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Abstract. Spiking camera is a bio-inspired vision sensor that mimics
the sampling mechanism of the primate fovea, which has shown great
potential for capturing high-speed dynamic scenes with a sampling rate
of 40,000 Hz. Unlike conventional digital cameras, the spiking camera
continuously captures photons and outputs asynchronous binary spikes
that encode time, location, and light intensity. Because of the different
sampling mechanisms, the off-the-shelf image-based algorithms for digital
cameras are unsuitable for spike streams generated by the spiking cam-
era. Therefore, it is of particular interest to develop novel, spike-aware
algorithms for common computer vision tasks. In this paper, we focus
on the depth estimation task, which is challenging due to the natural
properties of spike streams, such as irregularity, continuity, and spatial-
temporal correlation, and has not been explored for the spiking camera.
We present Spike Transformer (Spike-T), a novel paradigm for learn-
ing spike data and estimating monocular depth from continuous spike
streams. To fit spike data to Transformer, we present an input spike
embedding equipped with a spatio-temporal patch partition module to
maintain features from both spatial and temporal domains. Further-
more, we build two spike-based depth datasets. One is synthetic, and the
other is captured by a real spiking camera. Experimental results demon-
strate that the proposed Spike-T can favorably predict the scene’s depth
and consistently outperform its direct competitors. More importantly,
the representation learned by Spike-T transfers well to the unseen real
data, indicating the generalization of Spike-T to real-world scenarios. To
our best knowledge, this is the first time that directly depth estimation
from spike streams becomes possible. Code and Datasets are available at
https://github.com/Leozhangjiyuan/MDE-SpikingCamera.
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1 Introduction

Traditional frame-based cameras work at a fixed rate, providing stroboscopic
synchronous sequences of images by a snapshot. The concept of the exposure
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time window in frame-based cameras constrains their usage in some challeng-
ing scenarios, such as high-speed scenes and high dynamic range environment,
leading to motion blur or over/under exposure. Compared with those cameras,
the spiking camera [9,10,28], a bio-inspired visual sensor, poses a radically dif-
ferent sensing modality. Instead of capturing the visual signal in an exposure
interval by a snapshot, each pixel on a spiking camera sensor independently
and persistently captures the incoming photons, and triggers a spike only when
the accumulated photons reach a dispatch threshold. Thus the spiking camera
can produce a continuous spike stream at very high temporal resolution. Those
recorded spatio-temporal spike streams can be used to reconstruct the dynamic
scenes at any given moment [67,73]. Different from event-based camera (also
called dynamic vision sensor) [15,16,38,53] that only records the relative bright-
ness changes at each pixel, the spiking camera records the absolute light inten-
sity, providing both static and dynamic scene information. Benefiting from the
superior properties, such as full-time imaging and free dynamic range, the spik-
ing camera poses enormous potential in autonomous driving, unmanned aerial
vehicles, and mobile robots.

Depth estimation is a fundamental task in computer vision. State-of-the-art
depth prediction works concentrate more on the standard frame-based cam-
eras [5,14,21,23,33,62]. Recently, event-based depth estimation has made signif-
icant progress [18,26,48,70,71,72]. However, there is no investigation related to
depth prediction for the spiking camera. Due to the different sampling mecha-
nisms, the off-the-shelf depth estimation models for traditional images that only
record stationary scenes are unsuitable for spike streams generated by the spik-
ing camera. Learning depth from the asynchronous spike streams poses several
challenges: 1) Lack of unified backbone for spike data: within a binary and irreg-
ular data structure, continuous spike streams capture dynamic scenes at a very
high temporal resolution. There is no standard network at hand that can simul-
taneously mine the spatial and temporal features from the dense spike streams.
2) Lack of spike depth dataset: There is no well-annotated dataset containing
spike streams and the corresponding ground truth depth. It is rather sophisti-
cated to calibrate the imaging windows and synchronize the timestamps between
spiking and depth cameras.

