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Abstract. Estimating 3D surface normals through photometric stereo
has been of great interest in computer vision research. Despite the suc-
cess of existing traditional and deep learning-based methods, it is still
challenging due to: (i) the requirement of three or more differently illu-
minated images, (ii) the inability to model unknown general reflectance,
and (iii) the requirement of accurate 3D ground truth surface normals
and known lighting information for training. In this work, we attempt to
address an under-explored problem of photometric stereo using just two
differently illuminated images, referred to as the PS2 problem. It is an in-
termediate case between a single image-based reconstruction method like
Shape from Shading (SfS) and the traditional Photometric Stereo (PS),
which requires three or more images. We propose an inverse rendering-
based deep learning framework, called DeepPS2, that jointly performs
surface normal, albedo, lighting estimation, and image relighting in a
completely self-supervised manner with no requirement of ground truth
data. We demonstrate how image relighting in conjunction with image
reconstruction enhances the lighting estimation in a self-supervised set-
ting.3

Keywords: Photometric Stereo, Deep Learning, Inverse Rendering, Im-
age Relighting

1 Introduction

Inferring the 3D shape of the objects using digital images is a fundamental
and challenging task in computer vision research. It directly extends to qual-
ity control, virtual/augmented reality, medical diagnosis, e-commerce, etc. The
widely used geometric approaches to shape recovery such as binocular [21,42] or
multi-view stereo [38,11,25,24,26] methods require images from different views
to triangulate the 3D points. However, they rely heavily on the success of im-
age feature matching techniques and fall short of recovering finer details such as
indentations, imprints, and scratches. The photometric methods for 3D shape
reconstruction use shading cues from either a single image - Shape from Shading
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(SfS) [15] or at least three images - Photometric Stereo (PS) [46] to recover
surface normals and are known to better preserve the finer surface details.

What are the bottlenecks? The SfS problem is ill-posed due to the un-
derlying convex/concave ambiguity and the fact that infinite surface normals
exist to explain the intensity at each pixel [33]. The PS methods are known to
handle such ambiguities and provide a unique surface normal defining the in-
tensity at each pixel by using three or more differently illuminated images [14].
However, the well-posed traditional photometric stereo problem (as introduced
by Woodhman [46]) assumes the surfaces to be purely Lambertian, which sel-
dom is the case in the real world. Several recent methods [17,50,9,8,7,10] have
also addressed shape estimation for non-Lambertian surfaces with unknown re-
flectance properties. However, they require more images (∼ 50− 100) as input.
While there are methods that require as few as six (or even fewer) images [28],
our goal is to resort to just two images under a photometric stereo setting.

Scope of the PS2 problem. The scope of this work is to address the
photometric stereo problem in an intermediate setting with two images (m = 2)
between SfS (m = 1) and the traditional PS (m ≥ 3). It can essentially be
viewed as a degenerative case of lack of meaningful information due to shadows
in a typical three-source photometric stereo setting [13]. Another use case of a
PS2 problem arises in the 3D reconstruction of the non-rigid objects [12]. When
an object is imaged under three light sources, one could be occluded by the
object, and only the other two would provide meaningful cues. Further, the PS2
problem arises when m ≥ 3 and light sources are coplanar. Such a situation
typically occurs when the scene is illuminated by the sun and hence, applies to
outdoor PS as well [37,19].

Constraints in addressing the PS2 problem. Several normal fields can
offer solutions to the PS2 problem. One can perform an exhaustive search among
these normal fields and find the one that best fits the underlying shape satis-
fying the smoothness constraint [30]. The differential PS formulation implicitly
enforces such smoothness. However, it requires explicit knowledge of the surface
boundary conditions [29], which is rarely available or requires regularization
[13], which is generally tedious owing to heavy parameter tuning. A few meth-
ods [29,34] have put forward ways to address the PS2 problem based on the
non-differential formulation by recasting it as a binary labeling problem. While
such optimization problems can be solved using graph-cut-based algorithms [5],
they require the albedo to be known.

