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Abstract. To make full use of computer vision technology in stores, it
is required to consider the actual needs that fit the characteristics of the
retail scene. Pursuing this goal, we introduce the United Retail Datasets
(Unitail), a large-scale benchmark of basic visual tasks on products that
challenges algorithms for detecting, reading, and matching. With 1.8M
quadrilateral-shaped instances annotated, the Unitail offers a detection
dataset to align product appearance better. Furthermore, it provides a
gallery-style OCR dataset containing 1454 product categories, 30k text
regions, and 21k transcriptions to enable robust reading on products
and motivate enhanced product matching. Besides benchmarking the
datasets using various start-of-the-arts, we customize a new detector for
product detection and provide a simple OCR-based matching solution
that verifies its effectiveness. The Unitail and its evaluation server is
publicly available at https://unitedretail.github.io.

Keywords: Product Detection, Product Recognition, Text Detection,
Text Recognition

1 Introduction

With the rise of deep learning, numerous computer vision algorithms have been
developed and have pushed many real-world applications to a satisfactory level.
Currently, various visual sensors (fixed cameras, robots, drones, mobile phones,
etc.) are deployed in retail stores, enabling advanced computer vision methods
in shopping and restocking. Scene Product Recognition (SPR) is the foundation
module in most of these frameworks, such as planogram compliance, out-of-stock
managing, and automatic check-out.

SPR refers to the automatic detection and recognition of products in complex
retail scenes. It comprises steps that first localize products and then recognize
them via the localized appearance, analogous to many recognition tasks. How-
ever, scene products have their characteristics: they are densely-packed, low-shot,
fine-grained, and widely-categorized. These innate characteristics result in obvi-
ous challenges and will be a continuing problem. Recent datasets in retail scenes
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follow the typical setting in the common scene to initiate the momentum of
research in SPR. For instance, the SKU110k dataset [17], which has recently
enabled large-scale product detection, is following the MS-COCO [33] style an-
notation and evaluation metric. Despite their significant value, the underpaid
attention to the SPR’s characteristics leads us to the question: what is the next
advance towards SPR?

Firstly, traditional detection targets poorly comply with the actual needs,
causing improper image alignment of the product appearances. Detection targets
in common scenes [33, 57, 11, 9] are usually defined as covering the utmost visible
entirety of an object with a minimal rectangle box. This format is inherited by
most existing retail datasets [17, 55, 14, 52, 2]. However, because occlusion occurs
more frequently between products (the densely-packed characteristic), improper
alignments can easily hinder the detection performance. Detectors equipped with
Non-Maximum Suppression (NMS) suffer from the overlaps among the axis-
aligned rectangular bounding boxes (AABB) and rotated rectangular bounding
boxes (RBOX). Moreover, poor alignment leads to inconsistent image registra-
tion of the same products, which brings extra difficulties to accurate recognition.

Secondly, even in the well-aligned cases, products from intra-classes require
discriminative features due to their fine-grained characteristic. On the one hand,
a slight variation in the product packaging can significantly change the product
price, especially for the visually similar but textually different regions such as
brand/model, flavour/version, ingredient/material, count/net weight. This re-
quires SPR algorithms to pay attention to the particular text patterns. On the
other hand, due to the labelling effort on thousands of categories per store (the
widely-categorized characteristic), the available samples per category are scarce
(the low-shot characteristic), which degrades the SPR robustness. These two
constraints are in conjunction with our empirical observation that visual clas-
sifiers could frequently make mistakes when products look similar but vary in
text information.

