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Although the main paper is self-contained in terms of the main results, we
believe that the supplementary material can be of help to understand the work
in greater detail. Here, we describe the DeepPS2 architecture and remaining
results on surface normal, albedo, shading, and illumination estimation. Also,
we demonstrate qualitatively the results of image reconstruction and relighting
on different objects from the DiLiGenT benchmark [3].

1 DeepPS2 Architecture

Table 1 describes the detailed network architecture. The design of all the modules
(except the illumination module) is inspired by that of Hourglass networks [5].

2 Results on Normal Estimation

Figure 1 shows the qualitative comparison of the surface normal maps obtained
using DeepPS2 with other baselines [4,2,1] over the six remaining objects on the
DiLiGenT benchmark dataset.

3 Inverse Rendering Results

Figure 2 shows the qualitative comparison of the estimated illumination, albedo,
and shading through DeepPS2. We also show the image reconstruction and re-
lighting results along with the SSIM value.

4 General Comments

– The DeepPS2 framework can be generalized to PSn (n > 2) problem. How-
ever, since the PS2 problem is a special case of n ≥ 3 and light sources
are coplanar, we chose to rather evaluate the other methods under the PS2
regime for a fair comparison.
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– The state of the art methods take multiple (n > 2) images to understand
specularities (and other lighting dependent effects) through some global fea-
ture fusion strategy. However, DeepPS2 is designed to explicitly model spec-
ularities using just two images. The key idea here is to use albedo estimation
(and refinement) and image relighting to better model lighting effects from
just two images since accurate modeling of specularities can give us correct
lighting estimates. Table 2 (main paper) shows the performance dip without
lighting estimation. Interestingly, these design considerations in DeepPS2
enable it to outperform other methods under the PS2 regime (Table 1, main
paper) primarily due to their dependence on feature extraction and fusion
from multiple images.

– While the visualizations of images are dark, we found that lighting effects
were best discernible with dark backgrounds (with zoom), and thus chose to
retain the same.

– The number of bins for light space discretization might not be sufficient for
sparse and high frequency specularities and we anticipate a failure if these
specularities are concentrated in a small image region and albedo refinement
can be affected. Such specularities have been observed primarily (to some
extent) in the HARVEST and READING objects. However, our sampling
strategy, i.e., taking images from a different bin as input and the albedo
refinement method, has modeled these complexities as evident from quality
of refined albedos in Fig. 2. Some artifacts can occur if the network fails
to accurately estimate albedo for some paired combination of input images
(Fig. 2).

– We realize that it would be interesting to observe the performance of DeepPS2
on surfaces with specularities heavily concentrated in smaller regions and we
plan to work in this direction in the future. Understanding the particular
light source configuration(s) for which DeepPS2 can fail is an interesting
direction to explore.
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Table 1. Detailed network architecture of DeepPS2

Module Architecture

Encoder

conv(k=6, p=2, s=2, cin = 7, cout = 32), BN, ReLU
conv(k=4, p=1, s=2, cin = 32, cout = 64), BN, ReLU
conv(k=4, p=1, s=2, cin = 64, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin = 128, cout = 256), BN, ReLU
conv(k=4, p=1, s=2, cin=256, cout = 512), BN, ReLU

Decoder
(Normal and Albedo)

conv(k=4, p=1, s=2 cin = 512, cout = 256), BN, ReLU
conv(k=4, p=1, s=2, cin = 512, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin = 256, cout = 64), BN, ReLU
conv(k=4, p=1, s=2, cin = 128, cout = 32), BN, ReLU
conv(k=4, p=1, s=2, cin = 64, cout = 64), BN, ReLU
Normal: conv(k=5, p=2, s=1, cin=64, cout = 3), Tanh
Albedo: conv(k=5, p=2, s=1, cin=64, cout=6), Tanh

Illumination
conv(k=3, p=0, s=1, cin = 9, cout = 64), BN, ReLU
conv(k=3, p=0, s=1, cin = 64, cout = 128), BN, ReLU
conv(k=3, p=0, s=1, cin = 128, cout = 256), BN, ReLU

Regress θ:
Linear(256, 256), ReLU, Dropout(0.25)
Linear(256,64), ReLU, DropOut(0.25)
Linear(64, 5)

Regress ϕ:
Linear(256, 256), ReLU, Dropout(0.25)
Linear(256,64), ReLU, DropOut(0.25)
Linear(64, 5)

Albedo Refinement

conv(k=6, p=2, s=2, cin = 44, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin = 128, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin = 128, cout = 256), BN, ReLU
conv(k=4, p=1, s=2, cin = 256, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin =256, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin =256, cout = 64), BN, ReLU
conv(k=5, p=2, s=1, cin =64, cout = 6), Tanh

Image Reconstruction

conv(k=6, p=2, s=2, cin = 15, cout = 64), BN, ReLU
conv(k=4, p=1, s=2, cin = 64, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin = 128, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin = 128, cout = 256), BN, ReLU
conv(k=4, p=1, s=2, cin=256, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin=256, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin=256, cout=64), BN, ReLU
conv(k=4, p=1, s=2, cin=128, cout=64), BN, ReLU
conv(k=5, p=2, s=1, cin=64, cout=6), Tanh

Image Relighting

conv(k=6, p=2, s=2, cin = 7, cout = 64), BN, ReLU
conv(k=4, p=1, s=2, cin = 64, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin = 128, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin = 128, cout = 256), BN, ReLU
lighting feature(256)
conv(k=4, p=1, s=2, cin=256, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin=256, cout = 128), BN, ReLU
conv(k=4, p=1, s=2, cin=256, cout=64), BN, ReLU
conv(k=4, p=1, s=2, cin=128, cout=64), BN, ReLU
conv(k=5, p=2, s=1, cin=64, cout=6), Tanh

Lighting Feature:
conv(k=1, p=0, s=1, cin=3, cout=64)
conv(k=1, p=0, s=1, cin=64, cout=128), BN, Upsample(2)
conv(k=3, p=1, s=1, cin=128, cout=128), BN, Upsample(2)
conv(k=3, p=1, s=1, cin=128, cout=256), BN, Upsample(2)
conv(k=3, p=1, s=1, cin=256, cout=256)
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Fig. 1. Normal estimation results on remaining objects in the DiLiGenT Benchmark
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Fig. 2. Inverse rendering results on remaining objects from the DiLiGenT Benchmark
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