Can deep neural networks offer a solution? We use deep neural net-
work to model unknown general surfaces with complex Bidirectional Reflectance
Distribution Functions (BRDFs) while addressing the PS2 problem. The pho-
tometric stereo problem using deep neural networks has been addressed ei-
ther under a calibrated (known lightings) or an uncalibrated (unknown light-
ings) setting. While most of these methods require 3D ground truth supervision
[17,50,9,8,7,10,27,41], a little progress has been made to address PS in a self-
supervised manner [20]. However, such self-supervised and uncalibrated methods
still require ground truth supervision for lighting estimation.
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In this work, we introduce an inverse-rendering-based deep learning frame-
work, called DeepPS2, to address the PS2 problem and work towards developing
a completely uncalibrated and self-supervised method. The core idea is to uti-
lize the shading cues from two differently illuminated images to obtain the 3D
surface normals. DeepPS2 is designed to perform albedo estimation, lighting es-
timation, image relighting, and image reconstruction without any ground truth
supervision. While image reconstruction is commonly adopted in the existing
unsupervised/self-supervised approaches, the appropriate design considerations
to perform image relighting using the estimated lightings bring out several in-
teresting insights about the proposed framework.

Contributions The following are the key contributions of this work.

– We introduce DeepPS2, an uncalibrated inverse-rendering based photometric
stereo method that jointly performs surface normal, albedo, and lighting
estimation in a self-supervised setting4.

– We propose a self-supervised lighting estimation through light space dis-
cretization and perform image relighting (using the estimated lightings)
along with image reconstruction.

– Wemodel the specularities explicitly using estimated illumination and albedo
refinement .

– To the best of our knowledge, ours is the first work to introduce the PS2
problem using deep learning in a self-supervised manner.

2 Related Work

This section reviews the literature on the PS2 problem and some recent deep
learning-based photometric stereo methods.

The PS2 Problem. Onn and Bruckstein [30] discussed the ambiguities in
determining surface normals using two images and proposed to use integrability
constraint to handle such ambiguities. Sato and Ikeuchi [37] used their method
to solve the problem with m ≥ 3 images under solar illumination, which in a
sense addresses the PS2 problem [46]. Later, Yang et al. [48] studied the problem,
particularly for the convex objects. Kozera provided an analytical resolution to
the differential formulation of PS2 [23]. Since 1995 (for over ten years later), only
Ikeda [16] addressed the PS2 problem by essentially considering the second image
as an auxiliary to better solve the SFS problem. Queau et al. [34] addressed the
PS2 problem using a graph cut based optimization method. Further, the problem
of outdoor PS is being re-explored in several works [1,2]. While these methods
attempt to provide a numerical resolution to the PS problem [29,34], we intend
to address it using the capacity of deep neural networks.

Deep Learning-based methods. Deep learning has seen great progress
addressing photometric stereo [50,9,7,10,17,36]. Santo et al. [36] were the first
to propose a deep learning-based method to obtain per-pixel surface normals.
However, they were limited by the pre-defined order of pixels at the input. Later,

4 https://github.com/ashisht96/DeepPS2

https://github.com/ashisht96/DeepPS2


4 A. Tiwari and S. Raman

Chen et al. in their subsequent works [9,7,10] proposed to model the spatial infor-
mation using feature-extractor and features-pooling based strategies for photo-
metric stereo. Further, the works by Yao et al. [49] and Wang et al. [44] proposed
to extract and combine the local and global features for better photometric un-
derstanding. However, all these methods require ground truth surface normals for
supervision which is generally difficult to obtain. Recently, Taniai & Maehara
[41] proposed a self-supervised network to directly output the surface normal
using a set of images and reconstruct them but with known lightings as in-
put. Kaya et al. [20] expanded their method to deal with inter-reflections under
an uncalibrated setting, however, the lighting estimation was still supervised.
Other methods such as Lichy et al. [28], and Boss et al. [4] predicted shape and
material using three or less and two images (one with and one without flash),
respectively. While LERPS [43] infers lighting and surface normal from a single
image, it requires multiple images (one at a time) for training. We work towards
an uncalibrated photometric stereo method that uses only two differently illu-
minated images as the input while estimating lightings, surface normals, and
albedos, all in a self-supervised manner.