In this paper, we introduce the United Retail Datasets (Unitail) that responds
to these issues. The Unitail is a comprehensive benchmark composed of two
datasets: Unitail-Det and Unitail-OCR, and currently supports four tasks in
real-world retail scene: Product Detection, Text Detection, Text Recognition, and
Product Matching. (Fig.1)

Unitail-Det, as one of the largest quadrilateral object detection datasets in
terms of instance number and the only existing product dataset in quadrilat-
eral annotations by far, is designed to support well-aligned product detection.
Unitail-Det enjoys two key features: 1. Bounding boxes of products are densely
annotated in the quadrilateral style that cover the frontal face of products. Prac-
tically, Quadrilaterals (QUADs) adequately reflect the shapes and poses of most
products regardless of the viewing angles, and efficiently cover the irregular
shapes. The frontal faces of products provide distinguishable visual informa-
tion and keep the appearances consistent. 2. In order to evaluate the robustness
of the detectors across stores, the test set consists of two subsets to support both
origin-domain and cross-domain evaluation. While one subset shares the domain
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The United Retail Datasets (Unitail)
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Fig. 1: The Unitail is a large-scale benchmark in retail scene that consists of two
sub-datasets and supports four basic tasks.

with the training set, the other is independently collected from other different
stores, with diverse optical sensors, and from various camera perspectives.

Unitail-OCR (Optical Character Recognition) aims to drive research and
applications using visual texts as representations for products. This direction is
partially inspired by the customers’ behavior: people can glance and recognize
ice cream but need to scrutinize the flavor and calories to make a purchase.
It is organized into three tasks: text detection, text recognition, and product
matching. Product images in Unitail-OCR are selected from the Unitail-Det and
benefit from the quadrilateral aligned annotations. Each is equipped with on-
product text location and textual contents together with its category. Due to the
product’s low-shot and widely-categorized characteristics, product recognition is
operated by matching within an open-set gallery. To the best of our knowledge,
Unitail-OCR is the first dataset to support OCR models’ training and evaluation
on the retail products, and it is experimentally verified to fill in the domain
blank; when evaluated on a wide variety of product texts, models trained on
Unitail-OCR outperform those trained on common scene texts [24]. It is also
the first dataset that enables the exploration of text-based solutions to product
matching.

Based on the proposed Unitail, we design two baselines. To detect products,
we analyze the limitation of applying generic object detectors in the retail scene
and design RetailDet to detect quadrilateral products. To match products using
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visual texts on 2D space, we encode text features with spatial positional encod-
ing and use Hungarian Algorithm [28] that calculates optimal assignment plans
between varying text sequences.

Our contributions are summarized in three folds: (1) we introduce the Uni-
tail, a comprehensive benchmark for well-aligned textually enhanced SPR. (2)
We benchmark the tasks of Unitail with various off-the-shelf methods, including
[64, 54, 53, 31, 36, 56, 42, 19, 48, 47, 60, 30, 29, 12, 21, 20, 50, 39]. (3) we design two
baselines for product detection and text-based product matching.

2 Related Work

The retail scene has drawn attention to the computer vision community for an
extended period. The early evolution of product datasets [35, 27, 45] facilitates
reliable training and evaluation and drives research in this challenging field.
Recently, large-scale datasets [5, 17] has enabled deep learning based approaches.
Datasets related to SPR can be split into two groups: product detection and
product recognition. We address each in this section.

Product Detection Datasets Detection is the first step in SPR entailing
the presence of products that are typically represented by rectangular bounding
boxes. The GroZi-120 [35] was created using in situ and in vitro data to study
the product detection and recognition with 120 grocery products varying in
color, size, and shape. The D2S [13] is an instance segmentation benchmark for
sparsely-placed product detection, with 21000 images and 72447 instances. The
SKU110k[17] and the SKU110k-r[40] provide 11762 images with 1.7M on-shelf
product instances; they are annotated with axis-aligned bounding boxes and
rotated bounding boxes, respectively.

For the detection of coarsely categorized products, The RPC [55] is designed
for checkout scenarios containing 0.4M instances and 200 products. The Grocery
Shelves dataset [52] took 354 shelf images and 13k instances, and around 3k
instances are noted in 10 brand classes. The Locount [2] simultaneously considers
the detection and counting for groups of products, with an impressive number
of 1.9M instances and 140 categories.

Despite the significant values of these datasets, we are still challenged by
the availability of optimal bounding boxes. In the proposed Unitail-Det, we aim
to shape products into quadrilaterals whose appearances are well aligned. The
dataset also provides evaluation targets in the origin-domain and cross-domain,
bringing algorithms closer to practical deployment.

