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Abstract. The goal of click-based interactive image segmentation is to
obtain precise object segmentation masks with limited user interaction,
i.e., by a minimal number of user clicks. Existing methods require users
to provide all the clicks: by first inspecting the segmentation mask and
then providing points on mislabeled regions, iteratively. We ask the ques-
tion: can our model directly predict where to click, so as to further reduce
the user interaction cost? To this end, we propose PseudoClick, a generic
framework that enables existing segmentation networks to propose can-
didate next clicks. These automatically generated clicks, termed pseudo
clicks in this work, serve as an imitation of human clicks to refine the seg-
mentation mask. We build PseudoClick on existing segmentation back-
bones and show how the click prediction mechanism leads to improved
performance. We evaluate PseudoClick on 10 public datasets from dif-
ferent domains and modalities, showing that our model not only out-
performs existing approaches but also demonstrates strong generaliza-
tion capability in cross-domain evaluation. We obtain new state-of-the-
art results on several popular benchmarks, e.g ., on the Pascal dataset,
our model significantly outperforms existing state-of-the-art by reducing
12.4% number of clicks to achieve 85% IoU.
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1 Introduction

Recent years have seen tremendous progresses in segmentation methods for var-
ious applications, e.g ., semantic object/instance segmentation [1,2], video un-
derstanding [3,4], autonomous driving [5,6,7], and medical image analysis [8,9].
The success of these applications heavily relies on the availability of large-scale
pixel-level annotation masks, which are very laborious and costly to obtain.
Interactive image segmentation, which aims at extracting the object-of-interest
using limited human interactions, is an efficient way to obtain these annotations.

While different interaction types have been investigated, including clicks
[10,11], bounding boxes [12,13,14], and scribbles [15,16], we only focus on click-
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Fig. 1: The key difference between existing methods and our method is the ability
for click prediction. (a) Illustration of existing methods. All clicks are provided
by users. (b) Illustration of our method, which predicts the next click based on
the current segmentation mask. This predicted pseudo click is used to refine the
segmentation mask. Note the manual segmentation is not required at test time
for the pseudo-click prediction.

based interactive segmentation because it has the simplest interaction, and well-
established training and evaluation protocols [10,11]. Compared with scribble-
based methods [15,16], click-based interactive segmentation requires no heuris-
tics or complex procedures to simulate user input. Recent work on click-based
interactive segmentation has resulted in state-of-the-art segmentation perfor-
mance using various inference-time optimization schemes [17], which are com-
putationally expensive due to multiple backward passes during inference. More
recently, Sofiiuk et al . proposed RITM [11], a simple feedforward approach re-
quiring no inference-time optimization for click-based interactive segmentation
that shows performance superior to all existing models when trained on the
combined COCO [18] and LVIS [19] datasets with diverse and high-quality an-
notations.

While existing methods in this area have shown improved performance, e.g .,
using inference-time optimization schemes [17] or iterative mask-guided training
schemes [11], these methods still require users to provide all the clicks. Hence,
users need to interactively inspect the resulting segmentation masks and then
provide points for mislabeled regions. We ask the question: can the segmentation
model directly predict where to click so as to further reduce the number of human
clicks? To this end, we propose PseudoClick, a novel framework for interactive
segmentation that equips existing segmentation backbones with the ability to
predict user clicks automatically. As shown in Fig. 1, the key difference between
existing methods and our proposed one is the ability to generate additional,
beneficial, and “free” pseudo clicks as the prediction of human clicks for refining
the segmentation mask.

PseudoClick is a generic framework that can be built upon existing segmen-
tation backbones, including both CNNs and transformers. We equip an existing
segmentation backbone with clicks prediction mechanism in the following pro-
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cedures: we first introduce an error decoder, in parallel with the segmentation
decoder of the backbone, that produces the false-positive (FP) and false-negative
(FN) error maps for the current segmentation mask. We then extract a pseudo
click from either the FP or the FN map, depending on which map contains
the largest error. Specifically, a positive click should be generated from the FN
map, while a negative click should be generated from the FP map. After that,
the generated pseudo click (we generate one pseudo click each time) will be up-
dated in the network input to refine the segmentation mask for the next forward
pass. Note that the entire process is an imitation of the core human activity in
interactive segmentation: visually estimating the segmentation errors, i.e., over-
segmentation (FP) or under-segmentation (FN), before determining what and
where the next click should be.

