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Abstract. Image-Text matching (ITM) is a common task for evaluat-
ing the quality of Vision and Language (VL) models. However, existing
ITM benchmarks have a significant limitation. They have many missing
correspondences, originating from the data construction process itself.
For example, a caption is only matched with one image although the
caption can be matched with other similar images and vice versa. To
correct the massive false negatives, we construct the Extended COCO
Validation (ECCV) Caption dataset by supplying the missing associa-
tions with machine and human annotators. We employ five state-of-the-
art ITM models with diverse properties for our annotation process. Our
dataset provides ×3.6 positive image-to-caption associations and ×8.5
caption-to-image associations compared to the original MS-COCO. We
also propose to use an informative ranking-based metric mAP@R, rather
than the popular Recall@K (R@K). We re-evaluate the existing 25 VL
models on existing and proposed benchmarks. Our findings are that the
existing benchmarks, such as COCO 1K R@K, COCO 5K R@K, CxC
R@1 are highly correlated with each other, while the rankings change
when we shift to the ECCV mAP@R. Lastly, we delve into the effect of
the bias introduced by the choice of machine annotator. Source code and
dataset are available at https://github.com/naver-ai/eccv-caption

1 Introduction

Image-caption aligned datasets (e.g ., MS-COCO Caption [13,40], Flickr30k [49],
Conceptual Caption [10, 56]) have become de-facto standard datasets for train-
ing and evaluating Vision-Language (VL) models. Particularly, Image-to-Text
Matching (ITM) tasks [5, 11, 12, 15, 18, 20–22, 25, 26, 33, 37, 39, 59, 64–66, 69] are
widely used benchmarks for evaluating a VL model. The existing ITM bench-
mark datasets are built by annotating captions (by alt-texts [10, 50, 56], web
crawling [17], or human annotators [13]) for each image without considering pos-
sible associations with other images in the dataset. The collected image-caption
pairs are treated as the only positives in the dataset, while other pairs are con-
sidered the negatives. However, in practice, there exists more than one caption
to describe one image. For example, the description “The man is playing ten-
nis with a racket” may describe multiple images with tennis players equally well

https://github.com/naver-ai/eccv-caption
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The man is playing tennis with a racket
A man taking a swing at a tennis ball
A man on a court swinging a tennis racket
A tennis player swinging a racket at a ball
A person hitting a tennis ball with a tennis racket
The man is playing tennis on the court
A man with a tennis racket swings at a tennis ball

Fig. 1: Inherent multiplicity of correspondences in MS-COCO Caption. While
any image-caption pair above makes sense (positive pair), only red and blue image-
caption pairs are marked as positive in MS-COCO Caption.

(Figure 1). We have observed that the number of missing positives is tremendous;
there exist ×3.6 positive image-to-caption correspondences and ×8.5 caption-to-
image correspondences than the original MS-COCO dataset.

While the huge number of false negatives (FNs) in VL datasets is potentially
sub-optimal for training VL models, it is downright detrimental for evaluation.
For example, the small number of positive correspondences of image-caption-
aligned datasets limits the evaluation metrics.1 In other tasks, such as image
retrieval [34, 41, 46, 63], the positives and negatives are defined by class labels;
hence, the number of possible matched items is large enough to measure precision
or mean average precision (mAP) metrics. On the other hand, because existing
ITM benchmarks only have one positive correspondence for each item, they are
only able to use recall-based metrics (e.g ., Recall@k) that are known to be less
informative than the precision- or ranking-based evaluation metrics [44]. In this
paper, we focus on correcting the FNs in the evaluation dataset and the recall-
based evaluation metrics to make a fair comparison of VL models.

As our first contribution, we correct the FNs in MS-COCO Caption by con-
structing Extended COCO Validation (ECCV) Caption dataset. We annotate
whether each MS-COCO image-caption pair is positive with human workers. The
labor cost for this process scales quadratically with the size of the dataset (e.g .,
MS-COCO has 76B possible image-caption pairs, while the number of images is
only 123K). Since verifying every possible image-text pair is not scalable, we sub-
sample the queries in the dataset and reduce the number of candidates for pos-
itive matches with the machine-in-the-loop (MITL) annotation process. MITL
lets a model reduce the number of candidate positives; then human annotators
evaluate the machine-selected candidates. We employ five state-of-the-art ITM
models with distinct properties as machine annotators; CLIP [50], ViLT [32],
VSRN [39], PVSE [59], and PCME [15]. After post-processing, ECCV Caption
contains 1,261 image queries (originally 5,000) but with 17.9 positive captions
per image query on average (originally 5). It also contains 1,332 caption queries
(originally 25,000) with 8.5 positive images per caption (originally 1).