Product Recognition Datasets Multiple product recognition datasets have
been built over the past decades. Early ones have limitations in the diversity
of categories and amount of images, such as the SOIL-47 [27] containing 47
categories, the Supermarket Produce Datasets [45] with 15 categories, and the
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Freiburg Groceries [23] covering 25 categories. Recent collections like Products-
6K[16] and Products-10K[1] focus on large-scale data, which satisfy the train-
ing of deep learning algorithms. AliProducts[5] is crawled from web sources by
searching 50K product names, consequently containing 2.5 million noisy images
without human annotations. The ABO[7] dataset covers 576 categories that stud-
ies the 3D object understanding. The Grozi-3.2K [14] contains 80 fine-grained
grocery categories and 8350 images for multi-label classification. To the best of
our knowledge, there is a lack of a dataset that encourages leveraging both visual
and textual information for product recognition.

OCR on Retail Products Product recognition by texts is challenging. The
lack of datasets obstructs the relevant research on this topic. The most relevant
dataset is Products-6K[16] where the Google Cloud Vision API is employed to
extract the textual information to enhance products’ descriptions. But the texts
were not labelled by human annotators, and text location information is missing,
so it is infeasible to support any advance to OCR related tasks.

There are a couple of attempts that use off-the-shelf OCR models for assisted
shopping. [15] presented a system on which users search products by name and
OCR models return the texts on products so that a product list ranked by word
histogram is generated for the users. [38] recognize texts and then apply text
embedding and language models to extract features for product verification.

Other Related Datasets Many OCR datasets [49, 37, 6, 24, 25, 34, 44, 59, 22,
18] exist prior to Unitail-OCR. Typically, an OCR dataset supports text detec-
tion and text recognition and so enables text spotting. The ICDAR2015[24] and
CTW1500[34] are two widely applied benchmarks for training and evaluating
OCR models in common scene. The ICDAR2015 has 1,000 training and 500
testing images causally shot indoor and outdoor with word-level annotations for
each text. The CTW1500 contains 10k text (3.5k of them are curved boxes) in
1500 images collected from the internet. Compared to them, Unitail-OCR is the
first that focuses on product texts and supports object-level matching task at the
same time. Product texts are usually artistic words with substantial character
distortions, which are hard to be localize and recognize.

3 The Unitail

3.1 Unitail-Det

Image Collection Practically, the industry utilizes a variety of sensors un-
der different conditions for product detection. The resolution and camera angles
cover an extensive range by different sensors. For example, fixed cameras are
mounted on the ceiling in most cases, and customers prefer to photograph with
mobile devices. The product categories in different stores also span a great range.
With these factors in mind, we collect images from two sources to support origin-
domain and cross-domain detection. In the origin domain, training and testing
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Fig. 3: Unitail-Det statistics. Left: in-
stance density. Right: instance scale

images are supposed to share the same domain and are taken from similar per-
spectives in the same stores by the same sensors. As a result, we select the 11,744
images from the prior largest product dataset, SKU110k [17], to form the origin
domain. In the cross domain, we collect 500 images in different stores through
multiple sensors, covering unseen categories and camera angles.

Annotation We annotate each product with a quadrilateral style bounding
box, denoted as QUAD. Fig.2 is an illustration of its advance. A QUAD refers
to 4 points ptl, ptr, pbr, pbl with 8 degrees of freedom (xtl, ytl, xtr, ytr, xbr,
ybr, xbl, ybl). For regular products shaped mainly in cuboid and cylinder, the
(xtl,ytl) is defined as the top-left corners of their frontal faces, and the other
points represent the rest 3 corners in clockwise order. For spherical, cones, and
other shapes whose corners are difficult to identify, and for irregularly shaped
products where so defined quadrilateral box cannot cover the entire frontal face,
we first draw the minimum AABB and then adjust the four corners according
to the camera perspective. As belabored, the frontal face of a product has the
most representative information and is also critical for appearance consistency,
but we still annotate the side face if the front face is invisible.