We evaluate our method extensively on 10 public datasets (see Sec. 4.1).
Evaluation results show that our model not only outperforms existing approaches
but also demonstrates strong generalization capabilitity in cross-domain evalu-
ation on medical images. On the Pascal dataset, our model significantly outper-
forms existing state-of-the-art by reducing 12.4% and 11.4% number of clicks
to achieve 85% and 90% IoU, respectively. For the cross-domain evaluation on
BraTS [20] and ssTEM [21], our method significantly outperforms existing ap-
proaches to a large margin. Our main contributions are:

1) We propose PseudoClick, a novel interactive segmentation framework that
directly imitates human clicks through the segmentation network and refines
the segmentation mask with these imitated pseudo clicks. Our proposed
framework differs from existing interactive segmentation methods in that
it provides additional, beneficial, and “free” clicks during the annotation
process for a human-in-the-loop.

2) We show that PseudoClick is an efficient and generic framework that can
be built upon different types of segmentation backbones, including both
CNNs and transformers, with little effort in tuning the hyper-parameters
and modifying the network architectures.

3) We evaluate PseudoClick thoroughly on benchmarks from multiple domains
and modalities with extensive comparison and cross-domain evaluation ex-
periments. The results show that PseudoClick not only outperforms existing
state-of-the-art approaches on in-domain benchmarks but also demonstrates
strong generalization capability on cross-domain evaluation.

2 Related Work

Click-based interactive image segmentation. Click-based interactive seg-
mentation has the simplest interaction and well-established training and evalua-
tion protocols [10,11]. Xu et al . [10] first apply CNNs for interactive segmentation
and propose a click simulation strategy for training that has inspired many fu-
ture works [11,22,23]. Compared with previous click-based approaches [11,24,23],
PseudoClick is unique because it is the first work that imitates human clicks
and refines the segmentation with automatically generated pseudo clicks.
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Other types of interactive feedback. Other than clicks, different types of
user interaction have been explored in this field, including bounding boxes [13],
scribbles [25], and interactions from multiple modalities [26]. The main drawback
of bounding box-based approaches is the lack of a specific object reference inside
the selected region, as well as a clear approach to correct the predicted mask.
Inside outside guidance (IOG) [13] addresses this issue by combining clicks with
bounding points of the target object and by allowing corrections of the predicted
mask. Our method differs from all these in that we only use clicks as the interac-
tion. Instead of exploring more complicated interactions, we try to imitate user
clicks and to decrease their number required to acquire predefined accuracy.

Imitation learning and beyond. Imitation learning aims at mimicking hu-
man behavior for a given task [27]. While this field has recently gained attention
due to computing and sensing advances as well as the rising demand for intelli-
gent applications [28,29], it has never been explored in the interactive segmen-
tation tasks. We claim that our method is highly related to imitation learning
in that it imitates the core user activity in the interactive annotation process:
visually estimating the segmentation errors before determining what and where
the next point should be. SeedNet [24] first proposes a reinforcement learning
approach for automatically generating automatic click. However, their method is
not an imitation of human clicks because it automatically generates a sequence
of clicks for achieving an implicit long-term reward without human intervention
given the initial two clicks. Therefore, it is more like a post-processing approach.
In contrast, our method is an imitation of human clicks because it explicitly
quantifies the FP&FN errors and then generates the next click based on the es-
timated errors (just like a human annotator would do). Our method imitates this
process by introducing a pseudo click generation mechanism on existing segmen-
tation backbones, as discussed in Sec. 3. Our idea of predicting FP&FN errors
for segmentation is also related to the idea of “prediction loss” proposed in [30],
but the two ideas are investigated in significantly different problem settings.

3 Method

As shown in Fig. 2, PseudoClick is a generic framework that builds upon exist-
ing segmentation framework with two additional modules: a segmentation error
decoder module and a clicks-encoding module that consists of encoding masks
for both human clicks and pseudo clicks. In Sec. 3.1, we first describe the seg-
mentation error decoder that outputs two error maps from which pseudo clicks
are generated. In Sec. 3.2, we further describe the pseudo clicks generation pro-
cess. In Sec. 3.3, we then introduce the encoding mechanism that transforms
pseudo clicks into spatial signal for feeding into the segmentation backbone. In
Sec. 3.4, we introduce the loss function for training our models. In Sec. 3.5, we
conclude the whole section by providing additional implementation details about
the proposed method.
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Fig. 2: PseudoClick overview. Given the image and clicks, the network outputs
the segmentation map, along with two error maps that predict the false-positives
and false-negatives of the segmentation mask, respectively. Then, a pseudo click
will be generated from either the FP map or the FN map (see Sec. 3.2). After
that, the network refines the segmentation mask in the second forward pass by
adding the new pseudo click to the click encoding.

