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Abstract. Instance contour adjustment is desirable in image editing,
which allows the contour of an instance in a photo to be either dilated or
eroded via user sketching. This imposes several requirements for a favor-
able method in order to generate meaningful textures while preserving
clear user-desired contours. Due to the ignorance of these requirements,
the off-the-shelf image editing methods herein are unsuited. Therefore,
we propose a specialized two-stage method. The first stage extracts the
structural cues from the input image, and completes the missing struc-
tural cues for the adjusted area. The second stage is a structure-driven
CNN which generates image textures following the guidance of the com-
pleted structural cues. In the structure-driven CNN, we redesign the con-
text sampling strategy of the convolution operation and attention mech-
anism such that they can estimate and rank the relevance of the contexts
based on the structural cues, and sample the top-ranked contexts regard-
less of their distribution on the image plane. Thus, the meaningfulness
of image textures with clear and user-desired contours are guaranteed by
the structure-driven CNN. In addition, our method does not require any
semantic label as input, which thus ensures its well generalization capa-
bility. We evaluate our method against several baselines adapted from the
related tasks, and the experimental results demonstrate its effectiveness.

1 Introduction

A photo can be considered as a composition of a certain number of instance(s),
and the contour of an instance separates itself from the other instances. By
adjusting instance contours, a user can achieve superior photography experience
which cannot be met with the real but fixed scenery and even photography
professionalism. For example, in Fig. 1 where the lake and Merlion are two
instances, users hope to dilate the contour of the lake shape to be a flying pigeon;
or they hope to create fantastic scenes, e.g., eroding the contour of the Merlion
to remove its body. These are moments when an instance contour adjustment
function can turn the table.

* Corresponding author.
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Dilate the contour of the lake to be a flying pigeon 

Image inpainting SG inpainting

Ours
instance area
dilated area

Erode the contour of the Merlion to remove its fish body

Image inpainting SG inpainting

Ours
instance area
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Fig. 1: Task comparison. The original and overlaid images are put on the left side of
our results. The results of image inpainting [26] and semantic-guided (SG) inpainting
[16] are shown below. The cyan dotted boxes highlight artifacts and the out-of-control
contours.

In order to adjust the contour of an instance, users first extract the instance
area (yellow in Fig. 1) with the image matting function. Then, users sketch
the hypothetical contours which form two potential types of area: (i) Dilated
area (refer to the left example) should be exclusively filled with the content
of the instance area. (ii) Eroded area (refer to the right example) should be
exclusively filled with the content external to the instance area.

These two exclusion rules distinguish the instance contour adjustment from
the related tasks. In Fig. 1, we illustrate the differences among instance contour
adjustment (ours) and the other two related tasks, i.e., image inpainting and
semantic-guided (SG) image inpainting. These two exclusion rules are not en-
forced in image inpainting, so the generated instance contours in Fig. 1 are out of
user’s control, and different instances tend to be mixed to cause the ambiguous
structures. The semantic-guided image inpainting methods [16,6] estimate the
semantic parsing mask for the input image, infer the semantic contour for the
adjusted area to complete the semantic mask, and then use the completed se-
mantic mask to guide the inpainting process. Since the inferred semantic contour
is out of user’s control, these two exclusion rules are not enforced in semantic-
guided image inpainting either, as demonstrated by the ambiguous structures of
instances in Fig. 1. Thus, it is nontrivial to study how to effectively enforce the
two exclusion rules in order to generate reasonable textures for the adjusted area
(dilated or eroded) while preserving the clear and desired contours that separate
different instances.

In this paper, we propose a two-stage method to leverage the structural cues
to address the instance contour adjustment. The dilated area and eroded area
have their respective exclusion rule, so if they exist in the same image, we will
handle them separately in order to avoid the potential conflicts. It is easier to
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complete the missing structural cues for the adjusted areas than completing the
missing image textures, so we extract and complete two structural cues at the
first stage, i.e., the structure image and the depth map, and use them to guide
the completion of image textures at the second stage. In order to enforce the
two exclusion rules, we propose a diffusion algorithm and employ a structure
reconstruction model in [14] to complete the missing structural cues for the
dilated area and eroded area, respectively.

