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Abstract. This paper proposes a learning-based framework to associate
event streams and intensity frames under diverse camera baselines, to si-
multaneously benefit camera pose estimation under large baselines and
depth estimation under small baselines. Based on the observation that
event streams are globally sparse (a small percentage of pixels in global
frames are triggered with events) and locally dense (a large percentage of
pixels in local patches are triggered with events) in the spatial domain, we
put forward a two-stage architecture for matching feature maps. LSparse-
Net uses a large receptive field to find sparse matches while SDense-Net
uses a small receptive field to find dense matches. Both stages apply
Transformer modules with self-attention layers and cross-attention lay-
ers to effectively process multi-resolution features from the feature pyra-
mid network backbone. Experimental results on public datasets show a
systematic performance improvement for both tasks compared to state-
of-the-art methods.

1 Introduction

Event cameras are biologically-inspired imaging sensors that are now experi-
encing a growing research community. Distinct from traditional cameras that
record the scene as a sequence of frames, event cameras asynchronously measure
log-intensity changes for each pixel and only capture the dynamic visual scenar-
ios. This unique design brings high temporal resolution (< 10µs), high dynamic
range (> 120dB), and low power consumption (< 0.1W ) for event cameras [34,
40], which give event cameras the potential to handle high-speed motion and ex-
treme lighting scenarios with low power consumption, e.g , image reconstruction
[45, 20, 12, 39, 56, 11], optical flow estimation [49, 16], 3D scene reconstruction
[58, 2], tracking [17], scene depth estimation[16], and visual SLAM [38].

Autonomous driving and Augmented Reality (AR) usually adopt the map-
based pose estimation to locate the camera pose [3, 26, 28]. A common way of
existing methods is to first establish a point cloud through Structure fromMotion
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(c) Estimated depth

(b) Estimated camera pose

(𝑅, 𝑡)

Fig. 1. This paper establishes the data association (a) between event streams and
intensity frames under diverse baselines. There are two typical application scenarios:
Case 1 – The intensity camera is fixed and the event camera can move freely for pose
estimation (b). Case 2 – Two cameras are bundled into one system and shoot the scene
in synchronization for depth estimation (c).

(SfM) and obtain the camera pose for one reference image, and then establish
data association (pixel-level correspondence as shown in Fig. 1 (a)) [68] between
subsequent images and the reference image to locate camera pose of the mov-
ing device. Estimating the depth through a stereo camera system is also one of
the classical topics that are tackled by establishing the data association. The
disparity and depth of the scene can be recovered after calibrating the camera
parameters and matching all the pixels in two views of a stereo camera system.
These image-based camera pose estimation and depth estimation methods per-
form unsatisfyingly when suffering from over-/under-exposure and motion blur,
which coincidentally match the strengths of event cameras: high temporal res-
olution and high dynamic range can withstand such unfriendly scenarios. This
inspires researchers to introduce events to benefit and improve the performance
of the two tasks mentioned above.

For camera pose estimation (Fig. 1 (b)), the probabilistic generative event
model is applied to jointly process the events triggered at intensity edges and
the velocity of the camera [3, 14]. They first obtain the pose of the frame-based
camera, and then estimate the pose of the event camera by predicting optical
flow maps from event streams. These models require reliable prior information of
a reference camera’s initial pose and motion, and the data association between
two cameras becomes unreliable as the error of the optical flow estimation accu-
mulates with the baselines becoming larger. For depth estimation (Fig. 1 (c)),
EMVS [44] first proposes the event-based multi-view stereo method, but the
outputting depth maps are sparse. Subsequent deep learning-based algorithms
can be divided into two categories. One category depends on a local correlation
layer [10, 51, 25, 23, 24], assuming a disparity range and calculating local similar-
ities of deep features only within the range, which lacks generalizability due to
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Table 1. Characteristic comparison with
state-of-the-art camera pose estimation
methods.