3.1 Segmentation Error Decoder

The segmentation error decoder is introduced in parallel with the segmentation
decoder of the backbone. It generates two error maps that estimate the false
positive (FP) and false negative (FN) errors of the segmentation mask. Both
error maps are probability maps3 that can be trained as two binary segmentation
tasks. The FP and FN maps generated by the error decoder are supervised by
the ground-truth FP map Mfp and ground-truth FN map Mfn that can be
obtained from the ground truth mask M and the segmentation probability map
P in the following way: Mfp = ¬M ∧ (P ≥ τ); Mfn = M ∧ (P < τ), where
τ is a probability threshold (which is set to 0.5 by default). Since training the
segmentation error decoder is formulated as two binary segmentation tasks, the
error decoders and the segmentation decoder can be trained end-to-end in a
multi-task learning manner (See Sec. 3.4).

To help readers better understand the function of the proposed error decoder,
we show in Fig. 3 the error maps generated by the error decoder. We observe
that the error maps provide a meaningful estimation of the true errors, as one
can easily estimate by comparing the segmentation mask (red masks in first row)
with the ground truth (white masks in the last row). The accuracy of these error
maps is essential for reliable pseudo clicks generation, introduced next.

3 Note that we call these probability maps, but in general they will likely be miscal-
ibrated. If desired, calibration can be improved, for example, using the approach
in [31].
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Fig. 3: Illustration of the output error maps of PseudoClick. Given the first
click (dots in the first row), the network outputs a segmentation map (second
row), along with estimated FP and FN error maps (third and fourth rows). Each
column represents a test case. All test images are from the Cars dataset [32].

3.2 Pseudo Clicks Generation

Given the predicted FP and FN error maps for the current segmentation mask,
our method generates one pseudo click from either the FP or the FN map,
depending on which map contains the largest error region. First, we transform
the two error maps to two binary masks through a predefined threshold (i.e.
0.5), followed by extracting a positive/negative click from one of the two binary
masks that contains the largest connected error region—the extracted pseudo
click locates at the center of this region. If the largest error region is from the FP
mask, then the extracted pseudo click is negative (i.e., indicating that this region
should not be segmented); if the largest error region is from the FN mask, then
the extracted pseudo click is positive (i.e., indicating that this region should be
segmented). Finally, we encode the new pseudo click as a disk on the encoding
maps designed exclusively for pseudo clicks, introduced next.

3.3 Pseudo Clicks Encoding

As shown in Fig. 2, human clicks and pseudo clicks are encoded separately
as small binary disks in the corresponding encoding maps, resulting in two 2-
channel disk maps. Positive clicks are encoded in the positive disk map while
the negative clicks are encoded in the negative disk map. Note that our choice
of using disk maps instead of Gaussian maps for clicks encoding is inspired by
RITM [11], which shows that disk maps are more efficient and effective than
Gaussian maps. We perform element-wise addition to merge the feature maps
extracted from pseudo clicks and feature maps extracted from the combination
of image and human clicks. The merged feature maps will be fed into the seg-
mentation backbone for end-to-end training.
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3.4 Loss Function

Although binary cross entropy (BCE) loss is widely used to supervise the inter-
active segmentation tasks [13,33,34,35,36], we instead use normalized focal loss
(NFL) [37], which allows for faster convergence and better accuracy than BCE,
as discussed in [11]. The NFL loss L can be written as:

L(P(i, j)) = − 1∑
i,j P(i, j)

(1−P(i, j))γ logP(i, j) (1)

where P(i, j) denotes the prediction P at point (i, j) and γ > 0 is a tunable
focusing parameter (as in the focal loss [38]). Since the error branch can be
supervised as two binary segmentation tasks (see Sec. 3.1), we also use the NFL
loss for them during training. Therefore, the overall loss is a combination of three
NFL loss functions:

L =
∑
i,j

(λ1 Lseg(i, j) + λ2 Lfp(i, j) + λ3 Lfn(i, j)) (2)

where λ1, λ2, λ3 > 0 represent the weights for each component; Lseg(i, j), Lfp(i, j),
and Lfn(i, j) denote L(P(i, j)), L(Efp(i, j)), and L(Efn(i, j)), respectively.

