
Improving Image Restoration by Revisiting
Global Information Aggregation

(Supplementary Material)

Xiaojie Chu, Liangyu Chen, Chengpeng Chen, and Xin Lu

MEGVII Technology

In this document, we provide details of comparison between inference with
(overlapping) patches and our TLC (Section A) and additional visualized results
(Section B) of our approach and existing methods.

A Inference with (overlapping) patches vs our TLC

In this section, we compare our TLC with patch inference. First, Table A1 exper-
iments on GoPro dataset found that MPRNet model with our test-time method
(TLC) achieves higher PSNR (33.31 dB vs. 33.15 dB) with less inference time
(1.69s vs. 6.50s) than inference on overlapping patches cropped from image. Sec-
ond, boundary artifacts are also found in the predictions based on overlapping
patches (Figure A1) while our TLC generates natural result without visible ar-
tifacts (Figure 2d). We will describe the details next.

A.1 Discussion of inference on overlapping patches.

Inference with overlapping patches reduces the train-test statistic inconsistency
so that it also improves the performance of models. However, it has three main
drawbacks:

First, it introduces additional computational costs, as the overlapping regions
are restored twice or more by the entire model. While models with our TLC
directly restore whole images and TLC has low extra computing costs (Table 7).

Second, it can not alleviate boundary artifacts on deblurring tasks. We spec-
ulate that this is because the global statistics of the two overlapping patches
may differ significantly. Restoration of images affected by severe blur requires

Table A1: PSNR of MPRNet on GoPro when test with different methods. Infer-
ence time per image is measured on RTX 2080Ti.

Input #Overlap TLC PSNR (dB) Time (s)

Whole Image
- ✗ 32.66 1.60
- ✓ 33.31 2.03

- ✓ † 33.31 1.69

Overlapping Patches
16 - 33.09 2.60
128 - 33.15 6.50

† denotes optimised implementation of TLC
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Fig.A1: MPRNet’s deblurring result when inference with overlapping 256× 256
patches, which also presents vertical and horizontal artifact split lines. Overlap-
ping of different patches is 128.

large receptive field information and the inference of many models (e.g., MPR-
Net) highly depends on global information. As a result, predictions of different
patches have different estimate of motion blur so that their fusion also show
unnatural dividing lines (Figure A1).

Third, limited size of patch limits the receptive field of information, which
harms the model performance. Pixels in an overlapping region have more range
of other pixels for interactions, so that the results based on more overlapping
regions are better than fewer ones (Table A1). While our TLC utilises full image
information and achieves the best results.

A.2 Inference Speed

Table A1 shows the inference time of MPRNet with different test methods on
RTX2080Ti GPU for a 720× 1280 image. With naive implementation using the
cumulative sum function provided by Pytorch, TLC introduces 27% extra times
(2.03s vs. 1.6s). Note that MPRNet with our TLC still faster and better than
inference with overlapping patches. This shows the efficiency of our method.

The cumulative sum operator is unfriendly for GPU because it is a sequential
algorithm. As a result, the extra test time caused by TLC will be greater than
the theoretical value. A simple way to speed up is to reduce the number of
cumulative sum calculations by sampling. Specifically, we can reduce the size
of the matrix to r2 times its original size by grid sampling with stride r and
use the mean of the sampled matrix to approximate the mean of the original
matrix. As a result, As a result, the number of calculations needed to do the
(one-dimensional) cumulative sum is reduce by r times so that TLC will has
4.78× faster speed. With this careful design, faster TLC only introduces 5.6%
extra times (1.69s vs. 1.6s).
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Fig.A2: Deblurring results of MPRNet [10] on GoPro [5] when inference with
patches. Them introduce visible artifacts at patch boundaries, which look like
there are vertical stripes cutting through the picture.

A.3 Boundary artifacts.

