Gobjs of the qualitative results in Fig. 6(b), (c). As shown
in the figure, the difference of the grid area toward the camera and the opposite
is caused by projective geometry. And since the ratio of two areas is inversely
proportional to the object’s distance, the shape of the Gobj reflects the object
distance information. Consequently, as the GM loss leverages the shape of the
Gobj to learn the distance, training even without GD loss is successful, as shown
in Table 4 middle. In other words, projective geometry helps our method to learn
the distance to the object. We also confirm that LGD improves the performance,
especially on the ADD(-S) score, since it helps estimate more accurate distance
of the grid in camera space. Additionally, the effect of GM loss compared to PM
loss and image matching loss is reported in the supplementary material.



12 J. Park et al.

Table 2. Results on the LMO dataset. The accuracy of baseline methods and
our method in terms of the ADD(-S)0.1d score. Objects annotated with (∗) indicate
symmetric pose ambiguity. A.O represents a pose estimator trained on all objects.

Method
PoseCNN

[42]
DeepIM
[21]

PVNet
[31]

S.Stage
[14]

HybridPose
[37]

GDR-Net
[40]

GDR-Net
[40]

SO-Pose
[8]

RePOSE
[16]

DProST DProST

w/ Mesh w/o Mesh

A.O ✓ ✓ ✓ ✓ ✓
Training

Set
real
+syn

real
+syn

real
+syn

real
+syn

real
+syn

real
+pbr

real
+pbr

real
+pbr

real
+syn

real
+pbr

real
+pbr

ape 9.6 59.2 15.8 19.2 20.9 46.8 44.9 48.4 31.1 50.9 51.4
can 45.2 63.5 63.3 65.1 75.3 90.8 79.7 85.8 80.0 87.2 78.7
cat 0.9 26.2 16.7 18.9 24.9 40.5 30.6 32.7 25.6 46.0 48.1

driller 41.4 55.6 25.2 69.0 70.2 82.6 67.8 77.4 73.1 86.1 77.4
duck 19.6 52.4 65.7 25.3 27.9 46.9 40.0 48.9 43.0 47.7 45.4

eggbox* 22.0 63.0 50.2 52.0 52.4 54.2 49.8 52.4 51.7 46.9 55.3
glue* 38.5 71.7 49.6 51.4 53.8 75.8 73.7 78.3 54.3 68.5 76.9

holepuncher 22.1 52.5 39.7 45.6 54.2 60.1 62.7 75.3 53.6 65.4 67.4

Average 24.9 55.5 40.8 43.3 47.5 62.2 56.1 62.4 51.6 62.3 62.6

𝐼𝐵

𝑋

G𝑜𝑏𝑗

Fig. 5. Qualitative results of LMO dataset. The contours of projection by both
label pose and predicted pose are represented as green and blue, respectively. The
second row shows the projection by the estimated pose, and the third row shows the
predicted grid, unit sphere, and the reference feature F in the object space.

The performance about the number of points per ray (Nz) is in Table 4 right,
and Nz = 64 shows the best in both ADD(-S) and Proj2D score.

Table 5 left shows the experiment on the source of projection and view
sampling method in reference feature. As demonstrated, a simple space-carving-
based reference feature can replace the mesh without significant performance
degradation, and FPS outperforms the random sampling of reference.

Finally, we conduct an ablation study of the number of views (NR) for the
reference image in Table 5 right. As shown in the table, eight reference images
show the best performance. Note that because each voxel value of the reference
feature is the average of the reference image, if there are too many references,
the texture becomes blurry, and performance suffer. The quality of the reference
feature depending on the number of views is demonstrated in the supplementary
material.
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Table 3. Results on the YCBV dataset. The score of the baseline methods and
our method in terms of ADD(-S)0.1d and AUC of ADD(-S). A.O represents a pose
estimator trained on all objects.