At the second stage, we propose a structure-driven CNN to generate image
textures based on the structural cues completed at the first stage. By “structure-
driven”, we mean that both the convolution operations and the attention mech-
anism follow the structural cues to sample potential regions of the same instance
regardless of their distribution on the image plane while passing over regions of
the distracting instances. Thus, different instances will not be mixed by the CNN
for the adjusted area, and the clear and desired contours will be guaranteed. The
structure-driven context sampling is performed as follows: given one region on
the image plane, we estimate and rank the likelihoods of its contextual regions
belonging to the same instance as itself, and sample the top-ranked regions as
contexts. To compute the likelihood of two regions belonging to the same in-
stance, we consider their two affinities: (i) the appearance affinity based on their
inclusion relationship or color distance, and (ii) the geometry affinity based on
their depth distance.

We collect a new landscape dataset to evaluate our method, and we also
establish an evaluation protocol which is beneficial to the follow-up works.

2 Related Works

Semantic-guided inpainting attracts attention recently because the semantic
mask can provide the structural cues for guiding image inpainting. The AIM
2020 Challenge on Image Extreme Inpainting [12] found that the introduction
of the semantic mask can both increase and decrease the performance on the
inpainting task, depending on how its processing was implemented. Therefore,
it is nontrivial to study how to make use of the structural cues. There are only a
few methods focusing on the semantic-guided inpainting. For example, Song et
al. [16] proposed a two-stage network, where the first stage completes the hole
regions of the semantic mask, and the second stage completes the hole of the
image. Liao et al. [6,7] proposed to estimate the semantic mask on the fly, and
the estimated mask is injected back to influence the intermediate feature maps.
Coarse to fine. Many existing inpainting methods implement the coarse-to-
fine pipeline with two stages. Their first stage completes the structural cues
such as edge-preserved structure image [14], contour of foreground object [20],
monochromic image [17], and coarse textures [22,23,24,11,13,2,26]. Their second
stage directly takes as input the completed structural cues to generate image
textures. However, we observe that it is hard to exert the influences of the
structural cues effectively by processing them with the learnable parameters.
Therefore, our structure-driven CNN uses them as the guidance to sample the
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image structure

Completed
depth map

(5) Depth map(4) Structure image(3) Inclusion mask(1) Input image

(a) Five-fold inputs to the first stage of our method (b) Outputs of the first stage 

(2) Adjusted mask

dilated area eroded area

Fig. 2: Inputs and outputs of structural cue completion (first stage). (2) An
adjusted mask is a binary mask which indicates the adjusted area. (3) An inclusion
mask specifies correspondences between the adjusted area (enclosed in green/red dotted
contour) and the others. Corresponding areas are set the same label, and visualized in
the same color.

irregularly-distributed top-ranked regions as contexts for the convolution oper-
ation and attention mechanism, which leads to user-desired contours.
Negative influence of the void (hole) regions is a key factor downgrading
the inpainting quality. In [9,24,18], various versions of partial convolution are
proposed, which maintains or infers a mask to zero out values of the void regions.
The definition of void regions in instance contour adjustment is more complicated
because of higher demand for preserving desired contours. The void regions of a
location are defined as those belonging to the distracting instances which need
to be determined adaptively by structural cues.
Image extrapolation by object completion [1] is related to completing the
dilated area, but several aspects differentiate this task from the instance contour
adjustment. First, this task requires an input mask with the semantic label,
which harms the generalization capability. Second, the inferred contour is out of
user’s control. Third, the object completion model cannot complete the eroded
area due to the lack of clear correspondences with the external areas.

3 Structural Cues

We employ two structural cues: (i) structure image and (ii) depth map. See
Fig. 2 as an example. Based on the extracted and completed structural cues,
given a region on the image plane, we can estimate and rank the likelihoods of
its contextual regions belonging to the same instance as itself. Thus, the convo-
lution operation and attention mechanism can sample the top-ranked contexts
precisely regardless of their distribution on the image plane. Then, we introduce
the format, extraction and completion of the structural cues.