History poses Motion parameters
Gallego et al . [14] Full history Yes
Bryner et al . [3] The Last pose Yes
Ours No No

the assumed disparity range; the other category simply fuses the feature maps
of event stream and intensity frame through attention layers and directly pre-
dicts the depth map [66, 68], which endures inconsistent baselines between the
training and testing sets. The above existing methods demonstrate the need for
robust data association between two data modalities, i.e, intensity frames and
event streams, whether with a large baseline (pose estimation) or a small base-
line (depth estimation) between two cameras. However, existing methods such as
SIFT [36, 37], ORB [48], or CNN-based ones [61, 8, 9] are not suitable to estab-
lish events and frames data association since they mainly focus on local regions.
It is vital to have a large receptive field to utilize the information provided by
overall edges and contours.

In this paper, we propose a learning-based framework to deal with data
association between event streams and intensity frames under diverse baselines.
In detail, we use the feature pyramid network (FPN) backbone [35] to extract
features and make them more distinguishable. Based on the observation that
event streams are globally sparse (a small percentage of pixels in global frames
are triggered with events) and locally dense (a large percentage of pixels in local
patches are triggered with events) at spatial perspective (as Fig. 1 (a) shows),
we put forward a two-stage architecture for matching feature maps. LSparse-
Net indicates a neural network using a Large receptive field to find Sparse
matches; SDense-Net indicates a neural network using a Small receptive field
to find Dense matches. Both two stages apply Transformer modules[57] with
self-attention layers and cross-attention layers to process the multi-resolution
features from the FPN backbone. In tasks with large baselines, where receptive
fields differ largely from each other, we can match features through low-level
data association; especially for pose estimation, our framework does not require
the history of camera poses for estimation [3, 19] (Table 1). In tasks with small
baselines, where receptive fields differ slightly from each other, our framework
can provide high-level dense data association to refine the final outputs. To
summarize, our primary contributions are threefold:

– We introduce Transformer modules to establish data association between
event streams and intensity frames, making features more distinguishable
with global information, and design a two-stage architecture according to
the globally sparse and locally dense characteristics of events streams.

– Our proposed framework supports the establishment of data association be-
tween event streams and intensity frames under any baseline without requir-
ing the history of camera poses and any extra clue.

– Our proposed framework demonstrates state-of-the-art performance for both
downstream tasks with large baselines (pose estimation) and small baselines
(depth estimation).
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2 Related Work

Data Association. Establishing data association is a fundamental problem in
the SLAM literature [42, 53, 54]. Most SLAM or 3D vision data association are
built upon the outputs of frame-based cameras. Conventional optimization-based
methods [37, 48] are proposed to use handcrafted local features invariant to rota-
tions and scales to solve this problem. With the development of neural networks,
some learning-based approaches [61, 8, 9] can extract significant local features.
The learning-based approaches significantly improve the performance on large
viewpoint and illumination changes of local features. However, these detector-
dependent approaches mainly focus on local regions of images, and could not
make full use of global information. They are inherently unable to find similar
points from different regions. Unlike other methods which aim to deal with data
association between a pair of intensity frames, Gallego et al . [14] build the data
association between event streams and intensity frames upon the prior knowl-
edge by calculating the optical flow of cameras. Later, Bryner et al . [3] propose
a maximum-likelihood framework, which optimizes non-linearly according to the
camera poses and velocities, to establish the data association.
Event-based Pose Estimation. Existing methods for event-based pose esti-
mation differ in settings. Several methods [58, 5, 60] perform motion correcting
for event streams based on depth information and the pose trajectory of cam-
eras. Event streams are treated as intensity frames for local feature extraction
and local feature matching by using RANSAC [13] for robust pose estimation.
Muglikar et al . [41] adopt a similar pipeline for pose estimation with a slight
difference that they directly reconstructed event streams into intensity frames.
Another set of works [63, 62] calculate pose by maximizing the spatio-temporal
consistency of stereo event-based data for camera tracking and 3D reconstruc-
tion, without using intensity frames. The most relevant papers [18, 3, 19] to our
work are based on a generative event model within a maximum-likelihood frame-
work, where extra clues (e.g , pose and motion of cameras, optical flow, etc) are
required. On the contrary, our work does not require any extra clue.
Event-based Stereo. Existing methods for event-based depth estimation fall
into two categories: two event cameras, one event camera and one frame-based
camera. For the former category, Zhu et al . [64] propose a method which ac-
quires a sparse depth map using a dual event camera stereo imaging system. It
requires the velocity of the camera to generate a time-synchronized event dispar-
ity volume, and then applies numerical optimization methods to minimize the
matching cost between two event disparity volumes. Zou et al . [67] recover dense
depth maps from sparse event data. Ahmed et al . [1] design an end-to-end neu-
ral network, which first reconstructs intensity frame from event streams through
learning and then calculates dense depth maps based on stereo intensity frames.
The latter category is more relevant to our work [59, 68]. The method proposed
by Wang et al . [59] is similar to that of Ahmed et al . [1] as they both transform
event streams into intensity frames for depth estimation. The method proposed
by Zuo et al . [68] is an end-to-end approach, which directly takes event streams
and intensity frames as input and outputs a disparity map through pyramid
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Fig. 2. The architecture of our proposed framework, which consists of three modules:
FPN backbone, LSparse-Net, and SDense-Net. The backbone extracts dual-resolution
feature maps from the intensity frame Ip and the time surface of the event stream Ie,
respectively. LSparse-Net establishes sparse data association from coarse-level features,
while SDense-Net establishes dense data association from fine-level features.