3 Understanding PS2: Photometric Stereo using Two
Images

Before describing the PS2 problem, we review some key features of the SfS [15]
and the traditional PS problem [46]. We assume that an orthographic camera
images the surface under uniform directional lighting with viewing direction
v ∈ IR3 pointing along the z-direction and the image plane parallel to the XY
plane of the 3D Cartesian coordinate system XY Z.

3.1 Shape from Shading (SfS)

Consider an anisotropic non-Lambertian surface f with the Bidirectional Re-
flectance Distribution Function (BRDF) ρ. Let the surface point (x, y) be char-
acterized by the surface normal n ∈ IR3, illuminated by the light source in the
direction ℓ ∈ IR3, and viewed from the direction v ∈ IR3. The image formation
of such a surface is given as per Equation 1.

I(x, y) = ρ(n, ℓ,v)ψf,s(x, y)
[
n(x, y)T ℓ

]
+ ϵ (1)

Here, ψf,s(x, y) specifies the attached and the cast shadows. It is equal to 0, if
(x, y) is shadowed and equal to 1, otherwise. ϵ incorporates the global illumi-
nation and noise effect. I(x, y) is the normalized gray level with respect to the
light source intensity. Clearly, with albedo and lightings being known apriori,
the surface normals n(x, y) in the revolution cone around the lighting direction
ℓ constitute the set of infinite solutions to Equation 1. Therefore, it becomes an
ill-posed problem and is difficult to solve locally.
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3.2 Photometric Stereo (PS)

The simplest solution to overcome the ill-posedness of SfS is to have m ≥ 2
differently illuminated images of the object taken from the same viewpoint. In
general, for multiple light sources, Equation 1 extends to the following.

Ij(x, y) = ρ(n, ℓj ,v)ψf,s(x, y)
[
n(x, y)T ℓj

]
+ ϵj (2)

Here, the equation is specific to the jth light source. Form ≥ 3 and a Lambertian
surface, Equation 2 formulates a photometric stereo problem (the traditional one
for m = 3). Solving such a system is advantageous as it is well-posed and can
be solved locally, unlike SfS.

3.3 The PS2 problem

With such a non-differential formulation (as in Equation 2), the three unknowns
(nx, ny, nz) can be obtained by solving three or more linear equations. However,
such a formulation is tricky to solve under two scenarios: (i) when the light
sources are coplanar (rank-deficit formulation) and (ii) when m = 2. These
scenarios lead us to the formulation of the PS2 problem - photometric stereo
with two images, as described in Equation 3.

ρ(n, ℓ1,v)ψf,s(x, y)
[
n(x, y)T ℓ1

]
+ ϵ1 = I1(x, y)

ρ(n, ℓ2,v)ψf,s(x, y)
[
n(x, y)T ℓ2

]
+ ϵ2 = I2(x, y)

nx(x, y)
2 + ny(x, y)

2 + nz(x, y)
2 = 1 (3)

The non-linearity in the third part of Equation 3 could give non-unique solution
[18]. Adding one more image (under non-coplanar light source configuration)
can straightaway solve the problem. However, it will fail when the surface is
arbitrarily complex in its reflectance properties. Further, the problem becomes
even more difficult to solve when albedo is unknown.

4 Method

In this section, we describe DeepPS2, a deep learning-based solution to the PS2
problem. Further, we describe several design considerations, light space sampling
and discretization, and share the training strategy.

4.1 Network Architecture

Let I1, I2 ∈ IRC×H×W be the two images corresponding to the lighting di-
rections ℓ1 and ℓ2, respectively. The two images along with the object mask
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Fig. 1. The proposed inverse rendering framework, called DeepPS2, for shape, mate-
rial, and illumination estimation. The encoder-decoder design is inspired by Hourglass
networks [47]. Layer-wise skip connections are avoided for visual clarity

M ∈ IR1×H×W are fed to the encoder fenc to obtain an abstract feature map
ϕimg, as described in Equation 4.

ϕimg = fenc([I1, I2,M ];θenc) (4)

Here, [·] represents channel-wise concatenation and θenc represents the parame-
ters of the encoder.

Surface Normal and Albedo Estimation. We use ϕimg to obtain an

estimate of surface normal map N̂ and the albedo Â through the decoders fn dec

and fa dec, respectively, as described in Equation 5.