1 In MS-COCO Caption, a caption is only matched to one image, and an image is
matched to five captions. Other datasets usually have one caption for each image.
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While the use of a machine annotator is inevitable for the sake of scalability,
the choice of a particular model may bias the dataset towards the specifics of
the model. This can be problematic because different models show different
filtered results to the human annotators, which brings the impartialness of the
annotated dataset towards any particular model to the surface. In other words,
the MITL annotations are not stable across model choices. Our studies show
that the underlying ML model conditions the annotated dataset towards favoring
certain models over the others. Therefore, this practice could lead to the danger
of biased evaluation results using such datasets. We show that the rankings
among the VL models can be arbitrarily shifted by modifying the underlying
ML model. Our study also shows that using multiple machine annotators can
alleviate machine bias in dataset construction. We note that the findings are
applicable to a wide range of tasks in which users put labels on samples from a
long list of candidate classes; our task is a special case of such a framework.

A similar MITL approach for expanding the positive matches was also em-
ployed by Parekh et al . [47], resulting in the dataset CrissCrossed Caption (CxC).
However, CxC focuses on scoring the text-to-text similarities, resulting in many
missing positives in the text-to-image relationship. Furthermore, CxC only em-
ploys one language-based machine annotator, which can lead to a biased dataset
as our observation. Our ECCV Caption focuses on the inter-modality relation-
ship and utilizes five ITM methods to avoid biased dataset construction. As
another attempt to correct COCO benchmark, Chun et al . [15] annotate pseudo-
positives by using the COCO instance classes, called Plausible Match (PM). For
example, both images in Figure 1 contain the same object class, “tennis racket”.
Hence, the red and blue captions are considered positives for both red and blue
images. Although PM items can detect most of the false negatives, it also intro-
duces many false positives. Compared to PM [15] which relies on noisy proxies
for correspondence, we correct the missing false negatives with “human ground
truths” with the help of machine annotations. All in all, our dataset results in a
higher recall than CxC and high precision than PM.

We not only fix FNs but also evaluation metrics. We argue that R@1 can
overestimate the model performance by focusing only on the accuracy of the
top-1 item rather than the rest of the items. Instead, we propose to use better
ranking-based evaluation metrics, mAP@R [44]. Our human study shows that
mAP@R is more aligned to humans than Recall@k. Now that the FNs are cor-
rected in the evaluation sets and the evaluation metric is fixed, we re-examine the
known ranking of 25 state-of-the-art VL models evaluated in the COCO Cap-
tion. We have observed that COCO 5K R@1 &R@5, and CxC R@1 are highly
correlated (larger than 0.87 Kendall’s rank correlation τ). On the other hand,
we observe that the rankings across methods measured by mAP@R on ECCV
Caption and COCO 1K R@1 are less well-correlated (τ=0.47). This confirms the
observation by Musgrave et al . [44] and Chun et al . [15] on class-based datasets.

Our contributions are as follows. (1) We discover the false negative (FN) prob-
lem and quantify the exact number of wrong labels in MS-COCO. There exist
×3.6 positive image-to-caption associations and ×8.5 caption-to-image associa-
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tions compared to the original MS-COCO. (2) We construct a corrected ITM
test dataset, ECCV Caption, to avoid a wrong evaluation by FNs. We employ
the machine-in-the-loop (MITL) annotation process to reduce the amount of hu-
man verification, resulting in saving 99.9% cost compared to the full exhaustive
verification. ECCV Caption shares the same images and captions as the origi-
nal MS-COCO; therefore, the existing methods can be evaluated on our dataset
without additional training. We fix not only the annotations but also the eval-
uation metric. We propose to use mAP@R, a more human-aligned metric than
R@1 for comparing model performances as shown in our human study. (3) We
re-evaluate 25 state-of-the-art VL models on our ECCV Caption dataset based
on mAP@R instead of Recall@k. In Table 4 and Figure 4, we can observe that
focusing on MS-COCO R@1 will mislead the true ranking between the models
(MS-COCO R@1 and ECCV mAP@R show a low correlation). Our observation
aligns with Musgrave et al . [44] and Chun et al . [15]; focusing on R@1 can mis-
lead the true rankings between models. (4) We provide a detailed analysis of
the constructed dataset and the model bias. In particular, we focus on avoiding
potential model biases in the proposed dataset by employing multiple models.
Our analysis shows that our design choice is effective in solving the model bias.