Totally, 1,777,108 QUADs are annotated by 13 well-trained annotators in
3 rounds of verification. The origin-domain is split to training (8,216 images,
1,215,013 QUADs), validation (588 images, 92,128 QUADs), and origin-domain
testing set (2,940 images, 432,896 QUADs). The cross-domain supports a testing
set (500 images, 37,071 QUADs). Their density and scale are shown in Fig.3

3.2 Unitail-OCR

Gallery and Testing Suite A product gallery setup is a common practice in
the retail industry for product matching applications. All known categories are
first registered in the gallery. In case of a query product, the matching algorithms
find the top ranked category in the gallery. The gallery of Unitail-OCR contains



Unitail: Detecting, Reading, and Matching in Retail Scene 7

Fig. 4: Unitail-OCR statistical graphic.
The pie chart reflects sections that
source images were collected from. The
bar chart is a histogram for the count
of words on products. The font size of
the words reflects the frequency of oc-
currence.

1454 fine-grained and one-shot product categories. Among these products, 10709
text regions and 7565 legible text transcriptions (words) are annotated. This
enables the gallery to act as the training source and the matching reference.

The testing suite contains four components: 1. 3012 products labeled with
18972 text regions for text detection. 2. Among the pre-localized text regions,
13416 legible word-level transcriptions for text recognition. 3. 10k product sam-
ples from the 1454 categories for general evaluation on product matching. 4.
From the 10k products, we select 2.4k fine-grained samples (visually similar for
humans) for hard-example evaluation on product matching.

Image Collection and Annotation Images are gathered from the Unitail-Det
cross-domain and cropped and affine transformed according to the quadrilateral
bounding boxes to form an upright appearance. We remove the low-quality im-
ages with low resolution and high blurriness. Some products kept in the Unitail-
OCR might exclude text regions, like those from the produce and clothes de-
partments. We randomly select one sample from each category to form the prod-
uct gallery, and the remaining is further augmented by randomly adjusting the
brightness and cropping for matching purposes.

We annotate 29681 text regions from 4466 products as quadrilateral text
boxes. Fig.4 shows the statistics. The bounding boxes are first classified as leg-
ible or illegible. For the 20981 legible ones, the alphanumeric transcriptions are
annotated ignoring letter case and symbols. Numerical values with units are
commonly seen on products such as 120mg, and we regard them as entire words.
We also provide a vocabulary that covers all words present. The usage of vocab-
ulary is more practical in our case than in other scenes [24], because the presence
of products and texts are usually known in advance by the store owner.

3.3 Tasks and Evaluation Metrics

Product Detection Task The goal is to detect products as quadrilaterals from
complex backgrounds. Unitail-Det supports the training and evaluation.

We use the geometric mean of mean average precision (mAP) calculated
on the origin-domain test set and cross-domain test set as the primary metric
for the product detection, where the mAP is calculated in MS-COCO style[33].
Compared to arithmetic mean, the geometric mean is more sensitive when the
model overfits to origin-domain but gains low performance on the cross-domain.
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Text Detection Task The goal is to detect text regions from pre-localized
product images. Unitail-OCR supports the training and evaluation.

We adopt the widely used precision, recall and hmean [24, 34] for evaluation.

Text Recogniton Task The goal is to recognize words over a set of pre-
localized text regions. Unitail-OCR supports the training and evaluation.

We adopt the normalized edit distance (NED) [25] and word-level accuracy
for evaluation. The edit distance between two words is defined by the minimum
number of characters edited (insert, delete or substitute) required to change one
into the other, then it is normalized by the length of the word and averaged on
all ground-truths.

Product Matching Task The goal is to recognize products by matching a set
of query samples to the Unitail-OCR gallery. The task is split into two tracks:
Hard Example Track, which is evaluated on 2.5k selected hard examples; this
track is designed for scenarios in which products are visually similar (for example
pharmacy stores). And General Track, which is conducted on all 10k samples.