attention layers and a U-Net [47] structure. Additionally, Li et al . [33] propose
STTR, which abandons the cost of volume construction and establishes data as-
sociation between stereo intensity images using Transformer modules. This work
is closely related to our work in terms of models.

3 Proposed Method

In this section, we first introduce the formulation of the problem we target and
explain our overall framework in Sec. 3.1 and Fig. 2. Then, we describe our two-
stage architecture in Sec. 3.2 and Sec. 3.3 in detail. Finally, we introduce our
dense output decoder in Sec. 3.4 to ensure outputs consistency. The implemen-
tation details are in Sec. 3.5.

3.1 Problem Formulation and Overall Framework

We aim to establish data association between pair-wise event streams and inten-
sity frames, captured by two separated or bundled cameras in arbitrary poses
(Fig. 1), by finding pixel-level matches, without geometric constraints such as
homography and epipolar constraint. Events are triggered by an event camera
whenever the log intensity change d at a given pixel is larger than a threshold
c. Each event is recorded as a four-attribute tuple {x, y, t, p}, where (x, y) is the
coordinates, t is the timestamp, and p is the polarity given by: p = 1 if d ≥ c and
p = −1 if d ≤ c. An event stream is a stacking of such events generated by event
cameras. We first transform event streams into four-channel time surfaces [7, 30],
whose first two channels record the number of positive and negative events and
last two channels record the timestamp of the latest positive and negative events
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triggered at each pixel. Then, given an intensity frame Iip ∈ RHi×Wi×1 and the

time surface Iie ∈ RHi×Wi×4 of an event stream, we formulate the problem as
finding pixel-level matches between this pair of data. Specifically, the matching
procedure could be expressed as xe = FΘ(xp|Iip, Iie). where xp and xe denote

the matching pixel coordinates from Iip and Iie respectively, and FΘ denotes the
matching function parameterized by Θ.

Based on the globally sparse and locally dense properties of event streams,
we design the matching function as a two-stage framework: The first stage is
a matching module aiming to establish sparse data association at the global
level and the second stage is a matching module aiming to establish dense
data association at the local level. As shown in Fig. 2 , dual-resolution fea-
ture maps, I lp, I

l
e ∈ RHl×Wl×1 with coarse resolution and Isp , I

s
e ∈ RHs×Ws×1

with fine resolution, are first extracted from the intensity frame and the time
surface of event streams by the FPN backbone. After the FPN backbone, re-
garding the difference of events in density, we design two distinct matching
modules: LSparse-Net and SDense-Net. LSparse-Net takes the flattened feature
maps Ī lp, Ī

l
e from the large receptive fields as input and outputs sparse matches

M̄zlp→e ∈ {0, 1}(Hi×Wi)×(Hi×Wi), where M̄ l
p→e(x̄

l
p, x̄

l
e) = 1 represents the match

between Ī lp(x̄
l
p) and Ī le(x̄

l
e). Unlike LSparse-Net which aims to establish long-

range data association, SDense-Net aims to find a dense, local data association.
SDense-Net takes feature maps Isp , I

s
e from small receptive fields and outputs final

dense matching results xe = FΘ(xp|Iip, Iie), where Ip(xp) matches Ie(xe). The
final loss function then becomes the weighted sum of losses from each matching
model. We further add a dense prediction layer to ensure outputs consistency
and make the framework compatible with the depth estimation task. We will
introduce in detail the design of two stages in the following subsections.