Method
PoseCNN

[42]
PVNet
[31]

DeepIM
[21]

Cosypose
[19]

GDR-Net
[40]

SO-Pose
[8]

RePOSE
[16]

DProST DProST

A.O ✓ ✓ ✓ ✓ ✓
ADD(-S)0.1d 21.3 - 53.6 - 60.1 56.8 49.6 65.1 43.8

AUC of ADD(-S) 61.3 73.4 81.9 84.5 84.4 83.9 77.2 77.4 69.2

(c)(b)(a)

Fig. 6. Qualitative results. We visualize the contour of the projection by label pose
in green, the prediction pose in blue, and error cases in a red box. (a) Space-carving
failure cases in the YCBV dataset. (b) Qualitative results of the YCBV dataset. We
demonstrate the rendered mesh images in the second row and superimposed Gobj of
label and prediction in the third row. (c) Qualitative result of each iteration in the LM
dataset. The first column shows the label, and each column from the second to the
fourth indicates the initial pose and the predicted pose from each iteration.

4.5 Runtime Analysis

The experiments is conducted on an AMD Ryzen 9 3900X 12-Core CPU with an
NVIDIA Geforce RTX 2080Ti GPU. In addition to the 1.21 s for space carving
and 15 ms in detection, our method takes 0.22 ms in grid generator, 2.06ms
in the projector, and 3.86 ms in the pose estimator for each step. Note that,
since our method focuses on the seen object scenario, the reference feature is
created only once for each object in training phase and used repeatedly without
additional generation. Because the grid from the grid generator is directly used
as a sampling grid, our projector is faster than the mesh rendering function in
pytorch3d, which takes 3.14 ms.

5 Conclusion

We have proposed a new 6D object pose estimation method based on a grid
of the object space. To accomplish this, we have designed the DProST model
that elaborately considers the projective geometry, while reducing the number
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Table 4. Ablation studies of the pose estimator. left: Ablation of the number
of iterations. middle: Ablation of the loss function. right: Ablation of the Nz.

Iter
ADD(-S) Proj2D

0.02d 0.05d 0.10d 2pix 5pix

1 22.6 68.9 93.2 62.4 97.6
2 48.1 85.8 97.7 89.3 99.2
3 50.8 86.3 97.7 90.8 99.1

Loss
ADD(-S) Proj2D

0.02d 0.05d 0.10d 2pix 5pix

LGM 35.5 75.8 94.5 86.6 99.0

LGM + LGD 48.1 85.8 97.7 89.3 99.2

Nz
ADD(-S) Proj2D

0.02d 0.05d 0.10d 2pix 5pix

32 46.3 85.4 97.6 88.0 99.1
64 48.1 85.8 97.7 89.3 99.2
128 47.1 85.4 97.5 88.8 99.1

Table 5. Ablation studies of the 3D feature. left: Ablation of the projection
source and reference generation method. right: Ablation of the number of references.

Source Sampling
ADD(-S) Proj2D

0.02d 0.05d 0.10d 2pix 5pix

mesh 51.6 87.8 98.3 91.5 99.1

reference random 45.9 84.7 97.5 88.8 99.1
reference FPS 48.1 85.8 97.7 89.3 99.2

NR ADD(-S) Proj2D
0.02d 0.05d 0.10d 2pix 5pix

4 44.1 84.2 97.5 87.5 98.9
8 48.1 85.8 97.7 89.3 99.2
16 45.6 84.9 97.6 87.8 99.1

of computations by focusing the grid on object space RoI. Additionally, we have
introduced new objective functions, GM and GD, which can be used to train the
pose estimator based on the object space grid. We also have proposed a simple
space-carving-based reference feature generation method, which can replace the
mesh data in the projection stage. Experiments have shown that DProST out-
performs the state-of-the-art pose estimation method even without mesh data on
the LM and LMO datasets and shows competitive performance on the YCBV
dataset with mesh data. We plan to apply other 3D reconstruction methods
based on deep learning to the DProST in the future. Also, applying our method
to unseen or categorical objects would be one area for future research.
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