3.5 Implementation Details

Click simulation for training and evaluation. We automatically simulate
human clicks based on the ground truth and current segmentation for fast train-
ing and evaluation. For training, we use a combination of random and iterative
click simulation strategies, similar to [11]. The random click simulation strategy
generates a set of positive and negative clicks without considering the order be-
tween them [10,17,39]. In contrast, the iterative simulation strategy generates
clicks sequentially—a new click is generated based on the erroneous region of a
prediction produced by a model using the set of previous clicks [36,40,41]. Once
the model is trained, there are two modes to evaluate it: automatic evaluation
and human evaluation. For automatic evaluation, we adopt the iterative click
simulation strategy. Note that the automatically simulated clicks may be differ-
ent from clicks generated by human evaluation. We present in the supplementary
materials some qualitative results obtained via human evaluation.

Previous segmentation as an additional input channel. It is natural to
incorporate the output segmentation mask from previous interaction as an input
for the next correction, providing additional prior information that can help
improve the segmentation quality. The previous segmentation mask is added as
an additional channel to the RGB image, resulting in a 4-channel image as the
input. This 4-channel image will be concatenated with the human clicks encoding
maps, which have two channels (positive and negative clicks are encoded in
separate channels). Note that the additional mask input is not shown in Fig. 2
for brevity. For the first interaction, we feed an empty mask to our model.
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Post-processing using error maps. Pseudo clicks are extracted from the
error maps. Actually, the error maps can be directly used to refine the segmen-
tation mask (e.g . via simple post-processing introduced in Sec. 4.4). We argue
that post-processing based on FP&FN maps can be regarded as a by-product
of our core contribution—PseudoClick––which takes a step further towards the
general idea of click imitation.

4 Experiments

4.1 Evaluation Details

Datasets. We evaluate PseudoClick on 10 public datasets: GrabCut [16],
Berkeley [42], DAVIS [43], Pascal [44], Semantic Boundaries Dataset (SBD)
[45], Brain Tumor Segmentation challenge (BraTS) [20], ssTEM [21], Cars [32],
COCO [18], and LVIS [19]. Since COCO and LVIS datasets share the same set of
images and are complementary to each other in terms of annotation quality and
object categories, they can be combined as an ideal training set for the interac-
tive image segmentation task [11]. Therefore, we use the combined COCO+LVIS
for training and the remaining 8 datasets for evaluation. Specifically, we use the
training set of the COCO+LVIS dataset for training and its validation set for
model selection. The Cars [32] dataset is only used for qualitative evaluation. We
test the trained PseudoClick models on the test set of the remaining 7 datasets;
no finetuning is conducted on these datasets. For the DAVIS and BraTS datasets,
we do not use the original videos or volumes. Instead, we extract 345 and 369 2D
slices from the two 3D datasets, respectively. We extracted from each volume in
the BraTS the slice that contains the largest tumor area. The two medical image
datasets, BraTS [20] and ssTEM [21], are used for cross-domain evaluation (see
Sec. 4.3) because our models are trained with natural images, which are signif-
icantly different from images from medical domain. We refer the readers to the
supplementary material for more details.

Fig. 4: Comparison of mIoU for the first five clicks on DAVIS and BraTS datasets.
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Segmentation backbone. We choose HRNet-18 and HRNet-32 [46] as back-
bones for our PseudoClickmodel. To show that PseudoClick is a generic frame-
work that can be built upon most of existing segmentation backbones, we also
implement PseudoClick on two recently proposed segmentation transformers:
SegFormer-B5 [47] and HRFormer-base [48]. While the two transformers have
shown promising preliminary results in our experiments, HRNet still outperforms
them to a large margin under the same experimental settings.