3.2 LSparse-Net

We exploit the global information of each view to achieve the coarse matching,
thereby avoiding large matching errors caused by local feature differences be-
tween intensity frames and event streams. Specifically, we choose to use Trans-
former module in LSparse-Net (refer to Fig. 2 top), similar to the design of
methods [50, 52], as Transformer module can enlarge each feature’s receptive
field and thereby include long-range association during matching. Each Trans-
former module consists of self-attention and cross-attention layers in an alterna-
tive order. Feature maps I lp, I

l
e, after being forwarded by the Transformer mod-

ule, become more discernible in the form of I l
′

p ∈ RHl×Wl×Dl , I l
′

e ∈ RHl×Wl×Dl .
Then, we design a correlation layer to exhaustively compute the cosine simi-
larity between each pair of feature descriptors, to build the correlation matrix
Cl ∈ RHl×Wl×Hl×Wl . Usually, there are more matches in the vicinity of a correct
match. This inspires us to design a 4-D CNN structure for matching and filtering
the correlation matrix, by using the mutual nearest neighbor filter.
Transformer Module. We use linear Transformer [27] to reduce the computa-
tional complexity and apply positional encoding to encode location information
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into features. The original Transformer put forward by Vaswani et al . [57] is
an encoder-decoder architecture, where the encoder consists of sequentially con-
nected encoder layers. For each encoder layer, the most critical feature is the
attention layer, which takes query vector Q, key vector K, and value vector V
as input. In self-attention layers, Q,K, V are transformed from the same input
vector with different weights and in cross-attention layers, Q,K, V are trans-
formed from different input vectors.

Linear Transformer, proposed by Katharopoulos et al . [27], aims to reduce
the computational costs caused by the dot product between Q and K. The dot
product from the attention layer in the original Transformer is substituted with
an alternative kernel function:

Similarity(Q,K) = ϕ(Q) · ϕ(K)⊤, (1)

where ϕ(·) = elu(·) + 1. As D (the scale of ϕ(Q), ϕ(K)) is much smaller than N
(the scale of Q and K), the computational complexity is reduced to O(N).

Positional encoding is added to each element to encode positional informa-
tion. Following DETR [4] and LoFTR [52], we apply the 2D extension of posi-
tional encoding in our Transformer module.

Our Transformer module takes feature maps Ī lp, Ī
l
e as input. In the self-

attention layer, the two inputs are identical: either (Ī lp, Ī
l
p) or (Ī le, Ī

l
e); in cross-

attention layer, the two inputs differ from each other: (Ī le, Ī
l
p). This module does

not change the shape of feature map, but instead applies the attention layer to
encoding more context information into the features for a better recognizability.
Correlation Layer. To acquire pairwise feature similarity, we apply a corre-
lation layer [32] to calculate the cosine similarity between feature descriptors
and normalize features with ℓ2 norm before and after the correlation layer.
The output feature maps from the Transformer module I l

′

p ∈ RHl×Wl×Dl , I l
′

e ∈
RHl×Wl×Dl have a spatial size of Hl ×Wl and dimensionality Dl. Let I

l′

p (i, j) ∈
RDl denote the feature vector at a spatial location (i, j), then the correlation
layer evaluating the pairwise similarities between all locations in feature maps
I l