N̂ = fn dec(ϕimg;θn dec)

Â = fa dec(ϕimg;θa dec) (5)

Here, Â = [Â1, Â2] represents the albedos of two images I1 and I2 together.
The design of each encoder-decoder combination 5 is inspired by that of the
Hourglass network [47].

Lighting Estimation. A straightforward way to estimate lighting directions
could be to use another fully connected branch and train the network to regress to
the desired lightings directly from ϕimg. However, fully connected layers require
a large number of parameters. Further, obtaining precise lighting information
directly just from the image features would be difficult since it would not have the
explicit knowledge of the structure and reflectance properties of the underlying
surface. With an intent to keep the entire architecture fully convolutional, we
propose an illumination module (fill) to predict the desired lighting directions
by using the estimated normal map and albedos, as described in Equation 6.

l̂i = fill([N̂ , Âi];θlem) (6)

5 The detailed layer-wise architecture can be found in our supplementary material.
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Here, i = 1, 2 corresponding to two images I1 and I2, respectively.
At this stage, one straightforward approach could be to use the estimated

normal, albedos, and lightings in order to reconstruct the original images through
the image rendering equation (see Equation 11). However, the estimated albedo
Â without lighting estimates fails to capture the complex specularities on the
surface (see Figure 4). Also, the estimated lightings were a little far from the
desired ones.

Thus, the question now is - how do we validate the accuracy of the estimated
albedos and lightings, especially when there is no ground truth supervision? The
albedos and lightings go hand-in-hand and are dependent on each other as far as
image rendering is considered, of course, in addition to the surface normal (see
Generalized Bas Relief (GBR) ambiguity [3]). To address the aforementioned
concerns, we propose two crucial resolves: (i) albedo refinement before image
reconstruction and (ii) image relighting using the estimated lightings.

Albedo Refinement by Specularity Modeling. As discussed earlier, the
estimated albedo Â failed to represent the specularities directly from the image
features. Most of the existing deep photometric stereo methods have implicitly
handled specularities using multiple differently illuminated images through max-
pooling and global-local feature-fusion. However, it is crucial to understand that
the specularities are essentially the reflections on the surface, and information
about surface geometry can help model such specularities better. Understanding
surface geometry becomes even more crucial when we have just one or two images
to model the surface reflection. Therefore, we choose to explicitly model these
specularities and refine the albedo estimate using a few reasonable and realistic
assumptions.

We assume that the specular BRDF is isotropic and is only the function of
the half-vector h and the surface normal n at any point on the surface as the
BRDF can be re-parameterized to a half-vector based function [35]. In doing
so, we could omit the Fresnel Reflection coefficients and geometric attenuation
associated with modelling BRDFs. The authors in [31,6] found that the isotropic
BRDF can also be modeled simply by two parameters θh = cos−1(nTh) and
θd = cos−1(vTh). Therefore, we use the estimated lighting ℓi to compute cos(θh)
and cos(θd) to further refine the albedo. Additionally, we use positional encoding
to model the high-frequency specularities in the refined albedo. In short, we
construct the Li as per Equation 7.

Li = [pi, γ(pi)]

pi = [nThi,v
Thi] (7)

Here, γ(η) = [sin(20πη), cos(20πη), ..., sin(2m−1πη), cos(2m−1πη)]. We choose

m = 3 in our method. Futher, hi =
l̂i+v

||l̂i+v||
.

Following these observations, we use an encoder-decoder based albedo refine-
ment module (farm) to obtain the refined albedo by considering the estimated
lightings Li, albedos Â, surface normal N̂ , and the underlying images as its
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input. Equation 8 describes the information flow.

Âi(ref) = farm([Ii, N̂ , Âi, Li, ];θarm) (8)

Image Relighting. Generally, at this stage, the existing approaches proceed
further to use the rendering equation and reconstruct the input image(s). How-
ever, the lightings are either known or have been estimated with ground truth
supervision. This allows stable training and offers convincing results. However,
in our case, the lightings are estimated without any explicit supervision and are
expected to produce learning instabilities. So the question is, how can we ensure
that the estimated lightings are close to the desired ones without any ground truth
supervision?

As an additional check on the authenticity of the estimated lightings, we
propose to use them for the image relighting task. We use an image relighting
module (frel) to relight one image into the other using the estimated lighting as
the target lighting and measure the quality of the relit image, as described in
Equation 9.