Evaluation modes and metrics. We evaluate the trained models with two
modes: automatic evaluation and human evaluation. For automatic evaluation,
we simulate human clicks based on the ground truth and current segmentation
mask (see Sec. 3.5); for human evaluation, a human-in-the-loop will provide clicks
based on his/her subjective evaluation. We use the standard Number of Clicks
(NoC) metric that measures the number of clicks required to achieve predefined
Intersection over Union (IoU). Specifically, we use NoC@85 and NoC@90 as two
main metrics to measure the number of clicks required to obtain 85% and 90%
IoU, respectively.

More implementation details. We adopt the same data augmentation tech-
niques as in RITM [11] for fair comparison. Pseudo-clicks were not counted in
the NoC@85% or NoC@90% metrics as they are “free” in terms of human labor.
We implement our models in Python, using PyTorch [49]. We train the models
for 200 epochs on COCO+LVIS dataset with an initial learning rate 5 × 10−4,
which will decrease to 5 × 10−5 after the epoch 50. During training, we crop
images with a fixed size of 320× 480 and set the batch size to 32. We optimize
using Adam with β1 = 0.9, β2 = 0.999. All models are trained and tested on a
single NVIDIA RTX A6000 GPU.

4.2 Comparison with State-of-the-Art

We compare our results with existing state-of-the-art methods, including f-
BRS [17], IA+SA [40], FCA [54], and RITM [11]. Tab. 1 shows the quantitative
results. Our proposed PseudoClick approach outperforms all the methods across
the five benchmark datasets. For example, compared with RITM on the Pascal
dataset, our model uses 12.4% and 11.4% fewer number of clicks for achieving
85% and 90% IoU, respectively. Fig. 4 shows plots for mean IoU with respect to
the first several clicks for the DAVIS and BraTS datasets. Our approach shows
continuous improvement in terms of accuracy and stability. We also visualize the
evaluation process of the proposed method on some images in Fig. 6. From the
qualitative results, we can see that the pseudo clicks automatically generated
from our model can accurately focus on false positive and false negative regions.
Hence, they are able to refine the predicted segmentation masks and thereby
alleviate human annotation effort. Computational analysis is shown in Fig. 7.
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Method
GrabCut Berkeley SBD DAVIS Pascal
NoC@90 NoC@90 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90

GC [15] ICCV01 10.00 14.22 15.96 15.13 17.41 - -
RW [50] PAMI06 13.77 14.02 15.04 16.71 18.31 - -
GM [51] IJCV09 14.57 15.96 17.60 18.59 19.50 - -
GSC [52] CVPR10 9.12 12.57 15.31 15.35 17.52 - -
ESC [52] CVPR10 9.20 12.11 14.86 15.41 17.70 - -
DIOS [10] CVPR16 6.04 8.65 - - 12.58 6.88 -
LD [53] CVPR18 4.79 - 10.78 5.05 9.57 - -
BRS [33] CVPR19 3.60 5.08 9.78 5.58 8.24 - -
f-BRS [17] CVPR20 2.72 4.57 7.73 5.04 7.41 - -
IA+SA [40] ECCV20 3.07 4.94 - 5.16 - 3.18 -
FCA [54] CVPR20 2.08 3.92 - - 7.57 2.69 -

SBD RITM-H18 2.04 3.22 5.43 4.94 6.71 2.51 3.03
C+L RITM-H32 1.56 2.10 5.71 4.11 5.34 2.19 2.57

SBD H18 w/ PC 2.04 3.23 5.40 4.81 6.57 2.34 2.74
SBD H32 w/ PC 1.84 2.98 5.61 4.74 6.16 2.37 2.78
C+L H32 w/o PC 1.55 2.11 5.68 4.09 5.27 2.14 2.52
C+L H32 w/ PC 1.50 2.08 5.54 3.79 5.11 1.94 2.25

Table 1: Evaluation results on GrabCut, Berkeley, DAVIS, SBD, and Pascal
datasets. Our models are trained on either SBD or COCO+LVIS (denoted as
C+L above) datasets. The best results are set in bold; the second best results
are shown underlined. “H18” and “H32” represent “HRNet-18” and “HRNet-
32”, respectively. “PC” means the model is implemented with pseudo clicks.
The metrics are NoC@85% and NoC@90%, representing the number of clicks
required to achieve 85% and 90% IoU, respectively.