Structure image is a kind of edge-preserved smooth image which is obtained
by removing the high-frequency textures while retaining the sharp edges and the
low-frequency structures. Regions of an instance tend to share similar color ap-
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Fig. 3: Structure-driven CNN (second stage). The inputs are four-fold as shown
by numbers in parentheses. “LR” and “HR” represent “low-resolution” and “high-
resolution”, respectively. The red dotted contour highlights the initialized adjusted
area. SD-Conv and SD-Attn represent structure-driven convolution and attention, re-
spectively. Orange and blue arrows indicate inputs to SD-Conv block and SD-Attn,
respectively. The ellipsis represents Gated-Conv. The detailed architecture of SD-Conv
blocks are attached at the top right corner. k and s denote the kernel size and stride,
respectively. θ is a specialized parameter of SD-Conv denoting the number of contexts
to be sampled.

pearances in a structure image. We use RTV method [21] to extract the structure
image from an RGB image.

Depth map is a grayscale image in which each entry represents the relative
distance of an instance surface to the camera. The depth map can be used to
differentiate instances at different distances from the camera. We employ the
MegaDepth method [5] to extract the depth map from a monocular RGB image.

Completion. Fig. 2 shows the inputs and outputs of the first stage of our
method which completes the structural cues for the adjusted area (dilated or
eroded). An inclusion mask specifies (potential) correspondences between the
adjusted area and the others, and the corresponding areas are set the same
label. For example, the dilated area (green) in Fig. 2 (a) corresponds to the
instance area (lake), so both the dilated area and instance area are set the same
label, i.e., 1 (blue); the remaining area is set the label 0 (orange). The eroded
area (red) in Fig. 2 (a) potentially corresponds to the area which is external to
the instance area (Merlion), so both the eroded area and the external area are
set the same label, i.e., 1 (blue); the instance area is set the label 0 (orange).
The inclusion mask is not a binary mask, which enables adjusting contours for
multiple instances simultaneously.

The first stage of our method completes the structural cues for the dilated and
eroded areas using different approaches because of their respective exclusion rule.
Specifically, we propose a diffusion algorithm based on the iterative Gaussian
blur operations which under the guidance of the inclusion mask, can propagate
the structural cues from the instance area to the corresponding dilated area. Due
to the lack of clear correspondences between the eroded area and the external
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area, the hypothetical distribution of the external instances needs to be inferred
for the eroded area. Thus, we modify the structure reconstruction model in [14]
to complete the eroded area on the structure image and depth map. To avoid the
interference from the instance area, we temporarily cut out the instance which
will be pasted back after the completion, and complete the entire instance area
as doing the eroded area. We put the details of the diffusion algorithm and the
modified structure reconstruction model in the supplementary material.

4 Structure-driven CNN

Fig. 3 shows the pipeline of the structure-driven CNN. The inputs are four-fold
including the two structural cues completed at the first stage. As highlighted
by the red contour, the adjusted area on the input image is initialized with
the corresponding area on the completed structure image which is smooth due
to its nature. Thus, the structure-driven CNN is supposed to enrich the image
texture details. The architecture consists of a shared encoder and a decoder with
which the structure-driven convolution (SD-Conv) blocks are equipped. There
is a structure-driven attention mechanism (SD-Attn) between the encoder and
decoder. As in [27], in order to save the computational cost, we perform the
attention estimation at low resolution.

4.1 Structure-driven convolution

Before diving into the introduction of SD-Conv, we first explain why the con-
ventional convolutions for inpainting, e.g., Gated Convolution (Gated-Conv) and
Deformable Convolution (Deform-Conv), tend to mix different instances for the
adjusted area, and thus cannot preserve the clear and desired contours. To this
end, we prepare two baseline methods by replacing all convolutions in our method
with Gated-Conv and Deform-Conv, respectively.

As illustrated in Fig. 4 (a1) and (a2), Gated-Conv and Deform-Conv sample
all contexts within the receptive field regardless of whether they belong to the
distracting instances. As highlighted in red, these two convolutions are prone to
introduce irrelevant contexts of the distracting instances when the convolution
kernels are sliding over contours separating instances. Consequently, the sampled
irrelevant contexts cause the ambiguous contours between instances, as shown in
Fig. 4 (a1) and (a2). The drawbacks of Gated-Conv and Deform-Conv are two-
fold. First, they sample a good number of irrelevant contexts. Second, simply
enlarging the kernel size might introduce more relevant contexts but it will not
help to improve the ratio of relevant contexts or even worse introduce more
irrelevant contexts.