2 Related Works

2.1 Noisy many-to-many correspondences of image-caption datasets

There have been a few attempts to introduce many-to-many or noisy correspon-
dences for VL datasets. Parekh et al . [47] construct a CrissCrossed Caption
(CxC) dataset by employing a similar MITL approach to ours. However, CxC
focuses on intra-modality similarity, particularly text-to-text. They employed
the Universal Sentence Encoder [8] and average bag-of-words (BoW) based on
GloVe embeddings [48], while we directly focus on the inter-modality relation-
ships and utilizes powerful ITM methods [15,32,39,50,59] to select candidates for
validation by humans. CxC contains human ratings for 89,555 image-to-caption
associations, among which 35,585 are positive, ×1.4 more positive relationships
than 25,000 in COCO Caption. We show that the additional positives by CxC
are precise, but their annotations still have many missing positives (i.e., high
precision but low recall), resulting that R@1 on CxC perfectly preserves the rank-
ings of VL models on COCO 5K R@1. On the other hand, our ECCV Caption
has ×4.4 positives (×3.6 image-to-caption correspondences and ×8.5 caption-to-
image correspondences) compared to COCO Captions and roughly three times
more positives compared to CxC. Furthermore, it is possible to measure mAP
on our dataset due to the abundance of positive pairs, unlike for CxC.

Another attempt by Chun et al . [15] focused on precision rather than R@1 by
annotating the pseudo-positives in a fully algorithmic approach. The authors de-
fined “plausible matching (PM)” items that have the same instance classes with
the query image (or the image corresponding to the query caption) to annotate
pseudo-positives. For example, both images in Figure 1 contain the same instance
class, “tennis racket”, leading to the conclusion that the red and blue captions are
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marked as positives for both red and blue images. More precisely, two instances
are PM if y1, y2 ∈ {0, 1}d differ at most ζ positions, where d is the number
of instance classes (e.g ., for COCO, d = 80). Using the class-based pseudo-
positives, Chun et al . propose Plausible-Match R-Precision (PMRP) metric, an
R-Precision [44] metric based on the PM policy. The authors propose to use
multiple ζ (e.g ., ζ ∈ {0, 1, 2}) and report the average precision value. PM items
can detect many missing false positives in the dataset, but we observe that most
PM pseudo-positives are not actual positives (i.e., high recall but low precision)
— See Table 2. We also observe that PMRP shows a low correlation to other
evaluation metrics; PMRP is a noisy metric compared to others.

2.2 Machine-in-the-loop (MITL) annotation

Humans and machines complement each other in the annotation process as they
have different comparative advantages. Humans are the ultimate source of true
labels, but they are slow and prone to errors and biases [27, 57, 60]. Machines
are highly scalable, but their generalizability to unseen samples is limited. Ma-
chines are also prone to their own versions of errors and biases [43, 54]. MITL
annotations have been designed to take the best of both worlds [3, 6, 55,68].

Depending on the required trade-off between annotation quality and effi-
ciency, one may opt for either single-turn or multi-turn annotation pipeline. The
latter serves for the maximal demand for annotation quality: humans and ma-
chines alternate to correct and learn from each other’s annotations [3, 55]. This
is a widely used technique, the applications ranging from building a dictionary
of cooking vocabularies [9], to supporting real-time screen-reading for blind peo-
ple [23] and characterizing system failures [45]. Here, we focus on single-turn
MITL annotations to focus on the atomic building block for MITL pipelines
in general. There are two types of the single-turn paradigm: machine-verified
human annotations [62,67] or human-verified machine annotations. We focus on
the latter, which are highly relevant for dealing with huge sources of data.

Under the human-verification framework, machines make label proposals for
each image, focusing more on recall than precision [2,36]. Previous crowdsourc-
ing research in human-computer interaction (HCI) had mainly focused on the
annotation interface and its effects on the annotation [16, 28, 58], or building
a crowdsourcing workflow that leverages microtask pipelines [4, 31]. We investi-
gate the side effects of the model choice in the MITL annotation paradigm where
machines provide candidate label proposals.