′

p , I
l′

e can be calculated as

Cl(i, j,m, n) = I l
′

p (i, j) · I l
′

e (m,n), (2)

where · denotes the scalar product. The final output is the 4-D correlation matrix
Cl capturing the similarities between all pairs of spatial locations.
Matching Decoder. The previous correlation layer builds a dense correlation
matrix, but it is a significant challenge to determine which pairs are correct
matches. To discriminate a reliable match, we apply the network proposed by
Rocco et al . [46]. Since correct matches tend to have a coherent set of supporting
matches surrounding them in the 4-D space, by processing correlation matrix
with 4-D convolutional network we can establish a strong locality prior to the
relationships between the matches. In our implementation, we apply three layers
of 4-D convolutional blocks to capture the match patterns and ReLU activation
function in the last layer. The output M l has only one channel and maintains
the same shape as the input.
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Mutual Nearest Neighbor Filtering. If I lp(i, j) and I le(m,n) matches, it

simultaneously means that I le(m,n) is the closest feature to I lp(i, j) in I le and

I lp(i, j) is the closest feature to I le(m,n) in I lp. Therefore, we use this rule to
further filter the matches and eventually acquire the final sparse results. We
denote the final match matrix as M̄ l.
Loss Function. In LSparse-Net, we acquire sparse data association. Therefore,
we apply negative log-likelihood loss. With respect to each set of ground truth
match M l

gt = ((i1, j1,m1, n1), ..., (iN , jN ,mN , nN )), we calculate the loss as:

Ll = − 1

N

∑
i,j,m,n

log M̄ l(i, j,m, n). (3)

3.3 SDense-Net

LSparse-Net is a sparse matching module capable of detecting long-range associ-
ation, while SDense-Net is in charge of establishing local dense data association
in patches which have been matched by LSparse-Net. SDense-Net (refer to Fig. 2
bottom right) consists of Transformer modules and correlation layers similar to
LSparse-Net. The distinction is that, to acquire dense matches, the matching
decoder of SDense-Net differs from its counterpart in LSparse-Net.
Matching Decoder. The matching decoder in SDense-Net consists of several
convolutional blocks and outputs a two-channel tensor with unchanged resolu-
tion. Given the output Cs ∈ RHs×Ws×Hs×Ws from correlation layer, it is trans-
formed to C

′

s ∈ RHs×Ws×(Hs×Ws) for the convenience of CNN-based processing,
where the third dimension denotes channels. This decoder outputs a two-channel
matrix Dpose, indicating the displacement of matching pixel’s coordinates on X-
axis and Y -axis respectively.
Loss Function. In SDense-Net, we acquire dense data association. Therefore,
we apply ℓ2 loss. Suppose the input of this module has M points, then for each
point (i, j) from Īsp , there is a corresponding point from Īse , whose loss could be
calculated as:

Ls =
1

M

∑
i,j

∥(i−m, j − n)∥2. (4)

3.4 Dense Prediction Layer

We add a dense prediction layer to ensure dense output consistency and make
it compatible with dense outputting tasks such as predicting depth maps or
disparity maps. This dense prediction layer consists of several convolution layers
and a ReLU activation function at the end. We denote Ddepth as the output of
this layer.
Loss Function. We apply the Lc loss for per-pixel supervision to minimize the
difference between ground truth and dense predictions. Given a batch of ground
truth with pixel labels ŷ, pixel-wise dense predictions y, and the number of pixels
H, Lc loss is defined as

Lc =
1

H

∑H

i=1
∥ŷi − yi∥. (5)
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3.5 Implementation Details

The resolution of event streams and intensity frames is 260 × 346. The entire
model is trained end-to-end with randomly initialized weights. The LSparse-Net
consists of two Transformer layers and SDense-Net consists of one Transformer
layer. The dimension of Transformer is set to 512. The match decoder in LSparse-
Net and the match decoder in SDense-Net each consists of three CNN layers.

The final loss is the weighted sum of the loss functions of LSparse-Net and
SDense-Net:

L = Ll + α · Ls + β · Lc, (6)

where α and β are hyper parameters. For the tasks which does not require dense
output, we don’t use the additional dense output layer and we set α = 2 and
β = 0. Otherwise, we set both α = β = 2.

All of the models are trained using Adam optimizer [29] with an initial learn-
ing rate of 1×10−3 and a batch size of 16. In training, the learning rate is cut in
half by MultiStepLR scheduler in epoch {3, 9, 15}. All experiments are imple-
mented on NVIDIA TITAN RTX GPUs. For all experiments, we use four GPUs
for training and validating.