1st human click +1st pseudo click 2nd human click +2nd pseudo click Ground Truth

C
as

e 
1

C
as

e 
2

Human click (Pos) Pseudo click (Neg) Human click (Neg) Pseudo click (Pos)

3 human clicks for each instance

ssTEM

Fig. 5: Cross-domain evaluation on two medical image datasets: BraTS [20] (left)
and ssTEM [21] (right). The evaluation is performed by a human annotator
through our internally developed interactive segmentation GUI. For the BraTS
dataset, we use two clicks for each image. For the ssTEM dataset, we strictly use
three clicks for each instance. Note that our model is trained on natural images,
but shows very robust results on the two medical datasets.
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4.3 Cross-Domain Evaluation

To evaluate the generalization cability of the proposed method, we conduct cross-
domain evaluation on two medical image datasets: BraTS [20] and ssTEM [21].
Specifically, we directly apply our PseudoClick models trained on SBD or
COCO+LVIS datasets to the medical images without finetuning (medical images
in grayscale are replicated 3 times channel-wise to be of the same channel di-
mension with RGB images). We report cross-domain evaluation results in Tab. 2
and Tab. 3. We observe that our models generalize very well to medical images
without fine-tuning. Note that these results are evaluated by a human annotator.
Some qualitative results on the two medical datasets are shown in Fig. 5.

Method Train Finetune Backbone mIoU@3 mIoU@5

RITM [11] SBD N/A HRNet18 54.9 74.4
RITM [11] C+L N/A HRNet32 51.7 77.1

Ours SBD N/A HRNet18 54.5 74.6
Ours C+L N/A HRNet32 64.0 80.1

Table 2: Cross-domain evaluation on the BraTS dataset. The evaluation measure
is mean IoU (%) given 3 or 5 human clicks.

Method Train Finetune Backbone #ClicksmIoU

Curve-GCN [55]CityScapes N/A ResNet-50 2 60.9
IOG [13] Pascal N/A ResNet-101 3 83.7
RITM [11] SBD N/A HRNet18 3 77.3
RITM [11] C+L N/A HRNet32 3 86.4

Ours SBD N/A HRNet18 3 80.9
Ours C+L N/A HRNet32 3 87.2

Table 3: Cross-domain evaluation on the ssTEM [21] dataset. The evaluation
measure is mean IoU (%) given 2 or 3 human clicks. The results for IOG and
Curve-GCN methods are copied from the corresponding papers.

4.4 Comparison Study

Segmentation backbone comparison. We have demonstrated in Tab. 1
that our method outperforms existing state-of-the-art when using HRNet-32
as its backbone. In this study, we implement other backbones including two re-
cently proposed vision transformers, SegFormer [47] and HRFormer [48], that
show encouraging results when compared with CNNs. Tab. 4 shows the com-
parison results. All models are pre-trained on ImageNet [56] and finetuned on
COCO+LVIS dataset with NFL loss function. We use SegFormer-B5 [47] and
HRFormer-Base [48] for the transformers. Models are trained and evaluated
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Fig. 6: Qualitative evaluation of PseudoClick model on natural images. Top:
segmentation results with one pseudo click. The first row shows the results of
the first human click; the second row shows the improvement of the segmentation
mask with the help of the first pseudo click. Bottom: segmentation results with
IoU greater than 90% given several clicks. The first row shows the segmentation
using only human clicks. The second row shows the segmentation with both
human and pseudo clicks. The color and shape of a click follow the same rule
shown in Fig. 5.

using pseudo clicks. The evaluation measure is NoC@85%. While the transform-
ers achieve decent results, we actually spend little time in tuning the hyper-
parameters and modifying the architecture when transferring from CNNs to
transformers. This demonstrates the flexibility and generalization capability of
our framework.

Loss functions comparison. In this study, we train PseudoClick models
using four different loss functions: binary cross entropy (BCE) loss, focal loss
(FL) [38], Soft IoU loss [57], and normalized focal loss (NFL) [37]. Each ex-
periment uses the HRNet32 model. All the four models are trained on the
COCO+LVIS dataset. Results in Tab. 5 show that training with NFL leads
to the best accuracy.

Training datasets comparison. In this study, we train PseudoClick models
on four different training datasets: Pascal, SBD, LVIS, and COCO+LVIS. We
test on four datasets: Pascal, SBD, Berkeley, and DAVIS. For each experiment,
our model is based on HRNet32 and is trained with NFL loss function. We
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Backbone Berkeley SBD DAVIS Pascal

ResNet51 1.94 3.49 4.87 2.18
ResNet101 1.85 3.44 4.14 2.02
SegFormer 2.54 4.10 4.11 2.26
HRFormer 1.84 4.53 4.80 2.62

Table 4: Comparison study for dif-
ferent segmentation backbones.