Î1(rel) = frel(I2,ϕ(ℓ̂1);θrel) (9)

Here, ϕ(ℓ̂1) is the lighting feature extracted from the desired target lighting ℓ̂1.
The quality of the relit image fosters the lighting estimates to be close to the
desired ones.

Image Reconstruction. Having obtained the estimates of surface normal,
albedo, and lightings, we finally use them to obtain the reflectance map Ri using
the encoder-decoder based image reconstruction module (frecon), as described in
Equation 10.

Ri = frecon([Ii, N̂ , Âi(ref), ℓ̂i];θrecon) (10)

The reflectance image Ri is then used to reconstruct the associated image
Îi, as described in Equation 11.

Îi = Ri ⊙max(ℓ̂i
T
N̂ , 0) (11)

Here, ⊙ refers to the element-wise multiplication.
In this way, the proposed DeepPS2 produces estimates of surface normal,

albedos, and lightings as well as relights the image under target lightings by
using only two images as input and no additional ground truth supervision.
Based on the network performance, we show that the PS2 problem can be well
addressed using the benefits of deep learning framework.

4.2 More on Lighting Estimation: The Light Space Sampling

As discussed earlier, an intuitive approach to estimate light source directions
would be to directly regress them from image(s). However, regressing these val-
ues to the exact ones is difficult and can cause learning difficulties [7]. Further,
under the distant light source assumption, it is easier and better to specify a
region in the light space rather than the exact direction while locating the light
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(a) (b) (c)

Fig. 2. (a) Light space discretization into K = 25 bins. δ = 180/2K is the maximum
angular deviation. (b) Variation of MAE with K. (c) Effect of early stage warm-up

source. Additionally, this eases the light source calibration during data acquisi-
tion. Therefore, we choose to formulate the lighting estimation as a classification
problem. A few methods in the recent past have adopted the classification formu-
lation [7,10] and weak calibration setting [28] for lighting and shape estimation
and have produced excellent results.

In this work, we discretize the light space (upper hemisphere) into K =
25 bins (as shown in Fig. 2(a)) i.e. 5 bins along the azimuth direction ϕ ∈
[0◦, 180◦] centered at [18◦, 54◦, 90◦, 126◦, 162◦] and 5 bins along the elevation
direction θ ∈ [−90◦, 90◦] centered at [−72◦,−36◦, 0◦, 36◦, 72◦]. While each bin
suffers a maximum angular deviation of 18◦ along each direction (Fig. 2(a)), they
offer a relatively simpler light source configuration during data acquisition. They
can be realized using hand-held lighting devices. Further, learning under such
discretized light space configuration allows the network to better tolerate errors
in the estimated lightings and the subsequent downstream tasks. During training,
the network must select the appropriate bin in the light space to understand the
light source configuration from the input image, the estimated normal map, and
the albedos.

4.3 Network Training

We use the standard DiLiGenT benchmark dataset [39] having the 10 objects
imaged under 96 different light directions with complex non-Lambertian surfaces.
We implement DeepPS2 in Pytorch [32] with Adam optimizer [22] and initial
learning rate of 1× 10−4 for 25 epochs and batch size 32 on NVIDIA RTX 5000
GPU. The learning rate is reduced to half after every 5 epochs. It is observed
that if the object under consideration has relatively simple reflectance properties,
even a randomly initialized network trained with the image reconstruction loss
can lead to good solutions. However, for complex scenes, it is better to warm
up the network by initializing the weights through weak supervision only at the
early stages of training [41,20]. In our case, we perform this warming up for
normal, albedo, and lighting estimation through weak supervision using L1-loss
(LL1

), L2-loss (LL2
), and the perceptual loss (Lperp) for first 2000 iterations, as
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described in Section 4.4. For weak supervision, we randomly sample 10 images
(preferably, each one from a different lighting bin) and estimate the normal map
using the least-squares formulation [46], as per Equation 12.