Inspired by prior works [1,4,41,60] that utilize Transformer [55] to model
spatio-temporal correlations for videos, we attempt to explore Transformer to
learn the spatio-temporal features from the irregular spike data. Transformer
has been successfully applied in NLP [8,6,30,45], images [2,11,20,40], and point
cloud [24,63,64,66], but very little is known about its effectiveness in binary spike
data. A naive way is to convert spike streams to videos composed of sequential
intensity frames so that the well-developed image-based algorithms can be used
to learn the spike streams. However, when a high-temporal spike stream (40,000
HZ) is converted to typical frequency images (30 FPS), the converted images
will lose some temporal continuity. When spikes are transformed to images with
the same frequency (40,000 FPS), the temporal information can be preserved
but with a surge of computational cost.
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This work focuses on dense, monocular depth estimation (MDE) from origi-
nal spike streams. Two key points are investigated: 1) How to mine the spatio-
temporal features from binary, irregular, and continuous spike streams? 2) How
to make full use of Transformer on the unstructured spike data? At this point,
a new scheme, named Spike Transformer (Spike-T), is proposed to learn both
spatial and temporal spike features and subsequently estimate depth from con-
tinuous spike streams. To our best knowledge, this is the first attempt to predict
depth using only spike streams. In order to unleash the potential of the spik-
ing camera in high-speed depth estimation, we first collect and generate one
synthetic dataset, denoted as ‘DENSE-spike’ (see Section.5.1), which comprises
spike streams, and the corresponding ground truth depth maps. We further col-
lect a real dataset named ‘Outdoor-spike’ using the spiking camera [28], which
includes various scenes of traffic roads and city streets.

Experimental results show that the proposed Spike-T performs well on our
synthetic dataset and reliably predicts depth maps on the unseen real data. In
summary, our main contributions include

– We dedicate to monocular depth estimation from continuous spike streams
for the first time. One synthesized and one real captured spike-based depth
datasets are first developed.

– We propose Spike Transformer (Spike-T), which adopts a spatio-temporal
Transformer architecture to learn the unstructured spike data, mining the
spatio-temporal characteristics of spike streams.

– To fit spike data to Transformer, we present an input spike embedding
equipped with a spatio-temporal patch partition module to maintain fea-
tures from both spatial and temporal domains.

– Qualitative and quantitative evaluations on the synthetic dataset demon-
strate that the proposed Spike-T reliably predicts the scene’s depth, and
the representation learned by Spike-T transfers well to the unseen real data,
indicating the generalization of the proposed model to the real scenarios.

2 Related Works

2.1 Bio-inspired Spiking Camera.

The spiking camera [9,10], also called Vidar camera [28], is a bio-inspired vi-
sion sensor that mimics the sampling mechanism of the primate fovea, achieving
1000× faster speed than conventional frame-based counterparts. Due to its dis-
tinct working principles, the spiking camera can continuously record the scene’s
texture theoretically. Given its huge potential in many applications, such as
traffic surveillance and suspect identification, spike-based vision tasks have been
rapidly investigated. By counting the time interval of spikes, Dong et al. [10]
first provided an efficient coding method for spiking camera. Motivated by bio-
realistic leaky integrate-and-fire (LIF) neurons and synapse connection with
spike-timing-dependent plasticity (STDP) rules, Zhu et al. [74] constructed a
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three-layer spiking neural network (SNN) to reconstruct high-quality visual im-
ages of natural scenes. Zheng et al. [69] introduced an image reconstruction
model through the short-term plasticity(STP) mechanism of the brain. Zhao et
al. [68] built a hierarchical CNN architecture to reconstruct dynamic scenes, ex-
ploiting the temporal correlation of the spike stream progressively. More recently,
[27] presented a deep learning pipeline to estimate optical flow from continuous
spike streams, where the predicted optical flow was able to alleviate motion blur.
Prior works have made significant progress in developing spiking cameras. Nev-
ertheless, one of the essential vision tasks, depth estimation, has not been fully
considered. This work thus focuses on learning depth from spike streams.

2.2 Image-based and Event-based Monocular Depth Estimation.

Image-based monocular depth estimation aims to generate a dense depth map
containing 3D structure information from a single-view image. Early works on
image-based depth prediction primarily based on handcrafted features related
to pictorial depth cues, such as texture density and object size [50]. In more
recent years, deep learning-based depth estimation models have gained trac-
tion [13,22,23,34,36,39,44,56,62]. They commonly exploit an encoder-decoder
architecture with skip-connections to learn depth-related priors directly from
training data, achieving impressive depth estimation performance compared to
the handcrafted counterparts.

Recently, event-based monocular depth estimation has drawn increasing at-
tention due to its unique properties [3,7,17,19,25,26,31,47,72], especially for high-
speed scenes where low-latency obstacle avoidance and rapid path planning are
critical. Gallego et al. [17] developed a unifying contrast maximization frame-
work to solve several event-based vision problems, such as depth prediction and
optical flow estimation, by finding the point trajectories on the image plane
that are best aligned with the event-based data. Zhu et al. [72] presented a
proper event representation in the form of a discretized volume and utilized an
encoder-decoder mechanism to integrate several cues from the event streams.
Recurrent convolutional neural networks were exploited in [26] to learn monocu-
lar depth by leveraging the temporal consistency presented in the event streams.
More recently, Gehrig et al. [19] proposed a Recurrent Asynchronous Multimodal
network to estimate monocular depth by combining events and frames, which
generalized traditional RNNs to learn asynchronous event-based data from mul-
tiple sensors. Prior event-based works have greatly inspired our work. Unlike
event-based cameras, which pay more attention to motion edges, the spiking
camera captures both stationary and moving objects. Hence, spike-based vision
problems need to be studied in different ways from event-based counterparts.