3 ECCV Caption Dataset Construction

In this section, we describe ECCV Caption construction details. We annotate
image-caption pairs in MS-COCO to solve the multiplicity of MS-COCO. How-
ever, the number of candidates is too huge for an exhaustive verification by
humans: 76B for the whole dataset and 125M for the test split only. To reduce
the amount of judgment by humans, we employ a single-turn machine-in-the-loop
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Table 1: Overview of the machine annotators. Differences among five ITM models
in terms of architectures and training objectives are shown. ViLT and CLIP are trained
on a massive amount of aligned VL data, while other methods only use COCO Caption.

Model Text backbone Visual backbone Objective function

PVSE [59] Bi-GRU [14] ResNet-152 [24] Multiple instance learning
VSRN [39] Bi-GRU Faster R-CNN [52] Semantic reasoning matching
PCME [15] Bi-GRU ResNet-152 Probabilistic matching
ViLT [32] Vision Transformer (ViT-B/32) [19] Vision-language pre-training
CLIP [50] Transformer [51] ViT-B/32 Contrastive learning

(MITL) annotation pipeline, containing three stages: (1) Filtering by machine
annotators. (2) Judging the filtered relationships by MTurkers and additional
verification by internal workers. (3) Post-processing and merging with CxC.

3.1 Model candidates for machine annotators

We choose five VL models with diverse properties to cover both diversity and
practical relevance. The models use different text backbones (Bi-GRU [14], Trans-
former [61]), visual backbones (ResNet-152 [24], Faster R-CNN [52], ViT [19]),
training objective functions, and training datasets as shown in Table 1. We use
the officially released pre-trained weights by the authors. Specifically, we use the
CutMix [70] pre-trained version for PCME to match the retrieval performances
with others, and CLIP ViT-B/32, the largest model at the time of our data
construction. We describe more details of each method in Appendix A.1.

We quantify the diversity of the models by measuring the differences in their
retrieved items. We first retrieve the top 25 images for each model on the captions
of the COCO Caption test split. We measure the similarities of the models in two
different metrics. First, for every pair of models, we measure the Kendall rank
correlation [30] between the two rankings of the retrieved items by the models.
We observe that the models usually have low similarity (τ < 0.3), except for
PVSE and PCME. We additionally measure, for each pair of model i and j,
the average ranking of model i’s top-1 ranked item by model j. The top-1 items
retrieved by the models are usually not included in the top-3 items by the others.
These analyses show that the chosen models are diverse and the retrieved items
do not correlate that much. The full results are shown in Appendix A.2.

3.2 Crowdsourcing on Amazon Mechanical Turk

We crowdsource image-caption matches on Amazon Mechanical Turk (MTurk)
platform. For the sake of scalability, we subsample 1,333 caption queries and
1,261 image queries from the COCO Caption test split. Since the number of
all possible matches is still prohibitive (40M), we employ the filtering strategy
to reduce the number of candidates for human verification. We pre-select top-5
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Table 2: Precision and recall of the existing benchmarks measured by our
human verified positive pairs. A low Prec means that many positives are actually
negatives, and a low Recall means that there exist many missing positives.

Dataset I2T Prec I2T Recall T2I Prec T2I Recall

Original MS-COCO Caption 47.3 20.0 89.4 12.8
CxC [47] 39.6 22.0 81.4 15.0
Plausible Match [15] 8.3 74.6 10.5 69.0

Table 3: The number of positive images and captions for each dataset. We
show the number of positive items for the subset of the COCO Caption test split. The
number of query captions and images are 1,332 and 1,261, respectively.

Dataset # positive images # positive captions

Original MS-COCO Caption 1,332 6,305 (=1,261×5)
CxC [47] 1,895 (×1.42) 8,906 (×1.41)
Human-verified positives 10,814 (×8.12) 16,990 (×2.69)
ECCV Caption 11,279 (×8.47) 22,550 (×3.58)

captions and images retrieved by the five models. After we remove the duplicate
pairs from the (1,261 + 1,333) × 5 × 5 = 64,850 pairs, 46,424 pairs remain.