We adopt the top-1 accuracy as the evaluation metric.

4 Two Baselines Designed for The Unitail

4.1 A Customized Detector for Product Detection

Recent studies [61, 51, 62, 26, 4] on generic object detection apply prior-art DenseBox-
style head [21] to multiple feature pyramid levels. The feature pyramid is gener-
ated via feature pyramid network (FPN) [32] and contains different levels that
are gradually down-sampled but semantically enhanced. An anchor-free detec-
tion head is then attached to classify each pixel on the feature pyramid and
predict axis-aligned bounding boxes (AABB).

During training, assigning ground-truths to each feature pixels on the feature
pyramid plays a key role. On each pyramid level, the centerness [51] is widely
used. It is an indicator to value how far a pixel locates from the center of a
ground-truth: the farther, the more likely it is to predict an inaccurate box, and
the lower centerness score it gains. Across pyramid levels, various strategies are
proposed to determine which level should be assigned, and they are grouped
into scale-based and loss-based strategies. The scale-based [32, 26, 43, 51] assigns
ground-truths to different levels in terms of their scales. The larger scale, the
higher level is assigned so that the needs of receptive field and resolution of
feature maps are balanced. The loss-based like Soft Selection [62] assigns ground-
truths by calculating their losses on all levels, and trains an auxiliary network
that re-weights the losses. Our design, RetailDet, adopts the DenseBox style
architecture but predicts the four corners of quadrilateral by 8-channel regression
head. During training, we found the prior assignment strategies unsuitable for
quadrilateral products, which is specified below.
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Fig. 5: (a): CFCOS on AABB. (b): CFCOS on QUAD. (c) and (d): CQUAD.

Centerness The previous definition of the centerness [51, 62] is shown in Eq.1,

CFCOS(p) = [
min(dlp, d

r
p)

max(dlp, d
r
p)

·
min(dtp, d

b
p)

max(dtp, d
b
p)
]0.5 (1)

by the Eq.1 and Fig.5(a), a location p keeps the same distance to the left/right
boundaries (dlp = drp) and to the top/bottom boundaries (dtp = dbp) will gain the
highest centerness 1, and other pixels gain degraded score by Eq.1.

Limitation When adopting the same centerness to quadrilaterals, as shown
in Fig.5(b), the center can be far away from a distant corner, which leads to
unbalanced regression difficulty and lack of receptive field from that corner.

Our SolutionWe first re-define the center as the center of gravity (Fig.5(c)),
because it is the geometric center and represents the mean position of all the
points in the shape, which mitigates the unbalanced regression difficulties. We
then propose Eq.2 to calculate the quad-centerness for any p,

CQUAD(p) = [
min(dlp, d

l
g)

max(dl, dlg)
·
min(drp, d

r
g)

max(drp, d
r
g)

·
min(dtp, d

t
g)

max(dtp, d
t
g)

·
min(dbp, d

b
g)

max(dbp, d
b
g)
]0.5 (2)

where the d
l/r/t/b
g denotes the distances between the gravity center g and the

left/right/top/bottom boundaries. The d
l/r/t/b
p denotes the distances between

the p and the boundaries. If p locates on the gravity center, its quad-centerness
gains the highest value as 1. Otherwise, it is gradually degraded (See Fig.5 (d)).

It is mentionable that when applied to AABB, Eq.2 is mathematically equiv-
alent to Eq.1, which is proved in supplementary.

Soft Selection The loss-based Soft Selection in [62] outperforms scale-based
strategies on generic objects because it assigns ground-truths to multiple levels
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and re-weights their losses. This is achieved by calculating losses for each object
on all levels and using the losses to train an auxiliary network that predicts the
re-weighting factors.

Limitation Instances per image are numerous in densely-packed retail scene,
and Soft Selection is highly inefficient (5×slower) due to the auxiliary network.