Fig. 3. Exemplars for data association. We randomly sample 100 pairs of match-
ing pixels from all matches for visualization. The first two rows show results of data
association on the synthetic data[6], whereas the last row shows results on the real
data. As shown, our model can still establish sound data association even when the
views of the event stream and the intensity frame differ largely from each other.
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Table 2. Pose estimation evaluation
on the synthetic data. We report the
AUC of the pose error at thresholds (5◦,
10◦, 20◦), where the pose error is defined
as the maximum of angular error in rota-
tion and translation.

Pose estimation AUC
5◦ 10◦ 20◦

Synthetic
data

10.40 25.43 39.68

4 Applications

In this section, we first introduce two applications based on the data association
we proposed, including pose estimation in 4.1 (for large baselines) and depth
estimation in 4.2 (for small baselines). Then, we conduct several ablation studies
to verify the validity of each model design choice in 4.3.

4.1 Pose Estimation

To demonstrate that our framework can establish data association under large
baselines, we use it to solve the pose estimation problem. We cannot directly
use existing benchmark datasets [3, 14] for event-based pose estimation, because
our model requires pixel-wise ground truth matches as supervision for training,
but existing datasets rarely contain the information of camera poses and high-
quality depth images at the same time for us to construct labels. Despite the fact
that EVSEC [65] can provide both, it only contains a limited number of scenes,
restricting the generalizability of the final model. Eventually, we choose Scan-
Net [6], an RGB-D video dataset, and generate the corresponding event streams
with the event simulator V2E [22] under the default parameter settings to gen-
erate the training dataset. ScanNet [6] contains 1613 videos with the ground
truth pose and the depth map of each frame. The resolution of the images and
depth maps are all 640×480, and the frame rate of videos is 30 fps. We sample a
part of the synthetic dataset for training referring to [52, 50] to synthesize event
streams by V2E [22]. The sample indices will be provided in the supplementary
materials. When generating the event stream corresponding to each intensity
frame, we include the latest 20,000 events earlier than the timestamp of the in-
tensity frame, which remains consistent in our training and testing processes on
all datasets.

To evaluate the robustness to real data, we choose the scene of an actual
room from Bryner et al . [3], which consists of a texture-less white wall and some
rich-textured objects. The data are acquired by RGB-D cameras and motion
capture system, providing depth and pose information. We compare our model
(trained only on the synthetic dataset) with recent events and frame-based 6-
DoF tracking methods, including the works of Gallego et al . [15], and Bryner et
al . [3]. Note that our method does not require the history of camera poses like
Gallego et al . [15] and Bryner et al . [3], as shown in Table 1, which makes the
estimation process more convenient.
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Table 3. Pose estimation evaluation
on the real data. We report the median
accuracy of the results. The position er-
ror (Pos.) is given by the Euclidean dis-
tance between the ground truth and the
estimated event position. The orientation
error (Ori.) is measured using the geodesic
distance between the ground truth and the
estimated event pose.

Bryner et al . [3] Ours
Pos. (cm) Ori. (◦) Pos. (cm) Ori. (◦)