Inference with patches Cropping the image into patches and predict the result
independently induces unsmoothness of the boundary (i.e. “boundary artifacts”
as demonstrated in [3]. We give some example images of block boundary artifacts
in Figure A2, which are generated by MPRNet [10] on GoPro [5] dataset. There
are obvious boundary artifacts in Figure A2 which seriously degrades the quality
of the image.
Inference with overlapping patches. We follow the implementation details
of SwinIR to do inference with overlapping 256 × 256 patches cropped from
image and the results of overlapping region are averaged. Boundary artifacts
are also found in the deblurred images restored by MPRNet on GoPro dataset.
An example is shown in Figure A1 where the blurry image is the same as in
Figure 2a (i.e., filename: “GOPR0384 11 05-004042.png”). Compared with our
TLC (Figure 2d), inference with overlapping patches (Figure A1) still introduces
visible boundary artifacts. This phenomenon is different from SwinIR’s findings.
We attribute this to the nature of severe motion blur and SwinIR did not test
on deblurring tasks.

B Visualized Results

In this section, we provide additional visual results of statistics distribution
(Section B.1) and qualitative comparisons between our approach and existing
methods (Section B.2).
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(a) origin (b) ours (a) origin (b) ours

(i) Mean distribution of Instance Normalizations [7] in HINet [1]

(a) origin (b) ours (a) origin (b) ours

(ii) Mean distribution of SE [2] layers in MPRNet [11]

Fig.A3: Visualization of the statistics (mean) distribution of features. Green:
the distribution when training with patches; Blue: the distribution when infer-
ence with images; Red: the distribution when inference with images and TLC is
adopted (denoted with -local suffix). For each sub-figure: (a) The original test
scheme results in distribution shifts. (b) Distribution shifts could be reduced by
our proposed TLC.

B.1 Global Information Distribution

We provide more results of global information (i.e., mean statistics) distribution
between training and inference on GoPro [5] dataset. Statistics aggregated by
HINet [1] are shown in Figure A3i. Statistics aggregated by MPRNet [11] are
shown in Figure A3ii. For both HINet [1] and MPRNet [11], the statistics distri-
bution shifts from training (green) to inference (blue). The statistics distribution
shifts is reduced by TLC as shown in Figure A3i-b and Figure A3ii-b compares
to Figure A3i-a and Figure A3ii-a: the statistics distribution obtained by our
HINet-local/MPRNet-local (red) is close to the original HINet/MPRNet in the
training phase (green).



TLC: Test-time Local Converter 5

B.2 Qualitative Comparisons

In this section, provide additional qualitative results on various image restoration
tasks (e.g. deburring, deraining and dehazing) for qualitative comparisons.
Deburring. We give the comparison of the visual effect in Figure A4 for qual-
itative comparisons. Compared to the original MPRNet [10] which test with
patches (Figure A4b), our approach (Figure A4d) restores high quality images
without boundary artifacts. Compared to the original MPRNet [10] which test
with images (Figure A4c), our approach restores clearer and sharper images.
Deraining. We give the comparison of the visual effect in Figure A5 for qualita-
tive comparisons. Compared to the original SPDNet [10], our approach restores
clearer images.
Dehazing. We give the comparison of the visual effect in Figure A6 for qualita-
tive comparisons. Compared to the original FFANet [10], our approach restores
clearer images.
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(a) Blurry Image (PSNR)

(b) origin + patches (29.02dB)

(c) origin + full-image (29.87dB)

(d) ours + full-image (30.70dB)

Fig.A4: Deblurring results of MPRNet [10] on GoPro [5] generated by different
inference schemes. Left: full-images. Right: crops from left image. (b) Test with
patches; (c) Test with images; (d) Test with images and TLC is adopted (ours).
It illustrates that (d) provides sharper results than (c) while avoids the boundary
artifacts in (b).
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(a) input (b) origin (c) ours (d) GT

Fig.A5: Deraining results of SPDNet [9] on SPA-Data [8] dataset generated by
different inference methods. (a) Rainy images as inputs. (b) Results based on
full-image produced by the original SPDNet. Some of the rainwater in images is
not removed cleanly. (c) Results based on full-image produced by SPDNet with
the proposed TLC, which are clearer. (d) Ground truth for reference.

(a) input (b) origin (c) ours (d) GT

Fig.A6: Dehazing results of FFANet [6] on Synthetic Objective Testing Set
(SOTS) from RESIDE [4] dataset generated by different inference methods. (a)
Hazy images as inputs. (b) Result produced by original FFANet, which is gray
with obvious noise. (c) Result produced by FFANet with our TLC, which is
brighter with fewer noises. (d) Ground truth for reference.