Our Solution Can we maintain the merit of Soft Selection while accelerat-
ing the assignment? We approach this issue by mimicking the loss re-weighting
mechanism of the auxiliary network using scale-based calculation. This is feasible
because we find the Soft Selection, in essence, follows scale-based law (detailed in
supplementary). Thus, we design Soft Scale (SS) in Eq.3,4,5,6. For an arbitrary
shaped object O with area areaO, SS assigns it to two adjacent levels li and lj
by Eq.3,4 and calculates the loss-reweighting factors Fli, Flj by Eq.5,6.

li = ⌈lorg + log2(
√
areaO/224)⌉ (3)

lj = ⌊lorg + log2(
√
areaO/224)⌋ (4)

Fli = log2(
√
areaO/224)− ⌊log2(

√
areaO/224)⌋ (5)

Flj = 1− Fli (6)

where 224 is the ImageNet pre-training size. Objects with exact area 2242 is
assigned to lorg, in which case li = lj = lorg. If an object is with area 2232, SS
assigns it to lorg with Florg = 0.994, and also to (lorg−1) with F(lorg−1) = 0.006.
In this work we fix lorg to be level 5 of feature pyramid. SS operates rapidly as
scale-based strategies and keeps the loss-reweighting like Soft Selection.

4.2 A Simple Baseline for Product Matching

A number of directions can be explored on this new task, while in this paper, we
design the simplest solution to verify the motivation: people glance and recognize
the product, and if products looks similar, they further scrutinize the text (if ap-
pears) to make decision. To this end, we first apply a well-trained image classifier
that extracts visual features fv

gi from each gallery image gi and feature fv
p from

query image p, and calculate the cosine similarity between each pair (fv
gi , f

v
p )

(termed as simv
i ). If the highest ranking value simv

1 and the second highest
simv

2 are close (simv
1 - simv

2 ≤ t), we then read on products and calculate the
textual similarity (termed as simt) to make decision by Eq.7,

Decision = argmax
i∈[1,2]

[
w · simt(gi, p) + (1− w) · simv

i

]
(7)

where threshold t and coefficient w are tuned on validation set.
Our design focuses on how to calculate simt. We denote the on-product texts

obtained from ground-truth or OCR prediction as S = {s1, s2, . . . , sN} where
N varies. People may propose to utilize sequence-to-one models (like BERT[8])
to encode S into a fixed length feature vector f ∈ Rd. As shown in Fig.6 (a), a
text detector is followed by a text recognizer predicting n = 5 words, and the
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Fig. 6: (a) Pipeline with BERT encoded features, (b) Pipeline with positional
encoding and Hungarian Algorithm based textual similarity.

5 words are fed into the BERT to encode a feature vector fp ∈ Rd. For each
gallery image g, the same process is operated to get a feature vector fg ∈ Rd,
and simt(fp, fg) is calculated by the cosine similarity.

But this design does not perform well because errors from OCR models (es-
pecially from text recognizer) are propagated to the BERT causing poor feature
encoding. Moreover, the positional information of text boxes is lost in the se-
quence. So we design a new method in Fig.6 (b). Rather than using the n recog-
nized words, we use the n intermediate feature vectors from the text recognizer
to mitigate propagated errors. For example, CREAM is confused as CRE4w,
but the intermediate feature should maintain information on A and M , which
is more robust than the false prediction. Each feature is then added by a 2D
positional encoding[41, 3] whose calculation is based on the location of the cor-
responding text. It encodes the spatial information into the feature and it is
predefined to keep the same dimension as the intermediate feature. Finally, we
get a sequence that contains the n encoded features f1∼n. As shown we get
Sp = {f1

p , f
2
p , f

3
p , f

4
p , f

5
p} from a query product and Sg = {f1

g , f
2
g , f

3
g , f

4
g } from a

gallery reference. Inspired by the Hungarian Algorithm [28], we design Eq.8 to
directly calculate the similarity between two sequence with varying length:

simt(p, g) = simt(Sp, Sg) = max
X

n∑
i=1

m∑
j=1

(
f i
p · f j

g

|f i
p| · |f

j
g |
Xij) (8)

where the X is a n × m boolean matrix where
∑

j Xij = 1,
∑

i Xij = 1. Eq.8
maximizes the summation of cosine similarities from assigned feature pairs, and
the assignment is optimized by X.
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5 Experiments

5.1 Benchmarking The Unitail

The implementation is detailed in the supplementary materials.