Room1 9.95 3.08 8.82 4.12
Room2 9.82 3.84 8.73 4.63

Test Setting. Referring to the test settings from Bryner et al . [3], we respec-
tively choose 284 and 3046 pieces of event streams from trajectory 1 and trajec-
tory 2, and choose the nearest five frames of intensity frames according to the
timestamp of the last event to construct data pairs. Instead of relying on the
history pose, the purpose of choosing the nearest five intensity frames is to find
intensity frames that are spatially overlapped with the current events as reference
frames. For a given event stream, to calculate the camera pose corresponding
to the last event, we treat the five data pairs as our inputs. After matching
those pairs between intensity frames and events, we can establish some corre-
spondence between events and the intensity image. Since the 3D coordinates of
intensity frame pixels are known in advance, we can build correspondences be-
tween 2D coordinates of events and the 3D coordinates of intensity frame pixels.
We solve the PnP problem with the OpenCV solvePnPRansac to finally get the
camera pose. For the parameter settings, we set iterationsCount = 10000,
reprojectionError = 8.0, confidence = 0.99.
Evaluation Protocol and Results. For evaluation on the synthetic dataset,
following [31, 52], we report the area under the cumulative curve (AUC) of the
pose errors at different thresholds. To recover camera poses, we solve the essential
matrix from predicted matches with RANSAC. The evaluation metrics on the
synthetic dataset are shown in Table 2. For evaluation on the real-world dataset,
we pick the absolute and relative errors of position and rotation as evaluation
metrics. As shown in Table 3, our method achieves comparable performance to
Bryner et al . [3] without relying on any particular initial pose. Note that as
analyzed in Bryner et al . [3], the ground truth data contain a certain level of
noise. Achieving this level of error is almost the limit for any model on this
particular dataset. It is demonstrated in Fig. 3 that, for both synthetic and real
data, our model is capable of establishing correct matches between event streams
and intensity frames in scenes with large baselines and sparse textures, and our
model is generalizable from synthetic data to real-world data.

4.2 Depth Estimation

To demonstrate that our framework can establish data association under small
baselines, we use it to solve the depth estimation problem. We choose Multi
Vehicle Stereo Event Camera Dataset (MVSEC) [65] for training and testing
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(g) HDES (h) DDES (i) Semi-Dense 3D (j) Ours

(a) Ground Truth (b) HDES (c) DDES (d) TSES (e) Ours

(f) Ground Truth

Fig. 4. Qualitative comparison against recent event-based methods on the
Indoor Flying dataset. Following [62, 55, 64, 68], we select 4 examples from the
dataset and compare with HDES [68], DDES [55], TSES [64], Semi-Dense 3D [43].
From top to bottom, the rows correspond respectively to frame 100 from sequence 1,
frame 340 from sequence 1, frame 1700 from sequence 3, and frame 980 from sequence
1. Following HDES [68], we add a mask in our results based on the ground truth, set-
ting pixels as dark blue if their disparity values are missing in the ground truth.

for this task. MVSEC [65] is a widely used event-based stereo dataset collected
by LIDAR, IMU, and two event cameras. Each event camera can output event
streams and intensity frames with a resolution of 346×260. The product of focal
length and the baseline between the two cameras is 19.94. This dataset provides
event streams and synchronized intensity frames, depth maps and the poses of
cameras calculated by LIDAR and IMU.

For comparison, we choose the Indoor Flying dataset from MVSEC [65],
which is taken by a drone in a room with several objects of irregular shapes.
As the depth images are sparse on some images, referring to Zhu et al . [64], we
choose three subsets for training and evaluation, which consist of indoor flying1:
140-1200, indoor flying2: 120-1420, indoor flying3: 73-1616. Following the setup
in existing methods [64, 55, 68], we use two subsets for supervised training and
one subset for validating and testing. Split 1 means we use the first subset of the
sequence as our validation and test dataset. The second and third subsets are
used as training data. We use event streams for left-view and intensity frames
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Table 4. Depth estimation evaluation on the Indoor Flying dataset. Our
method shows clear advantages over DDES [55], SGM [21], TSES [64], and CopNet [62].
Compared with HDES [68], our method demonstrates similar performances in most
cases and is slightly ahead in the mean depth error on Split 1. The cells of mean
disparity error for HDES [68], DDES [55], and SGM [21] are left blank because the
metric of mean disparity error is not calculated for them in their original works.

Mean depth error (cm) Mean disparity error (px) One pixel accuracy (%)
Split 1 Split 2 Split 3 Split 1 Split 2 Split 3 Split 1 Split 2 Split 3

HDES [68] 16.0 28.0 18.0 - - - 86.4 49.7 80.1
DDES [55] 16.7 29.4 27.8 - - - 89.8 61.0 74.8
SGM [21] 29.0 36.7 37.9 - - - 78.5 64.4 71.0
TSES [64] 36.0 44.0 36.0 0.89 1.98 0.88 82.3 70.1 82.3
CopNet [62] 61.0 100.0 64.0 1.03 1.54 1.01 70.0 52.8 70.6
Ours 15.8 31.8 19.7 0.75 1.82 0.87 88.1 50.3 77.4

for right-view as the input of models, and the model outputs disparity maps.
Identical to the test setting of pose estimation, for each intensity frame, we
include the latest 20,000 events earlier than its timestamp as its corresponding
event stream. Eventually, mean disparity error, mean depth error, and one-pixel
accuracy are applied to assess our results quantitatively.