2.3 Transformer for dense prediction.

Self-attention-based models, in particular Transformers [55], have recently be-
come the dominate backbone architecture in natural language processing (NLP)
[6,8,30,45]. It also intrigued the vision community [2,11,20,40] due to its salient
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benefits, including massively parallel computing, long-distance characteristics,
and minimal inductive biases. As for dense prediction tasks, Transformer has a
global receptive field at every stage and can work at a constant and relatively
high resolution. These attractive properties can naturally lead to fine-grained
and globally coherent dense predictions [46]. Transformer-based networks have
been intensively investigated for dense prediction [35,37,42,57,58,65]. Ranftl et
al. [46] applied ViT [11] as the encoder backbone to estimate monocular depth.
Compared with CNN backbone, it showed that more coherent predictions could
be learned due to the global receptive field of Transformer. Yang et al. [61] ad-
ditionally used a ResNet projection layer and attention gates in the decoder
to induce the spatial locality of CNNs for monocular depth estimation. Lately,
Johnston et al. [29] utilized a self-attention block to explore the general contex-
tual information and applied a discrete disparity to regularize the training pro-
cedure. More recently, Varma et al. [54] investigated self-supervised monocular
depth estimation using vision Transformer. It showed that Transformer achieves
comparable performance while being more robust and generalizable when com-
pared with CNN-based architectures. The structural superiority of Transformer
has been proved by both NLP and image tasks. Previous dense prediction works
also justify the capability of Transformer for depth prediction. Motivated by
Swin Transformer [40], we develop a spatio-temporal Transformer network for
monocular depth estimation from continuous and unstructured spike streams.

3 Preliminary: Spike Generation Mechanism

Inspired by the sampling mechanism of primate fovea in retina [43,59], the spik-
ing camera records the intensity information with spatio-temporal characteris-
tics. It outputs binary streams in spike format, representing data with only 0 or
1. The spiking camera mainly consists of three ingredients, the photoreceptor,
the accumulator, and the comparator. Specifically, an array of photosensitive
pixels are spatially arranged on the photoreceptor of spiking cameras, continu-
ously capturing photons. Secondly, the accumulator persistently converts light
signals into electrical signals to increase the voltage of each unit. The comparator
detects whether the accumulated voltage reaches the dispatch voltage threshold
θ. When the threshold is reached, a spike is triggered, and the voltage will be
reset to the preset value. To depict the spike generation mechanism, the process
on one pixel can be formulated as:∫ ti

ti−1

αI(t)dt = θ (1)

where I(t) describes the light intensity, ti and ti−1 denote the firing times of the i-
th and (i−1)-th spikes, respectively. α is the photoelectric conversion rate. Due to
the limitations of circuit technology, the unit in the output circuit read out spikes
as discrete-time signals s(x, y, n) periodically within a fixed interval ∆t = 25 us.
A spike will be read out s(x, y, n) = 1 (n = 1, 2, . . .) if the pixel at spatial
coordinate (x, y) fires a spike at time t, with (n − 1)∆t < t ⩽ n∆t. Otherwise
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it reads out s(x, y, n) = 0. The sensor uses a high-speed polling to generate a
spike frame with size of H ×W at each discrete timestamp n. In a fixed interval
∆t ·T , the camera would produce a binary spike stream S = {s(x, y, t)}Tt=1 with
size of H ×W × T .

4 Spike Transformer for Monocular Depth Estimation

The spiking camera outputs spikes at each pixel independently and asynchronously.
For simplicity, we use S ∈ {0, 1}H×W×T

to denote a spike stream, and use
D ∈ RH×W to denote the depth map at one polling. The objective of monocular
depth estimation for the spiking camera is to predict the original depth map
D from the continuous binary spike stream S. To this end, we present Spike
Transformer (Spike-T) for monocular depth prediction. The overall framework
comprises three components: (a) spike embedding module, (b) spatio-temporal
Transformer (STT) encoder, and (c) CNN-based decoder. The framework is il-
lustrated in Fig. 1, which maintains the overall encoder-decoder architecture
with hierarchical structures. Specifically, an input spike stream is first fed into
the spike embedding module, obtaining several spike embeddings that preserve
spatio-temporal characteristics for Transformer’s input. Subsequently, we em-
ploy several STT blocks to learn spatio-temporal features for spike embeddings,
using the adapted self-attention mechanism. The hierarchical features from the
encoder are progressively fused for final depth prediction.