Quadrilateral Product Detection Along with the proposed RetailDet, we
build baselines by borrowing the existing detectors capable of detecting quadri-
laterals, mainly from the textual and aerial scenes[9]. These methods can be
grouped into segmentation based methods [64, 54, 53, 31, 19] and regression based
methods [36, 56, 42]. Segmentation methods consider QUADs as per-pixel clas-
sification masks for each region of interest, while regression methods directly
regress the bounding boxes.

Table 1 shows their performances. Overall, regression based methods outper-
form segmentation based methods because most products can be well aligned
by quadrilaterals, and the learning on segmentation mask involves extra difficul-
ties. The RetailDet outperforms other detectors by a large margin. All detectors
achieve degraded results in the cross-domain as opposed to the origin-domain,
confirming that domain shift exists among stores.

Table 1: Benchmarking product detection on the Unitail. All methods are trained
and tested under same setting. g-mAP is the geometric mean of mAPs.

Origin-Domain Cross-Domain
# Method Backbone g-mAP mAP AP50 AP75 mAP AP50 AP75

1 FCENet [64] ResNet50 32.0 36.8 76.0 31.2 27.9 60.1 22.6
2 PANet [54] ResNet50 35.0 40.5 72.8 41.9 30.3 53.3 31.6
3 PSENet [53] ResNet50 39.4 45.3 77.5 49.5 34.4 58.7 36.9
4 DBNet [31] ResNet50 45.3 51.0 86.8 55.4 40.3 71.6 42.7
5 RIDet [36] ResNet50 45.7 51.2 82.9 58.5 40.8 70.3 43.2
6 Gliding Vertex[56] ResNet50 46.0 52.3 89.0 56.9 40.5 76.7 38.6
7 RSDet [42] ResNet50 46.1 51.4 83.6 58.8 41.4 71.1 44.4
8 Mask-RCNN [19] ResNet50 52.4 57.3 91.6 66.0 48.0 77.9 53.2
9 RetailDet (ours) ResNet50 54.7 58.7 91.6 68.4 50.9 80.6 56.7
10 RetailDet ResNet101 57.1 60.3 92.8 70.6 54.1 83.5 60.6

Text Detection & Text Recognition We benchmark the tasks of text de-
tection and text recognition in Table 2 and Table 3, respectively. For each of
the listed algorithms, it is trained under two setting: one is following a com-
mon setting that trained on SynthText[18] and ICDAR2015(IC15)[24] for text
detection and on Synth90K[22] and SynthText for text recognition, another is
trained/finetuned on the Unitail. As shown all algorithms achieve better perfor-
mance if trained on the Unitail, this verifies that texts in the retail domain are
better handled by the proposed dataset.
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Method Training Set R P hmean
DBNet[31] SynthText+IC15 0.541 0.866 0.666
DBNet Unitail 0.773 0.871 0.819
FCENet[64] SynthText+IC15 0.420 0.745 0.538
FCENet Unitail 0.795 0.857 0.825
PSENet[53] SynthText+IC15 0.421 0.750 0.539
PSENet Unitail 0.705 0.789 0.744

Table 2: Benchmarking
text detection on Uni-
tail. P and R stand for
Precision and Recall,
respectively. hmean is
the harmonic mean of
precision and recall.

Method Training Set PW NED Acc(%)
CRNN[48] S90k+ST ✓ 0.36 40.0
CRNN S90k+ST+Unitail 0.25 51.4
NRTR[47] S90k+ST ✓ 0.28 55.7
NRTR S90k+ST+Unitail 0.16 69.4
RobustScanner[60] S90k+ST ✓ 0.25 56.3
RobustScanner S90k+ST+Unitail 0.18 65.9
SAR[30] S90k+ST ✓ 0.25 56.2
SAR S90k+ST+Unitail 0.18 66.5
SATRN[29] S90k+ST ✓ 0.23 62.7
SATRN S90k+ST+Unitail 0.13 74.9
ABINet[12] S90k+ST ✓ 0.17 69.2
ABINet S90k+ST+Unitail 0.11 77.2

Table 3: Bench-
marking text recog-
nition on Unitail.
S90k: Synth90k. ST:
SynthText. PW:
methods use public
available weights.
NED: Normalized
Edit Distance, the
lower the better.
Acc: word top-1 Ac-
curacy, the higher
the better.