N̂ ′ = L−1I (12)

It is important to note that the lighting directions in L are from the discretized
light space setting, where we compute the lighting direction as the one pointing
towards the center of the selected bin. Since we have the images, the normal map
N̂ ′, and the discretized lightings L, we compute the diffuse shading (nT ℓ) and
specular highlights (regions where n is close to the half-angle h of ℓ and viewing
direction v = [0, 0, 1]T ). Once we have the shadings (diffuse and specular), we
compute the albedos (Â′) to use them for weak supervision since an image is the
product of the albedo and the shading.

4.4 Loss Functions

In this section, we describe the loss function used for training the entire frame-
work. Equation 13 describes the combination of L1-loss and the perceptual loss
Lperp used for both image reconstruction and relighting.

LT (X, X̂) = λ1L1(X, X̂) + λ2L2(X, X̂) + λperpLperp(X, X̂) (13)

Here,
L1(X, X̂) = ∥ X − X̂ ∥1
L2(X, X̂) = ∥ X − X̂ ∥22

Lperp(X, X̂) =
1

WHC

W∑
x=1

H∑
y=1

C∑
z=1

∥ ϕ(X)x,y,z − ϕ(X̂)x,y,z ∥1 (14)

Here, ϕ is the output of VGG-19 [40] network and W , H, C are the width,
height, and depth of the extracted feature ϕ, respectively. λ1 = λ2 = 0.5 and
λperp = 1.0.

Weak Supervision. We use the LT and the standard cross-entropy loss
to provide weak supervision (for first 2000 iterations) for albedos and lightings,
respectively. However, for surface normals, we use Equation 15.

Lnorm(N̂ , N̂ ′) =
1

M

∑
p

∥ N̂p − N̂ ′
p ∥22 (15)

5 Experimental Results

In this section, we show the qualitative and quantitative comparison of the
DeepPS2 with several baseline approaches. The classical methods [34,29] have
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Fig. 3. Surface normal maps obtained using a randomly chosen input image pair. More
results are available in the supplementary material

provided the numerical resolution to the underlying ambiguities in PS2. How-
ever, the code and results on the DiLiGenT benchmark are not available for
comparison. Moreover, since deep learning-based methods have significantly out-
performed the traditional photometric stereo methods (even in handling ambi-
guities), we resort to comparing our work only with the state-of-the-art deep
learning-based methods such as UPS-FCN [9], SDPS-Net [7], IRPS [41], Kaya
et al. [20], Lichy et al. [28], and Boss et al. [4]. They have been chosen carefully
as they can be modified to align with our problem setting by re-training them
with two images as input for a fair comparison.

Results on Normal Estimation. Table 1 shows a quantitative comparison
of the proposed framework with the other deep learning-based methods. All the
methods have been trained with two images as input, and the Mean Angular
Error (MAE) is reported to quantify the surface normal estimation. Since IRPS
[41] is designed to take two images (one with frontal flash), we evaluate it using
pairs of images where one image is lit frontally i.e., from the bin corresponding
to θ = 0◦ and ϕ = 90◦. From Table 1, we observe that the proposed DeepPS2
obtains the best average MAE value and best (or at least second best) individual
scores for eight different objects (except POT1 and BEAR). Even though our
framework performs best in the calibrated setting, it outperforms the other base-
lines under the uncalibrated setting as well. Furthermore, even with no ground
truth supervision, our method outperforms other supervised (row 1-6) and self-
supervised (row 7-8) methods. To appreciate the results qualitatively, we show
a visual comparison of READING, HARVEST, COW, and POT2 with the self-
supervised baselines [41,20], and a two-image based supervised method [4] in
Fig. 3. Interestingly, DeepPS2 performs the best on objects like HARVEST and
READING, having complex shadows and inter-reflections with spatially-varying
material.

Results on Albedo Estimation. In Fig. 4, we present a qualitative assess-
ment of the albedos obtained using our method. We observe that the learned
albedos are able to handle the complex shadows and specular highlights, espe-
cially after refinement using the estimated lightings.
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Fig. 4. Inverse rendering results on HARVEST and READING objects. The recon-
struction and relighting module yield the SSIM of 0.837 and 0.779, respectively, when
averaged over all the objects on the DiLiGenT Benchmark. More results are available
in the supplementary material

Results on Lighting Estimation. The goal of discretized lighting is to
remove the network’s dependence on precise lighting calibration. Therefore, we
attempt to model the illumination using the weakly calibrated lighting directions
such as front, front-right/left, top, top-right/left, bottom, bottom-right/left, etc.
Given that the light space discretization yields an MAE of 18◦ numerically, we
intend to establish that the network may not need precise calibration at all
times. A rough and/or abstract understanding of lighting directions should help
guide the network towards realistic shape estimation. To better evaluate the
performance of the illumination module, we visualize the learned illumination
over a sphere in Fig. 4. It is observed that the illumination module captures the
distribution of light sources essential for modeling the complex specularities in
the refined albedos at the later stage.