4.1 Spike Embedding

The spike embedding module consists of three steps: Temporal Partition, Fea-
ture Extraction, and Spatial Partition (see Fig. 2). As presented in Section 3,

a sequence of spike frames S = {s(x, y, t)}Tt=1 record the scene’s radiance at
each timestamp t. The features along the time axis are crucial to reconstruct
the depth map. A multi-scale temporal window is thus introduced to maintain
more temporal information.

Specifically, for each raw input S, we first partition it into n non-overlapping
spike chunks along the temporal axis, using a sliding window of length T

n . Each

spike chunk with shape of H ×W × T
n carries different local temporal features

in an interval T . A lightweight feature extractor (FE), consisting of four residual
blocks, is then used to project each chunk to a feature map of size H ×W × C.
Theoretically, the length of time window T

n can be set as an arbitrary positive
integer no more than T . Different time-scale window carries a different scale
of temporal information. We thus can leverage multiple time-scale windows,
e.g., T

1 ,
T
2 ,

T
4 , ...

T
n , to capture multi-level temporal features. Empirically, we set

n to 4. Features from T
4 time window can be considered as 1

4 local features.

Subsequently, we set n to 1, features from T
1 time window can be seen as global

features. Similarly, other time windows can be used. In our setting, only T
4 local

and T
1 global features are considered. In this case, 4 spike chunks are passed
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Fig. 1. The framework of Spike-T for MDE. Generally, our model is a U-shaped
network consisting of three components: (a) spike embedding module, (b) spatio-
temporal Transformer (STT) encoder, and (c) convolutional decoder. We first partition
the input spike stream into several non-overlapping chunks by a multi-scale temporal
window. Then, a spatial partition layer and Local/Global Feature Extractor (FE) are
used to obtain a series of spike embeddings. Our encoder is built by several STT blocks,
which implements the attention mechanism along the temporal, height, and width axes.
The decoder comprises multiple feature fusion layers, in which hierarchical features are
progressively fused and finally used to estimate the depth map.

through the shared local FE module separately, while the full-length spike stream
is fed into the global FE module. After that, we split each feature map from FE
module into H

2 × W
2 patches (with 2 × 2 patch size) in the spatial domain. By

merging local and global FE features, we can obtain H
2 × W

2 ×4 temporal-robust
feature maps. Therefore, an input spike stream with shape of H × W × T can
be partitioned into H

2 × W
2 × 4 spatio-temporal (ST) blocks. We treat each ST

block of size 2×2× T
4 as a token. Following the practice of Transformers in NLP

and image-based tasks, we term the feature of those tokens as spike embeddings,
which thus can be received as inputs to Transformer.

4.2 Spatio-Temporal Transformer Encoder

The overall architecture of spatio-temporal Transformer is illustrated in Fig. 2,
which is adapted from a Swin Transformer architecture [40,41]. Features from
spiking embedding module are fed into the Transformer-based encoder, which
includes three stages. Each stage consists of 2,2 and 6 STT blocks, respectively.
A patch merging layer is added between two adjacent stages.

Spatial patch merging. To preserve more local temporal features, following
the prior work [41], we only implement the downsampling operation in the spatial
domain, maintaining the number of tokens in the temporal domain. Specifically,
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Fig. 2. Architecture of Spike Transformer.

features from each 2×2 spatial neighboring patches are first concatenated along
C-channel, forming a merging feature map with 4C dimension. A linear layer
is used to project such a 4C-dimensional feature map to a 2C-dimensional one.
Thus, the feature dimension along C-channel will be doubled after each stage.

Spatio-temporal Transformer block. The key component of Spike-T is
the STT block. Each STT block consists of a multi-head self-attention (MSA)
module equipped with a 3D shifted window, followed by a feed-forward network
(FFN) composed of a 2-layer MLP. Between each MSA module and FFN, a
GELU layer is utilized, and a Layer Normalization(LN) is used before each MSA
and FFN. Each module applies a residual connection.

In particular, for two consecutive STT blocks at one Transformer encoder
stage, the MSA module in the former block acts on the Tx ×Hx ×Wx spatio-
temporal tokens. 3D windows with size of Wt × Wh × Ww are then utilized to
evenly partition these tokens into ⌈ Tx

Wt
⌉ × ⌈Hx

Wh
⌉ × ⌈Wx

Ww
⌉ non-overlapping win-

dows. In our implementation, Tx is set to be same as the temporal partition
number(n = 4). Hx and Wx are the current spatial token size. The 3D window
size is set to 2 × 7 × 7. For the MSA module in the latter SST block, we shift
windows along the temporal, height, and width axes by (1, 3, 3) tokens from
the previous STT block and perform attention among windows. Following the
practice in [40,41], we term the first window-based MSA as 3D W-MSA, which
uses the regular window partitioning configuration. The second window-based
MSA is denoted as 3D SW-MSA, which applies a shifted window partitioning
mechanism. The above two successive SST blocks can be formalized as [41]