In order to block the interference from the distracting instances during the
context sampling process, we propose SD-Conv which can estimate and rank the
likelihoods of contexts belonging to the same instance as the kernel center. As
shown in Fig. 4 (a3), the SD-Conv can block the interference effectively by only
sampling the top-ranked contexts.
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Fig. 4: (a1-3) Sampled contexts and generation results of different convolu-
tions. The sampled contexts belonging to the same instance and the distracting ones
are colored in green and red, respectively. The white cross marks the center of a con-
volution kernel. The numbers within boxes indicate the ranking of contexts and the
priority of context sampling, and “X” marks the unsampled contexts or those belonging
to the distracting instances. (b) Rank the contexts by the computed affinities.
The appearance (App.) and geometry (Geo.) affinities are ranked in descending order,
and these two rankings are summed for a re-ranking to obtain the total ranking of con-
texts. The top-ranked θ contexts are sampled. The brighter means the greater affinity.
Please zoom in for details.

Affinity computation. To estimate the likelihood of a contextual region be-
longing to the same instance as the kernel center, as shown in Fig. 4 (b), we
consider two affinities: the appearance affinity and geometry affinity.

Appearance affinity measures the appearance similarity between any con-
textual region and the kernel center based on the structure image, so it helps
SD-Conv circumvent distracting instances of different appearances. Let i and j
denote indices of the kernel center and a contextual region, and aApp

i,j ∈ [0, 1]

denote their appearance affinity. There are two cases for computing aApp
i,j de-

pending on the location of the kernel center. If the kernel center is within the
dilated area, then aApp

i,j can be determined directly by the clear correspondence

specified by the inclusion mask M Inc ∈ ZH×W . Otherwise, there are no clear
correspondences specified in M Inc for the kernel center, so we need to estimate
aApp
i,j based on the closeness in the HSV color space [15] of the structure image

which is denoted as ci,j ∈ [0, 1]. Let Ω denote the index set of the dilated regions.

aApp
i,j can be computed as follows:

aApp
i,j =

{
δ(M Inc

i = M Inc
j ), if i ∈ Ω

δ(M Inc
i = M Inc

j ) · ci,j , otherwise.
(1)

δ(·) is an indicator function which outputs 1 when M Inc
i = M Inc

j and otherwise
0. If the kernel center is outside the dilated area where only the potential cor-
respondences are specified, the indicator function can help exclude contextual
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regions which definitely belong to the distracting instances, and ci,j determines

aApp
i,j for contextual regions with potential correspondences, which is defined as:

ci,j = 1−1/
√
5
(
(vi−vj)

2+(si coshi−sj coshj)
2+(si sinhi−sj sinhj)

2
) 1

2 , (2)

where h, s and v denote values of the corresponding regions on the structure
image in the HSV color space.

Geometry affinity measures the proximity of a contextual region to the kernel
center. The appearance affinity cannot help circumvent distracting instances
with similar colors but different textures because its computation is partially
based on the structure image of which the texture details are wiped off. Yet,
such distracting instances can usually be differentiated by depths in the depth
map. The geometry affinity aGeo

i,j is computed as:

aGeo
i,j = 1− |MDep

i −MDep
j |/(MDep

max −MDep
min + ϵ), (3)

where MDep denotes the depth map, MDep
max and MDep

min denote the largest and
smallest value in MDep. ϵ = 1e−4 is used to avoid dividing zero.
Affinity ranking. We perform the ranking over the computed affinities in order
to determine a group of most relevant contextual regions for the kernel center.
As shown in Fig. 4 (b), the affinity ranking is performed for the two affinities
respectively in descending order. In order to combine the ranking for the two
affinities, we sum their respective ranking, and re-rank the ranking sum in as-
cending order to form the total ranking which is used in Fig. 4 (a3). Finally, the
top-ranked θ contexts are sampled.

With the ranking of contexts, we can set a large kernel size for SD-Conv
boldly without worrying about blending the irrelevant contexts. Yet, we do not
observe clear gains for deploying the SD-Conv for the internal levels of the en-
coder and decoder, so we employ the conventional Gated-Conv for them which
are indicated by ellipses in Fig. 3.