Loss Berkeley SBD DAVIS Pascal

BCE 1.44 3.53 3.97 1.98
FL 1.43 3.54 3.79 2.01
Soft IoU 1.44 3.63 3.96 2.10
NFL 1.40 3.46 3.79 1.94

Table 5: Comparison study for dif-
ferent loss functions.

Train Berkeley SBD DAVIS Pascal

Pascal 2.33 5.87 5.67 2.66
SBD 1.67 3.51 4.74 2.37
LVIS 2.63 5.40 6.97 3.14
C+L 1.40 3.46 3.79 1.94

Table 6: Comparison study for
different training datasets.

Model Param/M FLOPs/G Speed/s

RITM-H32 30.95 16.57 0.137
Ours-H32-PC 36.79 18.43 0.185

Table 7: Computational analysis. Speed is
measured as second per click (including
a pseudo click for ours) with a NVIDIA
A6000 GPU.

report results in Tab. 6. We observe that the model trained on COCO+LVIS
shows the best performance, highlighting the benefit of combining COCO and
LVIS for training interactive segmentation models. We also notice that on the
Pascal dataset, model trained on COCO+LVIS dataset is even better than
the model trained on Pascal dataset. This, again, highlights the strengths of
COCO+LVIS dataset: 1) large dataset size. The number of annotated instances
in COCO+LVIS dataset is 50× and 170× times larger than SBD and Pascal,
respectively; 2) diverse and high annotation quality.

Post-processing vs. pseudo clicks. In this study, we directly use the two
error maps for refining the segmentation mask. The two error maps serve as a
regularization for the segmentation branch during training. As shown in Fig. 3,
they quantize the segmentation mask reasonably well, and thus can be used for
refining the segmentation mask. To achieve this goal, we simply subtract the two
error maps from the segmentation map (all three maps are probability maps).
We compare the post-processing with adding one pseudo click. The comparison
results are shown in Tab. 8. We emphasize that the post-processing based on
FP&FN maps can also be regarded as a contribution of our work as it is a
by-product of our core contribution. Given two human clicks on the BraTS
dataset, the relative mIoU obtained by adding one pseudo-click is 5.2% higher
than the mIoU by post-processing, which is substantial considering the strong
performance of post-processing.
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BraTS DAVIS

mIoU@Human-clks 2 3 5 2 3 5

Baseline (BL) 23.2 51.2 77.3 80.2 85.6 89.3
BL+post-processing 42.6 63.5 79.7 81.3 86.2 90.1
BL+1 pseudo-click 44.8 64.0 80.1 83.7 87.4 90.8

Table 8: Adding one pseudo-click vs. post-processing. Comparison of post-
processing and pseudo clicks for mask refinement given a fixed number of hu-
man clicks. The Baseline model above is our best PseudoClick model (C+L
HRNet32) on the BraTS dataset.

5 Limitations

The major limitation of the proposed method is that pseudo clicks may not be
as accurate as human clicks, and therefore may cause the segmentation accuracy
to drop. This may lead to extra work for users to withdraw the poorly placed
pseudo clicks or to correct the error by putting more points. Fortunately, this
issue has be greatly alleviated by separating the encoding maps for the two
types of clicks. By separating the two encoding maps, the inaccurate pseudo
clicks are tolerated during the training and less likely to cause accuracy to drop
during evaluation. In the early stage of this project, we discovered this issue.
After separating the two types of encoding maps, as implemented in our current
architecture, this issue has been significantly eliminated.

6 Conclusion

We proposed PseudoClick, a novel interactive segmentation framework that
automatically imitates human clicks and efficiently segments objects with the
imitated pseudo clicks. PseudoClick is a general framework that can be built
upon different types of segmentation backbones, including both CNNs and trans-
formers, with little effort in tuning the hyper-parameters and modifying the net-
work architectures. We evaluated PseudoClick thoroughly on benchmarks from
multiple domains and modalities with extensive comparison and cross-domain
evaluation experiments that demonstrated the effectiveness as well as the gen-
eralization capability of the proposed method.
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