ẑm = 3DW-MSA(LN(zm−1)) + zm−1,

zm = FFN(LN(ẑm)) + ẑm,

ẑm+1 = 3DSW-MSA(LN(zm)) + zm,

zm+1 = FFN(LN(ẑm+1)) + ẑm+1,

(2)

where ẑm and zm denote the output features of the 3D(S)W-MSA module and
the FFN module for block m in one stage. As for STT blocks in each stage, we
use 3, 6 , and 12 attention heads, respectively. In this way, features from each
Transformer encoder stage can be formed as a tuple, with sizes of H

2 ×W
2 ×T×C,

H
4 × W

4 × T × 2C and H
8 × W

8 × T × 4C separately, which thus can be used for
downstream spike-based tasks.
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4.3 Decoder for Depth Prediction

As shown in Fig. 1, our decoder consists of two residual blocks, three feature
fusion layers, and one prediction head. The output feature maps, with size of
Hi×Wi×T ×Ci from each encoder stage, are concatenated along temporal axis,
reshaping the size to Hi ×Wi ×TCi. After that, a convolutional layer is used to
project the reshaped features back to Hi×Wi×Ci. The last feature maps, with
the size of H

8 ×W
8 ×4C, are first passed through two residual blocks with a kernel

size of 3. Subsequently, features from the previous layer are upsampled through a
bilinear interpolation operation and progressively fused with the following layers.
A prediction head consisting of one convolutional layer is finally used to generate
a H ×W × 1 depth map.

4.4 Loss Function

Following [26], we employ a scale-invariant loss to train our depth estimation
network in a supervised manner. For k-th spike stream with the size ofH×W×T ,
the model outputs the depth map with the size of H ×W × 1. We denote the
predicted depth map, ground truth depth map, and their residual as D̂k, Dk,
and Rk, respectively. The scale-invariant loss is then defined as

Lk =
1

n

∑
p

(Rk(p))
2 − 1

n2

(∑
p

Rk(p)

)2

, (3)

where Rk = D̂k - Dk, and n is the number of valid ground truth pixels p.

5 Experiments

5.1 Dataset

Synthetic Dataset. We train our Spike-T in a supervised fashion, which re-
quires a large-scale training dataset in the form of spike streams and the corre-
sponding synchronous depth maps. Nevertheless, it is complicated to build a real
dataset consisting of spike steam, gray image, and the corresponding depth map.
Moreover, it is rather sophisticated to calibrate imaging windows and synchro-
nize timestamps among a spiking camera, a frame-based camera, and a depth
camera. Thus, we build a synthetic spike dataset. Specifically, we first choose the
dataset named DENSE proposed in [26] as our database. The DENSE dataset
was generated by CARLA simulator [12], including clear depth maps and inten-
sity frames in 30 FPS under a variety of weather and illumination conditions.
To obtain spike streams with a very high temporal resolution, we adopt a video
interpolation method [52] to generate intermediate RGB frames between adja-
cent 30-FPS frames. With absolute intensity information among RGB frames,
each sensor pixel can continuously accumulate the light intensity with the spike
generation mechanism introduced in Section 3, producing spike streams with a
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high temporal resolution (128×30 FPS) that is 128 times of the video frame rate.
The ‘spike’ version of DENSE dataset (namely DENSE-spike) contains eight se-
quences, five for training, two for validation, and one for testing. Each sequence
consists 999 samples, and each sample is a tuple of one RGB image, one depth
map, and one spike stream. Each spike stream is simulated between two consec-
utive images, generating a binary sequence with 128 spike frames (with size of
346× 260) that depicts the continuous process of dynamic scenes.

Real Dataset. To verify the generalization of the proposed model, we further
collect some natural spike sequences using a spiking camera [28]. The spatial
resolution of the spiking camera is 400 × 250, and the temporal resolution is
40000 HZ. The real captured spike streams are recorded on city streets and
roads. We denote this real dataset as ‘Outdoor-Spike’, which is only used for
testing due to lack of the corresponding ground truth depth. In our ’Outdoor-
Spike’ dataset, 33 sequences of outdoor scenes are captured in a driving car from
the first perspective. Each sequence contains 20000 spike frames.

5.2 Implementation Details

Depth Representation. Following [26], we convert the original depth Dk,abs

into a logarithmic depth map Dk, which can be calculated as

Dk =
1

β
log

Dk,abs

Dmax
+ 1, (4)

whereDmax is the maximum depth in dataset, β is a hyper-parameter empirically
set to let the minimum depth closed to 0. For our synthetic dataset ‘DENSE-
spike’, we set β = 5.7, Dmax = 1000m.