We compare our framework with multiple approaches, including methods for
stereo event cameras (DDES [55], Semi-Dense 3D [43], CopNet [62]), methods
for stereo frame-based cameras (SGM [21]), and methods for stereo systems of
a frame-based camera and an event camera (HDES [68]).
Results. Quantitative results are shown in Table 4. The results validate the
capability of our framework to solve the basic problem of establishing data as-
sociation between event streams and intensity frames while being adaptive to
multiple tasks. Visual results for comparison are shown in Fig. 4. According to
the side-by-side comparison across splits, Split 2 ranks the last. The primary
reason is that some data in sequence 2 contain large depths, whereas sequences
1 and 3 do not contain such data. Compared with the state-of-the-art model
HDES [68], as shown in the first row, our framework is more accurate in predict-
ing the overall distribution of disparity, whereas HDES [68] predicts better sharp
results over the edges, which might be attributed to the design of Lsmoothness

in HDES [68]. As a whole, using both event streams and intensity frames to
estimate depth, our model reaches the state-of-the-art performances.

4.3 Ablation Study

To verify the validity of each module design choice in our framework, we compare
the performances of three different sets of module combinations respectively on
the two tasks. For pose estimation, as shown in Table 5: 1) Removing SDense-
Net while preserving LSparse-Net leads to a significant drop in performances.
2) Changing the layers of the Transformer in LSparse-Net from 2 to 1 leads to
a slight drop in AUC. Note that we should not remove the whole LSparse-Net
since it would lead to huge video memory consumption. For depth estimation,
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Table 5. Ablation study for pose es-
timation. Three variants of models are
trained and evaluated on the synthetic
ScanNet [6] dataset. Smaller LSparse-Net
denotes that it only contains 1 Trans-
former layer.

Pose estimation AUC
5◦ 10◦ 20◦

Remove SDense-Net 2.33 14.23 25.42
Smaller LSparse-Net 9.76 23.42 32.53
Our final model 10.40 25.43 39.68

Table 6. Ablation study for depth estimation. The models below are trained and
evaluated on Split 2 of EVSEC [65] dataset.

Mean depth
error (cm)

Mean disparity
error (px)

One pixel
accuracy (%)

Split 2 Split 2 Split 2

Remove dense output layer 45.5 2.43 40.8
Remove SDense-Net 37.7 2.02 43.4
Transformer dimension = 256 32.4 1.99 47.3
Our final model 31.8 1.82 50.3

we conduct experiments on Split 2. As shown in Table 6: 1) Removing the dense
output layer leads to a significant drop in performances. 2) Removing SDense-Net
while preserving LSparse-Net also leads to a drop in performances. 3) Changing
the feature dimension for the Transformer in LSparse-Net from 512 to 256 leads
to a slight drop in all three metrics. These results demonstrate that our final
model achieves the optimal performance with these specific design choices.

5 Conclusions

This paper presents an approach to establish data association between event
streams and intensity frames, which not only establishes data association under
large baselines and large difference in receptive fields for pose estimation of
cameras, but also establishes data association under small baselines and small
difference in receptive fields for depth estimation of dual camera system with
bundled intensity and event cameras. We achieve this by taking the globally
sparse and locally dense feature of event streams into account and establishing
data association in a sparse-to-fine manner.
Limitations. Furthermore, we observe that existing real-world datasets for
event-based pose estimation and depth estimation using both event streams and
intensity frames with high-quality ground truth poses and depth labels are still
not ready on large scales. Synthetic datasets, despite their large quantities, are
not realistic enough for blur artifacts and HDR properties of events. This is one
of the bottlenecks that prevents the proposed method to further explore more
reliable data association.
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