4.2 Structure-driven attention

The convolution operations help complete image textures by aggregating local
contexts. In order to exploit the useful global contexts which are far away, Yu
et al. proposed the contextual attention mechanism [23], which aggregates and
projects the information of the contextual regions for each region according to
the estimated region similarities, i.e., attention weights. Let hi and hj denote
the features at region i and j from the input feature maps, respectively. Let si,j
denote the attention weight of region i paid to location j, which is computed as:

si,j =
exp

(
α · cos(hi, hj)

)∑N
k exp

(
α · cos(hi, hk)

) , (4)

where α is a hyperparameter that enlarges the range of cosine similarity cos(·, ·),
and increases the attention paid to the relevant regions. In practice, α is 10.
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Ground truth (a) Input for dilation

instance area

simulated dilated area

(b) Input for erosion

simulated eroded area

instance area

Fig. 5: Simulated inputs for training and evaluation.

Table 1: Ablation study. The higher SSIM (%) and PSNR (dB) and the lower FID,
the better performance. ↑ (↓) means higher (lower) is better.

Method
Dilation Erosion

FID↓ SSIM↑ PSNR↑ FID↓ SSIM ↑ PSNR↑
SD-Conv ⊖ aApp (1) 12.58 95.37 28.10 11.75 95.46 29.06
SD-Conv ⊖ aGeo (3) 12.61 95.39 28.29 12.06 95.42 29.16

w/ Gated-Conv 12.77 95.32 28.21 11.73 95.48 29.35
w/ Deform-Conv 12.99 95.37 28.07 11.82 95.43 29.23

SD-Attn ⊖ aGeo (3) 12.57 95.40 28.29 11.78 95.44 29.35
w/ Context-Attn 13.99 95.30 27.52 13.30 95.36 28.55

Ours 12.43 95.48 28.32 11.64 95.53 29.38

Yet, directly applying the contextual attention in our CNN leads to the am-
biguity artifact as highlighted in “w/ Context-Attn” of Fig. 6 which is caused by
the inaccurate attention weights. Thus, we propose SD-Attn which addresses the
ambiguity artifact effectively as shown in “Ours” of Fig. 6. SD-Attn integrates
the appearance affinity aApp

i,j (1) and geometry affinity aGeo
i,j (3) to estimate the

attention weight in order to block the interference from the distracting instances.
However, we do not directly apply aApp

i,j , because the color closeness ci,j is less
reliable in differentiating instances at the global level (attention) than at the

local level (convolution). Therefore, we tailor aApp
i,j to attention’s needs:

aApp∗
i,j = δ(M Inc

i = M Inc
j ) · cos(hi, hj), (5)

where the appearance similarity cos(hi, hj) in (4) replaces ci,j in (2). Though
cos(hi, hj) is observed to be more reliable than ci,j in measuring the appearance
similarity, computing cos(hi, hj) requires much higher computation than ci,j
due to the high dimensionality of hi. Therefore, ci,j is more suitable for the
convolution operation which is conducted much more frequently and locally than
the attention mechanism. Then, the SD-Attn weight sSDi,j is defined as:

sSDi,j =
exp

(
α · aApp∗

i,j · aGeo
i,j

)∑N
k exp

(
α · aApp∗

i,j · aGeo
i,j

) . (6)
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5 Experiments

Implementations. We train the structure-driven CNN using L1 loss and ad-
versarial loss, and present its training details, detailed architecture and hyperpa-
rameters in the supplementary. We implement our method using PyTorch, and
train 400 epochs with batch size 48 on 3 Nvidia P100 GPUs.
Datasets. We collect landscape images from existing datasets (COCO [8] with
CC-BY 4.0 licence and ADE20K [28] with BSD license) to compose our dataset,
which contains nearly 53.4K training images and 1K test images. The dataset
and preparation scripts will be released upon acceptance. All images are resized
to 256 × 256. There are two settings for evaluation, i.e., “Dilation” and “Ero-
sion”. To evaluate our method quantitatively, we use the collected images as the
ground truth after the instance contour adjustment, and simulate the input im-
ages by overlaying the harvested instance masks onto the image plane. In Fig. 5,
we show how to simulate an input image with the dilated area and eroded area,
respectively. To simulate the dilated area in Fig. 5 (a), we overlay a foreground
area, and treat the instances being partially occluded as those to be dilated. To
simulate the eroded area in Fig. 5 (b), we put a foreground area next to the
contour of an instance, and assume that the eroded area of this instance is cov-
ered by the foreground area precisely. To increase the robustness for training, we
regard different category area in the segmentation mask as the instance area to
simulate the image matting process, and the overlaid foreground area is treated
as the adjusted area. During testing, we only need the instance area obtained
by image matting function.
Quality metrics. We adopt three widely used metrics to measure the generated
image quality: Frechet Inception Distance (FID) [3], Structural Similarity Index
(SSIM) [19] and Peak Signal-to-Noise Ratio (PSNR) [4]. We use FID and PSNR
to measure the authenticity of the restored textures from the macroscopic and
microscopic perspectives, respectively. We use SSIM to measure how well the
instance contours are preserved in the generation result, so we calculate the
SSIM on the image gradient level which can better reflect the similarity and
clearness of contours than the RGB images do.
Efficiency metrics. We use THOP [29] to measure the parameter size (Param)
and multiply-accumulate ops (MACs).