Training Setup. We implemented the network in PyTorch. In training, we
adopt ADAM optimizer [32] to optimize the network and set the initial learning
rate λ set to 0.0003. Our model is trained for 200 epochs with a batch size of 16
on 2 NVIDIA A100-SXM4-80GB GPUs. We use the exponential learning rate
scheduler to adjust the learning rate after 100th epoch with γ set to 0.5.

Metrics. We adopt several important metrics, including absolute relative error
(Abs Rel.), square relative error (Sq Rel.), mean absolute depth error (MAE),
root mean square logarithmic error (RMSE log) and the accuracy metric (Acc.δ).
Detailed formulations can be found in the Appendix.

5.3 Experiment Results

In this section, we evaluate the performance of our Spike-T on both synthetic
and real captured datasets, and compare Spike-T with two model architectures,
U-Net [49] and E2Depth [26]. Three models are all trained on the synthetic
‘DENSE-spike’ dataset. To verify the generalization and transferability of our
Spike-T, we further utilize the real dataset ‘Outdoor-Spike’ for testing, and give
qualitative visualization results. Finally, an ablation study of Spike-T is pre-
sented.
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（a) Abs. Rel. Difference （b) Mean Depth Error

Fig. 3. Results of absolute relative difference and mean depth error in differ-
ent clip distances. Curves in green, red and blue represent our Spike-T, E2Depth [26]
and U-Net [49], respectively.

Table 1. Quantitative comparison on the DENSE-spike dataset with UNet [49] and
E2Depth [26]. We present results on validation set and test set. ↓ indicates lower is
better and ↑ indicates higher is better.

Dataset Model Abs Rel ↓ Sq Rel ↓ RMS log ↓ SI log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Test Set
U-Net 0.815 27.878 0.777 0.459 0.653 0.725 0.778

E2Depth 0.674 20.316 0.765 0.441 0.639 0.729 0.789
Spike-T (Ours) 0.606 18.388 0.706 0.395 0.682 0.762 0.813

Val Set
U-Net 0.306 7.101 0.394 0.139 0.833 0.909 0.939

E2Depth 0.291 5.796 0.411 0.168 0.821 0.894 0.928
Spike-T (Ours) 0.262 4.703 0.364 0.125 0.850 0.913 0.944

A. Qualitative and Quantitative Comparisons. We first compare our
Spike-T with two dense prediction networks, namely U-Net and E2Depth. Both
them and our Spike-T follow the encoder-decoder architecture with multi-scale
fusion manner but utilize different encoding mechanisms. In particular, U-Net
employs 2D convolutional layers as its encoder and focuses on spatial feature ex-
traction, while E2Depth applies ConvLSTM [51] layers that combine CNN and
LSTM to capture the spatial and temporal features. By contrast, our Spike-T
employs transformer-based blocks to learn the spatio-temporal features simulta-
neously. Thus, both U-Net and E2Depth can be seen as our direct competitors.

Table. 1 reports the quantitative comparison on ‘Dense-spike’ dataset. On
both validation and testing sets, the proposed Spike-T consistently outperforms
the other two methods on all metrics. Furthermore, our method achieves sig-
nificant improvement on the metrics of Abs.Rel, which is the most convictive
metric in depth estimation tasks. The major difference between the three meth-
ods lies in the encoder architecture. These experimental results indicate that our
Spike-T with the Transformer-based encoder is more efficient in capturing the
spatio-temporal features from irregular, continuous spike streams.

We also evaluate our method at depths of 10m, 20m, 30m, 80m, 250m, 500m.
Fig. 3 illustrates how absolute relative error and mean depth error change with
depths on validating sequences. The results show that our method performs more
accurate depth prediction at all distances, especially at the larger distances.
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(e) Spike-T(a) Images (c) U-Net(b) Spikes (d) E2Depth (f) Ground Truth

Fig. 4. Visualization results on synthetic dataset ‘DENSE-spike’. Boxes in
cyan marked in pictures provide comparisons in details.

The qualitative comparison is shown in Fig. 4. For a clear comparison, we
mark some cyan boxes on fine-grained objects. As we can see, more details,
including tiny structures, sharp edges, and contours, can be estimated by our
Spike-T. The quantitative and qualitative results demonstrate that our method
is more suitable for continuous spike streams generated by the spiking camera,
and can learn valid and robust features from the spatial and temporal domain.

B. Evaluation on Real-World dataset. We evaluate our method by training
networks on the synthetic dataset and testing on the real dataset ‘Outdoor-
Spike’. It is a more challenging dataset captured from outdoor scenes with various
motions and noises from the real world. Fig. 5 displays some examples with real
spikes, gray images, and the predicted depth compared with the baseline U-Net
and E2Depth. The visualization results verify that acceptable depth prediction
results are achieved in real-world scenarios.