We package the task for human annotators into a series of Human Intelligence
Tasks (HITs). Each HIT contains 18 machine-retrieved pairs, consisting of 1 true
positive (i.e., an original positive pair), 1 true negative (random pair, not in the
top-25 of any model), and 16 pairs to be annotated. The golden examples are
used for the qualification process; if a submitted HIT contains wrong answers to
the golden examples, we manually verify the HIT. For each image-caption pair
candidate, workers can choose an answer among the choices “100% YES”, “Par-
tially YES, but”, “Mostly NO, because”, and “100% NO”. We use four choices
instead three-level (“YES”, “Not Sure”, and “NO”) to discourage workers from
selecting “Not Sure” for all the questions. We have assigned 2,160 HITs, con-
sisting of 43,200 pairs to be verified, to 970 MTurk workers. The crowdsourcing
details, including an example HIT, compensation details, worker statistics, and
detailed statistics for each machine annotator are in Appendix B.

3.3 Postprocessing MTurk annotations

We observe that 21,995 associations among 43,200 associations are annotated
as positives (“Yes” or “Weak Yes”). We then filter out 18 meaningless captions
(e.g ., “I am unable to see an image above”), 14 wrong captions found by workers
(e.g ., “A group of birds flying above the beach” for the image with many kites),
and 1 duplicate image found in the training set. The full list is in Appendix C.1.

Using the 21,995 human-verified positives, we report precision and recall of
the existing benchmarks. Let ti be the set of human-annotated positives for the
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Fig. 2: ECCV Caption examples. The given caption query: “A herd of zebras stand-
ing together in the field”. Red: original positive. Green: annotated as “100% Yes”. Blue:
annotated as “Weak Yes”. More examples are in Appendix C.2.
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Fig. 3: Multiplicity in ECCV Caption. (a) The number of positive pairs in ECCV
Caption. Dashed lines denote the number of the original COCO positives (1 image
for each caption, and 5 captions for each image). ECCV Caption contains plenty of
positive items per each modality. (b) PCME-predicted multiplicity against the number
of positive captions for each image. There exists a positive correlation.

query i in Section 3.2 and ri be the set of positives for i in the target dataset. We

define precision and recall of a dataset as Prec = 1
N

∑N
i=1

|ri∩ti|
|ri| and Recall =

1
N

∑N
i=1 1−

|ti \ ri|
|ti| . Table 2 shows precision and recall of COCO Caption, CxC

[47], and Plausible Match (PM) pseudo-positives [15]. While COCO and CxC
show high precisions, we observe that their recall is significantly low, around or
less than 20%. Evaluating models on such a low-recall dataset with the R@1
metric can be highly misleading. A model may be able to retrieve good enough
positive items which are not captured in the dataset, resulting in erroneously low
R@1 scores. On the other hand, more than 70% of the positives can be captured
by PM, but only about 10% of pseudo-positives are correct.

We consider the CxC positives as the additional sixth machine-human ver-
ified annotations, and extend our human-verified positives with CxC positives
to construct the final ECCV Caption. Table 3 shows the detailed statistics of
CxC, human-verified positives, and our ECCV Caption. Overall, ECCV Caption
has ×8.47 positive images and ×3.58 positive captions than the original dataset.
Figure 3a shows the number of positive images and captions per each item;
there exist many positives beyond the original COCO associations. We illustrate
example image-caption pairs from ECCV Caption in Figure 2 and AppendixC.2.

We additionally analyze the multiplicity of ECCV Caption by PCME [15]
that produces a degree of multiplicity (uncertainty) for each query. Figure 3b
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shows that more uncertain images correspond to more captions in our dataset.
In other words, our new annotations capture the hidden FNs in COCO well.

4 Re-evaluation of ITM models on ECCV Caption

In this section, we re-evaluate the existing VL models on our new dataset and
previous benchmarks. We first introduce the evaluation metrics and comparison
methods (§4.1). We compare the performances and analyze the results (§4.2).

4.1 Evaluation metrics and comparison methods

Evalution metrics. The existing ITM benchmarks (e.g ., COCO Caption) use
Recall@k metrics, particularly Recall@1 (R@1). Specifically, previous works mea-
sure R@1 for 5-fold validation splits (i.e., each split has 1K images), and for the
full test split [29]. The former is called COCO 1K R@k and the latter is called
COCO 5K R@k, respectively. Previous studies separately report image-to-text,
text-to-image retrieval R@1, R@5 and R@10 scores. However, as shown by Mus-
grave et al . [44], R@k is not an informative metric; embedding spaces with nearly
100% R@1 can have different properties. The problem becomes even worse for
the ITM benchmarks, whose queries only have very few (usually only one) ref-
erences: Even if a model correctly retrieves plausible items that are not among
the set of original positives, the current benchmark cannot evaluate the model
correctly. It is common to use larger values of k to less penalize wrong yet plausi-
ble predictions. However, as shown in Figure 3a, the actual number of plausible
positives can be larger than the typical choice of k (e.g ., 5 or 10). Instead, we sug-
gest using mAP@R [44], a modified mAP measured by retrieving R items where
R is the number of positives for the query. Previous ITM benchmarks cannot
employ mAP@R because R is too small (i.e., 1). Thanks to our human-verified
ground-truth positives, we can reliably measure mAP@R on ECCV Caption.