Product Matching The product matching results are shown in Table 4. With
just texts across all 1454 categories, the method in Fig.6(b) reaches 31.71% and
47.81% on the Hard Example Track and the General Track, respectively. The
result is convincing that only textual information is a strong representation for
the product, but this new direction clearly requires further exploration.

Moreover, the textual information improves the regular visual classifier using
the method proposed in Sec.4.2. In the hard example track, the improvement
of textual information is significant (+1.76 ∼ 2.75%) since the similar-looking
products which are hard for regular classifier could be easier distinguished by
texts. In the general track, the improvement drops (+0.56 ∼ 0.94%) due to the
limited ability of the textual matching algorithm.

5.2 Discussion

RetailDet Table 5 shows that the RetailDet achieves state-of-the-art results
on product detection benchmark SKU110k [17]. The SKU110k and the Unitail-
Det share the same training images but with different annotations (QUAD vs
AABB), and the origin-domain mAP on the SKU110k is 59.0 and 61.3 on the
Unitail-Det (not included in Table.1). The difference is mainly for the reason
that QUAD is a natural fit for products as a smoother regression target, and it
avoids densely-packed overlaps which makes post-processing easier. We also pro-
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Table 4: Benchmarking on the product
matching task.

Method Acc (%)

Hard Example:
Only text (Fig.6 (b)) 31.71
EfficientNetV2 [50] 56.49
EfficientNetV2+Text 59.24 (+2.75)
ResNet101 [20, 39] 58.37
ResNet101+Text 60.52 (+2.15)
General:
Only Text(Fig.6 (a)) 30.37
Only Text(Fig.6 (b)) 47.81 (+17.44)
EfficientNetV2 83.81
EfficientNetV2+Text 84.62 (+0.81)
ResNet101 85.03
ResNet101+Text 86.19 (+1.16)

Table 5: Results on SKU110k. Re-
tailDet++ is an enhanced variant
where a box refinement module is
added (see supplementary for details)

Method mAP

RetinaNet+EM[17] 49.2
FSAF [63] 56.2
CenterNet [10] 55.8
ATSS [61] 57.4
FCOS [51] 54.4
SAPD [62] 55.7
Faster-RCNN+FPN [43] 54.0
Reppoints [58] 55.6
Cascade-RCNN+Rong [46] 58.7

RetailDet++ (Ours) 59.0

vide ablation study on the quad-centerness and soft selection in supplementary
materials.

Difficulty of The Text Based Product Matching Since the proposed
matching pipeline is not end-to-end trained, errors are accumulated by the text
detector (0.773 recall and 0.871 precision for DBNet) and text recognizer (0.772
for ABINet). Some products in the dataset do not contain texts (2%), and many
words are partially or fully illegible. This requires further study on topics such
as: attention mechanism on text regions, end-to-end framework for text spotting
based product recognition, and one-shot learning based sequence matching.

Inference Speed The inference speed is tested on a single 2080Ti GPU, with
6.3 FPS for RetailDet, 27.6 FPS for DBNet, 41.4 FPS for ABINet, and 65.1 FPS
for text+visual matching.

6 Conclusions

In this work, we introduce the United Retail Datasets (Unitail), a large-scale
benchmark aims at supporting well-aligned textually enhanced scene product
recognition. It involves quadrilateral product instances, on-product texts, prod-
uct matching gallery, and testing suite. We also design two baselines that take
advantages of the Unitail and provide comprehensive benchmark experiments on
various state-of-the-art methods.
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