As shown in Fig. 5(c), depth maps predicted by U-Net and E2Depth include
blur artifacts and lose some details, leading to ambiguity between foreground
and background. By contrast, depth maps predicted by Spike-T are better with
more details of contours, and more precise depth variation can be provided.
Overall, despite the domain gap between synthetic and real data, our Spike-T can
reasonably predict the real scene’s depth, indicating the model’s transferability
to real-world scenes.

C. Comparison to depth estimation methods using images or events.
We give more comparison with depth prediction methods that use images or
events. Moreover, we captured some fast-moving and shaky scenes with a syn-
chronized spiking camera and a traditional camera. Visualization results demon-
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(e) Spike-T(a) Spikes (c) U-Net (d) E2Depth(b) Reconstructed Image

Fig. 5. Visualization results on real-world data (from ‘Outdoor-spike’). (a)
The spike frame at the predicted timestamp. (b) Reconstructed images with [69]. (c-e)
Predicted depth maps with U-Net, E2Depth, and our Spike-T.

Table 2. Ablation study on different temporal window mechanisms.

Model Abs Rel ↓ Sq Rel ↓ RMS log ↓ SI log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Global Temporal 0.416 11.256 0.478 0.218 0.793 0.867 0.902

Local Temporal 0.389 10.884 0.490 0.230 0.791 0.860 0.896

Multi-Scale Temporal 0.376 9.265 0.478 0.215 0.794 0.863 0.901

strate the advantage of spiking cameras over conventional ones under some chal-
lenging scenarios (Refer to the Appendix).

5.4 Ablation Studies

A. Effect of multi-scale temporal window. As presented in Section 4.1, we
introduce a multi-scale temporal window at the spike embedding stage to pre-
serve more temporal information. To verify its effectiveness, we implement three
ablation studies, termed as ‘Global Temporal’, ‘Local Temporal’ and ‘Multi-scale
Temporal’, respectively. Specifically, ‘Global Temporal’ means feature embed-
ding with only global features (temporal partition number n = 1), which pays
more attention to spatial features. ‘Local Temporal’ indicates feature embedding
using only local features (n = 4), while ‘Multi-scale Temporal’ denotes features
embedding from both local (n = 4) and global (n = 1) features. The comparison
results are shown in Table. 2. Spiking embedding with only ‘Local Temporal’



14 J. Zhang et al.

Table 3. Ablation results on different patch partitioning manner.

Dataset Model Abs Rel ↓ Sq Rel ↓ RMS log ↓ SI log ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Test Set
3D Partition 0.868 31.771 0.822 0.500 0.636 0.729 0.780

S-T Partition 0.606 18.388 0.706 0.395 0.682 0.762 0.813

Val Set
3D Partition 0.310 7.458 0.386 0.139 0.841 0.907 0.938

S-T Partition 0.262 4.703 0.364 0.125 0.850 0.913 0.944

outperforms that with only ‘Global Temporal’ on the most crucial metric Abs
Rel, indicating that the spatio-temporal correlations involved in local features
are more informative than that contained in global parts. Furthermore, a multi-
scale temporal window combining both local and global features is superior to
the above two settings. It demonstrates that more spatio-temporal features can
be learned from the unstructured and successive spike streams with the multi-
scale temporal window mechanism. More detailed studies on hyperparameter T
and n can be found in the Appendix.

B. Effect of S-T patch partition. The patch partitioning operation in the
standard Video Swin Transformer is implemented with a 3D convolutional layer.
It splits the original input into several 3D blocks. We conduct an ablation
study on the patch partitioning manner, comparing our S-T partition with stan-
dard Conv3D-based partition by replacing the spike embedding module with a
Conv3D layer. The quantitative results are presented in Table. 3. Our method
with S-T patch partitioning performs better on all metrics, which indicates that
the S-T partition is more suitable to extract features from spike streams.

6 Conclusions

We present Spike Transformer for monocular depth estimation of the spiking
camera. To favorably apply Transformer on spike data, an effective spike repre-
sentation, termed as spiking embedding, is first proposed. Then a modified Swin
Transformer architecture is employed to learn the spatio-temporal spike features.
Furthermore, two spike-based depth datasets are carefully built. Experiments on
both synthetic and real datasets show that our Spike-T can reliably predict the
depth maps and express superiority to its direct competitors.
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26. Hidalgo-Carrió, J., Gehrig, D., Scaramuzza, D.: Learning monocular dense depth
from events. In: 2020 International Conference on 3D Vision (3DV). pp. 534–542.
IEEE (2020)