Results on Image Relighting and Reconstruction.We report the widely
used Structural Similarity Index (SSIM) [45] to quantify the quality of the recon-
structed and relight images. However, these results are best appreciated visually.
Therefore, we use Fig. 4 to show the quality of the generated images. The quality
of the results establishes that our inverse rendering results are sufficiently stable
for realistic relighting and reconstruction.

5.1 Ablation Studies

In this section, we discuss several design choices in DeepPS2 under different
experimental settings.
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Table 1. Mean Angular Error (MAE) over 10 randomly chosen image pairs per object
from the DiLiGenT Benchmark [39]. GREEN and YELLOW coloured cells indicate
the best and the second best performing methods, respectively. Rows 1-6 and 7-8
correspond to supervised and self-supervised approaches, respectively

Type of
Method

Objects →
Method ↓ Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest Average

Calibrated PS-FCN [9] 6.41 20.04 19.67 16.95 21.12 23.04 24.81 29.93 17.23 34.68 21.38 ± 2.05
Uncalibrated UPS-FCN [9] 9.71 18.97 17.85 15.12 18.62 19.77 22.14 27.36 14.83 31.25 19.56 ± 1.58
Calibrated SDPS-Net [7] 7.97 19.88 18.12 12.51 18.25 25.12 26.36 27.47 15.21 30.59 20.14 ± 1.17

Uncalibrated SDPS-Net [7] 7.81 21.74 19.73 13.25 20.47 27.81 29.66 31.12 18.94 34.14 22.6 ± 1.02
Uncalibrated Boss et al. [4] 7.71 14.81 10.17 8.01 12.89 15.98 18.18 21.54 11.96 27.36 14.85 ± 0.98
Uncalibrated Lichyet al. [28] 7.42 20.34 11.87 9.94 11.12 18.75 19.38 21.51 12.93 29.52 16.27 ± 1.01

Calibrated Taniai & Maehara [41] 7.03 10.02 11.62 8.74 12.58 18.25 16.85 21.31 14.97 28.89 15.03 ± 0.96
Uncalibrated Kaya et al. [20] 6.97 9.57 10.14 8.69 13.81 17.57 15.93 21.87 14.81 28.72 14.81 ± 0.89

Calibrated DeepPS2 (Ours) 6.17 9.62 10.35 8.87 12.78 14.78 13.29 18.34 10.13 25.18 12.95 ± 0.64
Uncalibrated DeepPS2 (Ours) 6.28 9.87 10.73 9.67 12.09 14.51 14.22 19.94 11.08 26.06 13.44 ± 0.67

Ablation 1: What if we do not include lighting estimation in the
framework? We attempt to understand the effect of including the lighting in-
formation explicitly in the surface normal estimation through such an inverse
rendering-based framework. In Table 2, comparing the experiment IDs 1 and
2, we observe that lighting estimation is crucial for the task at hand. This ob-
servation is in line with the classical rendering equation that requires lighting
directions to understand the reflectance properties and shadows on the surface.
Further, we intended to know the deviation in MAE for surface normal estima-
tion when actual lightings (calibrated setting) are used. Although the network
performs better under the calibrated setting (see Table 1), the error difference is
not very large (0.49 units). This supports our idea of using weaker calibrations
for surface normal estimation under distant lightings.