5.1 Ablation study

We disable various modules to create six baselines to study the impact of SD-
Conv and SD-Attn on our method.
SD-Conv. To study the impact of appearance affinity aApp (1) and geometry
affinity aGeo (3) in determining the context ranking, we create two baselines by
disabling one of them, i.e., “SD-Conv ⊖ aApp” and “SD-Conv ⊖ aGeo”. Table 1
and Fig. 6 show that disabling either affinity leads to lower SSIM and ambiguities
along the generated contour, which shows the necessity of these two structural
cues in SD-Conv.
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Table 2: Comparison with inpainting methods. * marks baselines taking the same
five-fold inputs as our method (Fig. 2). † marks the semantic-guided inpainting baseline
which removes the first stage but uses the ground-truth semantic mask to replace the
semantic mask completed by its first stage; we do not show its efficiency results due to
the unfair shortcut. The lower Param (M) and MACs (G) are, the better efficiency. We
use green and red to highlight the efficiency for “Dilation” and “Erosion”, respectively.
↑ (↓) means higher (lower) is better.

Method
Dilation Erosion Efficiency

FID↓ SSIM↑ PSNR↑ FID↓ SSIM↑ PSNR↑ Param↓ MACs↓
PEN-Net* 21.01 91.89 24.79 19.67 92.35 25.13 13.38 56.93
PEN-Net 21.61 92.10 27.05 19.55 92.61 27.62 13.37 56.81

StFlow* 19.86 91.82 26.49 18.84 92.32 26.84 92.66 271.90
StFlow 21.09 91.81 25.93 20.02 92.31 26.27 92.52 262.44

FreeForm* 13.76 92.73 28.18 12.08 93.20 29.35 16.36 117.61
FreeForm 14.48 92.53 27.78 13.09 93.00 28.63 16.17 104.34

Rethink* 13.27 92.76 27.36 12.12 93.19 27.93 130.33 138.28
Rethink 16.95 92.57 26.70 15.26 93.02 27.31 130.31 137.94

ExtInt* 20.26 92.08 26.95 18.76 92.45 27.73 16.51 5.62K
ExtInt 22.42 92.09 25.99 21.10 92.35 26.60 16.16 5.60K

DivStruct* 20.48 91.50 25.33 18.48 92.04 26.12 76.28 113.9K
DivStruct 21.09 91.47 25.02 18.92 92.00 25.79 76.26 113.1K

CRFill* 29.30 90.12 21.38 28.32 91.89 22.18 4.08 27.30
CRFill 19.19 92.60 25.91 17.25 93.06 26.61 4.05 25.25

SPG-Net* 16.64 92.34 26.31 15.17 92.82 26.91 96.17 65.16
SPG-Net† 15.68 92.39 26.97 14.07 92.90 27.67 - -
SPG-Net 16.29 92.37 26.79 14.69 92.88 27.43 96.13 64.54

SGE-Net 14.74 92.35 27.62 12.80 92.84 28.33 73.61 212.14

Ours 12.43 95.48 28.32 11.64 95.53 29.38
0.40 8.00
47.42 270.09

We also replace the SD-Conv with Gated-Conv and Deform-Conv, respec-
tively. Besides worse contour clearness, the generated image textures become
less natural as shown in Fig. 6. This demonstrates the efficacy of SD-Conv in
generating meaningful textures.
SD-Attn. The biggest difference between SD-Attn and contextual attention is
the introduction of the geometry affinity aGeo (3) into the attention estimation.
In Fig. 6, we observe ambiguous contours after we disable aGeo in SD-Attn. We
also completely replace SD-Attn with the vanilla contextual attention, which
leads to significant degradation in FID and PSNR in Table 1 and ambiguity
artifacts in Fig. 6.