27. Hu, L., Zhao, R., Ding, Z., Xiong, R., Ma, L., Huang, T.: Scflow: Optical flow
estimation for spiking camera. arXiv preprint arXiv:2110.03916 (2021)

28. Huang, T., Zheng, Y., Yu, Z., Chen, R., Li, Y., Xiong, R., Ma, L., Zhao, J., Dong,
S., Zhu, L., et al.: 1000x faster camera and machine vision with ordinary devices.
Engineering (2022)

29. Johnston, A., Carneiro, G.: Self-supervised monocular trained depth estimation us-
ing self-attention and discrete disparity volume. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4756–4765
(2020)

30. Joshi, M., Chen, D., Liu, Y., Weld, D.S., Zettlemoyer, L., Levy, O.: Spanbert:
Improving pre-training by representing and predicting spans. Transactions of the
Association for Computational Linguistics 8, 64–77 (2020)

31. Kim, H., Leutenegger, S., Davison, A.J.: Real-time 3D reconstruction and 6-dof
tracking with an event camera. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). pp. 349–364. Springer (2016)

32. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

33. Kopf, J., Rong, X., Huang, J.B.: Robust consistent video depth estimation. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 1611–1621 (2021)



Monocular Depth Estimation for Spiking Camera 17

34. Lee, J.H., Kim, C.S.: Monocular depth estimation using relative depth maps. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2019)

35. Lee, Y., Kim, J., Willette, J., Hwang, S.J.: Mpvit: Multi-path vision transformer
for dense prediction. arXiv preprint arXiv:2112.11010 (2021)

36. Li, Z., Snavely, N.: Megadepth: Learning single-view depth prediction from internet
photos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2018)

37. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: Image
restoration using swin transformer. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). pp. 1833–1844 (2021)

38. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128×128 120db 15µs latency asyn-
chronous temporal contrast vision sensor. IEEE Journal of Solid-state Circuits
43(2), 566–576 (2008)

39. Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation
from a single image. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2015)

40. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 10012–
10022 (2021)

41. Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., Hu, H.: Video swin trans-
former. arXiv preprint arXiv:2106.13230 (2021)

42. Liu, Z., Luo, S., Li, W., Lu, J., Wu, Y., Sun, S., Li, C., Yang, L.: Convtransformer:
A convolutional transformer network for video frame synthesis. arXiv preprint
arXiv:2011.10185 (2020)

43. Masland, R.H.: The neuronal organization of the retina. Neuron 76(2), 266–280
(2012)

44. Miangoleh, S.M.H., Dille, S., Mai, L., Paris, S., Aksoy, Y.: Boosting monocular
depth estimation models to high-resolution via content-adaptive multi-resolution
merging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition(CVPR). pp. 9685–9694 (2021)

45. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI blog (2019)

46. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 12179–12188 (2021)

47. Rebecq, H., Gallego, G., Mueggler, E., Scaramuzza, D.: Emvs: Event-based multi-
view stereo—3D reconstruction with an event camera in real-time. International
Journal of Computer Vision 126(12), 1394–1414 (2018)

48. Rebecq, H., Gallego, G., Scaramuzza, D.: EMVS: event-based multi-view stereo.
In: British Machine Vision Conference (BMVC) (2016)

49. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI. pp. 234–241. Springer (2015)

50. Saxena, A., Sun, M., Ng, A.Y.: Make3d: Learning 3d scene structure from a single
still image. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(5),
824–840 (2008)

51. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convolutional
lstm network: A machine learning approach for precipitation nowcasting. Advances
in Neural Information Processing Systems 28 (2015)



18 J. Zhang et al.

52. Sim, H., Oh, J., Kim, M.: Xvfi: Extreme video frame interpolation. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp.
14489–14498 (2021)

53. Son, B., Suh, Y., Kim, S., Jung, H., Kim, J.S., Shin, C., Park, K., Lee, K., Park, J.,
Woo, J., et al.: A 640× 480 dynamic vision sensor with a 9µm pixel and 300meps
address-event representation. In: IEEE International Solid-State Circuits Confer-
ence (ISSCC). pp. 66–67 (2017)

54. Varma, A., Chawla, H., Zonooz, B., Arani, E.: Transformers in self-supervised
monocular depth estimation with unknown camera intrinsics. arXiv preprint
arXiv:2202.03131 (2022)

55. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information
Processing Systems (NeurIPS) (2017)

56. Wang, C., Buenaposada, J.M., Zhu, R., Lucey, S.: Learning depth from monocular
videos using direct methods. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2018)

57. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction with-
out convolutions. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). pp. 568–578 (2021)

58. Wang, Y., Xu, Z., Wang, X., Shen, C., Cheng, B., Shen, H., Xia, H.: End-to-end
video instance segmentation with transformers. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 8741–8750
(2021)
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