Table 2. Quantitative comparison of various design choices. LE: Lighting Estimation,
AR: Albedo Refinement, PE: Positional Encoding, and IR: Image Relighting. Experi-
ments IDs 1-6 include warm-up

ID LE AR PE IR Ball Cat Pot1 Bear Pot2 Buddha Goblet Reading Cow Harvest Average

1 ✗ ✗ ✗ ✗ 9.87 36.55 19.39 12.42 14.52 13.19 20.57 58.96 19.75 55.51 26.07
2 ✓ ✗ ✗ ✗ 9.32 15.62 16.41 10.96 15.77 19.93 18.37 32.34 16.17 30.26 18.51
3 ✓ ✓ ✗ ✗ 7.37 15.64 10.58 9.37 14.72 15.06 18.1 23.78 16.31 27.17 15.85
4 ✓ ✓ ✓ ✗ 6.88 12.16 11.13 9.79 15.11 14.89 16.07 20.46 11.85 27.22 14.55
5 ✓ ✓ ✓ ✓ 6.28 9.87 10.73 9.67 12.09 14.51 14.22 19.94 11.08 26.06 13.44
6 frontally-lit image 6.74 9.38 10.13 9.08 13.18 14.58 14.63 17.84 11.98 24.87 13.24

7 w/o warm-up 12.43 25.01 22.82 15.44 20.57 25.76 29.16 52.16 25.53 44.45 27.33

8 fully supervised 5.14 8.97 10.28 8.92 9.89 12.76 12.38 18.52 9.81 23.22 11.98

Ablation 2: Effect of discretizing the light space on normal esti-
mation. Fig. 2 (b) shows the effect of a different number of bins on the MAE
evaluated over the DiLiGenT benchmark. We resort to choosing K = 25 bins as
the reduction in the MAE plateaus (roughly) after that point. Further, the light
space discretization not only reduces the computational overhead but also helps
the network understand the lighting dynamics more holistically. This is evident
from the MAE reported in Table 1 and quality of the refined albedos in Fig. 4.
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Ablation 3: Do albedo refinement and image relighting help in mod-
eling the illumination? Qualitative results in Fig. 4 show how well the refined
albedos capture the specularities on the surface. Table 2 (IDs 2 and 3) shows
the performance improvement by including the albedo refinement module. The
explicit specularity modeling is observed to produce realistic albedos. The per-
formance is further enhanced through the use of positional encoding (Table 2 ID
4) as it helps the module to better capture the high-frequency characteristics in
the refined albedo. Finally, the inclusion of the image relighting module further
reduces the MAE (Table 2 ID 5). Since the relighting module is solely driven
by the estimated lightings, relighting helps in obtaining better surface normal
estimates through better lighting estimation as an additional task.

Ablation 4: What is the effect of warming up the network with
weak supervision at the early stages of training? We also consider under-
standing the effect of weak supervision during the early stage warm-up. Table 2
(IDs 5 and 7) clearly establishes the benefit of warming-up. Fig. 2 (c) shows the
the convergence with and without the warm-up. Clearly, an early-stage warm-up
provides stable and faster convergence as the outliers in the images are excluded
at the early stages during weak supervision.

Ablation 5: What if the lighting directions of one image at the
input is known? We evaluate an interesting and practical case where one of
the two input images is captured with collocated light source and camera i.e.,
ℓ = v = [0, 0, 1]T . Since the lighting direction is known, we provide (auxiliary)
supervision to the illumination module to obtain a better lighting estimate for the
other image. Table 2 (ID 6) shows the results obtained over image pairs having
one image sampled from the frontal lighting bin i.e. θ = 0◦, ϕ = 90◦. Under this
setting, the method performs better than the completely self-supervised version
because frontally-lit (flashed) images offer a better understanding of specularities
on complex surfaces. Finally, we also show the performance of DeepPS2 under
a fully supervised setting (Table 2 (ID 8)) to establish the upper bound of
DeepPS2.

6 Conclusion

In this work, we address the PS2 problem (photometric stereo with two images)
using a self-supervised deep learning framework called DeepPS2. In addition to
surface normals, the proposed method also estimates albedos and lightings and
performs image relighting, all without any ground truth supervision. Interest-
ingly, we demonstrate that weakly calibrated lightings can be enough for the
network to learn the underlying shape of an object. In conjunction with image
reconstruction, image relighting helps in better lighting estimation. While other
uncalibrated methods have used ground truth supervision for learning to esti-
mate lightings, we do so entirely in a self-supervised manner. To the best of our
knowledge, we are the first to address photometric stereo using two images in a
deep learning setting.
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