5.2 Comparison with baselines

Compared baselines include PEN-Net [25], StFlow [14], FreeForm [24], Rethink
[10], ExtInt [17], DivStruct [13], CRFill [26], SPG-Net [16] and SGE-Net [6].
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w/ Context-Attn

w/ Context-Attn

Fig. 6: Ablation study. The cyan dotted boxes highlight the artifacts.

We modify all baselines except SGE-Net to take the same five-fold inputs
as ours (Fig. 2). Specifically, we modify these methods by concatenating the
additional inputs with their original ones, adjusting the input dimension of their
first layer, and retraining them on our dataset. The modified methods are marked
with *. We cannot modify SGE-Net because it is built on a pretrained ResNet
which requires exactly three input dimensions. We also show results of baselines
without modification in Table 2 and Fig. 7. We prepare a stronger baseline
(marked by †) for SPG-Net by replacing the semantic mask completed by its
first stage with the ground-truth semantic mask which contains the user-desired
semantic distribution for the adjusted area. We do not prepare such a stronger
baseline for SGE-Net because its inferred semantic mask needs to be filled with
activations ranging from the negative infinity to the positive infinity.

Analysis. Table 2 shows that after introducing the additional inputs, most
baselines achieve better or comparable performance, but our method still out-
performs them. The SSIM of all baselines are smaller than 93.3%, while our
method achieves nearly 95.5% in both settings, which demonstrates the effec-
tiveness of our method in preserving clear and user-desired contours. Such an
advantage is also reflected in Fig. 7 where baselines yield non-negligible artifacts
when dilating or eroding regions.

Only the performance of CRFill [26] drops drastically after the modification.
As a two-stage method, its first stage is a simple CNN for generating coarse
textures, and the second stage refines coarse textures. Since the additional inputs
are given at the first stage, we argue that its first stage is too simple to learn
processing the inputs containing such rich structural cues, and thus it causes
inferior coarse textures which are too hard to be recovered by its second stage.

Efficiency & limitation. Table 2 shows that our method is efficient for “Di-
lation”, but is cumbersome for “Erosion”. This is because we use different ap-
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Table 3: User study results. Our method outperforms other approaches with the highest
scores on both dilation and erosion experiments.

Experiment FreeFrom* [24] Rethink* [10] SPG-Net† [16] SGE-Net [16] Ours

Dilation 10.66% 14.41% 22.50% 20.41% 32.01%

Erosion 9.63% 16.47% 23.28% 21.37% 29.25%

proaches to complete the structural cues for these two settings in the first stage
(see § 3 for the motivation). For “Dilation”, we propose a diffusion algorithm
based on the efficient Gaussian blur (see the supplementary for details). For
“Erosion”, we modify the structure reconstruction model in [14] which is heavy.
Our ultimate goal is to deploy our method on phones, so we need to optimize
the efficiency for “Erosion”. The MACs of ExtInt and DivStruct are significantly
higher than the others, because they adopt iterative processing strategies.

5.3 User Study

We select four baselines with leading performance in the quantitative evalua-
tion as candidates for our user study. We conduct two experiments to evaluate
whether our results are more favored by human observers than other methods.
Participants are shown an original image with instance with dilation/erosion
area, in addition to five generated results, and asked to choose the result that
matches best with the dilation/erosion area. In each experiment, 100 images are
randomly selected from the testing set. Experiments are published on Amazon
Mechanical Turk (AMT) and each experiment is completed by 25 participants.
As shown in Table. 3, our method achieves highest scores in both experiments.

6 Conclusion

We study instance contour adjustment. The first stage of our method extracts
and completes the structural cues within the adjusted contours. We further pro-
pose a structure-driven CNN for the second stage which completes the image
textures based on the completed structural cues. There are mainly two novel
modules, SD-Conv and SD-Attn, of which the redesigned sampling strategy can
estimate and rank the relevance of the contexts based on the structural cues,
and sample the top-ranked contexts regardless of their distribution on the image
plane. Our method could generate meaningful textures while preserving clear
and user-desired contours.
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