We additionally conduct a human study to confirm that mAP@R is more
aligned to humans than R@k. We collect 3,200 pairwise preferences of human
annotators among (A) only top-1 is wrong (B) only top-1 is correct (C) top-
1 to 5 are wrong (D) only top-5 is correct, and (E) all items are wrong. For
example, if the number of positives is 8, then (A) shows 0 R@1, 100 R@5 and
66.0 mAP@R, (B) shows 100 R@k and 12.5 mAP@R, (C) shows 0 R@k and
10.3 mAP@R, and (D) shows 0 R@1, 100 R@5 and 2.5 mAP@R. We compute
user preference scores using Bradley–Terry model [7]. We observe that mAP@R
is exactly aligned to the human preference score: (A: 70.85, B: 10.66, C: 13.15,
D: 4.89, E: 0.44). We provide the details of the human study in Appendix D.1.

We also report modified Plausible Match R-Precision (PMRP) scores by
changing R to min(R, 50), because the number of pseudo-positives R can be
very large (e.g ., larger than 10,000) but most of them are not actual positive
(Table 2). While Chun et al . [15] proposed to use the average R-Precision for
three different thresholds, (e.g ., ζ = {0, 1, 2}), we only report PMRP when ζ = 0.
We additionally compute R@1, R@5, and PMRP scores on the original COCO
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Table 4: Re-evaluating VL models. ECCV Caption mAP@R, R-Precision (R-P),
Recall@1 (R@1), CxC R@1, COCO 1K R@1, 5K R@1, and PMRP are shown. The
numbers are the average between the image-to-text retrieval and text-to-image retrieval
results. Full numbers for each modality and COCO R@5, R@10 results are in Appendix
D.3. † denotes our re-implemention and “zero-shot” for VinVL and ViLT denotes VL
pre-trained models without fine-tuning on the COCO Caption for the retrieval task.

ECCV Caption CxC COCO
mAP@R R-P R@1 R@1 1K R@1 5K R@1 PMRP

ResNet-152 [24] image encoder + Bi-GRU [14] text encoder

VSE0† [20] 22.67 33.27 55.55 24.24 34.14 22.27 46.95

VSE++† [20] 35.01 45.50 73.11 37.95 48.46 35.79 54.26
PVSE K=1 [59] 33.98 44.49 73.25 38.38 48.67 36.20 53.56
PVSE K=2 [59] 40.26 49.92 76.74 40.18 50.29 38.13 55.52
PCME [15] 37.11 47.82 74.79 40.09 50.29 38.03 56.71

PCME (CutMix [70] pre-trained)† [15] 41.74 51.45 78.67 41.70 51.35 39.51 57.65

Region features based on Bottom-up Attention [1] and SCAN [37]

VSRN [39] 42.28 51.84 81.51 48.85 58.33 46.74 55.44
VSRN + AOQ [12] 40.94 50.65 81.53 50.10 59.32 48.14 56.41
CVSE [64] 37.35 47.51 76.70 45.82 55.37 43.80 56.49
SGR [18] 35.80 46.04 78.77 50.60 58.87 48.86 56.91
SAF [18] 35.96 46.19 78.36 49.58 59.09 47.80 57.21
VSE infty (BUTD region) [11] 40.46 49.97 82.52 52.40 61.03 50.38 56.64
VSE infty (BUTD grid) [11] 40.40 50.09 83.01 53.47 62.26 51.60 56.87
VSE infty (WSL grid) [11] 42.41 51.43 86.44 60.79 68.07 59.01 57.65

Large-scale Vision-Language pre-training

CLIP ViT-B/32 [50] 26.75 36.91 67.08 41.97 49.84 40.28 55.32
CLIP ViT-B/16 [50] 29.25 38.99 71.05 44.26 52.32 42.69 56.58
CLIP ViT-L/14 [50] 27.98 37.80 72.17 48.14 55.38 46.44 57.70
VinVL (zero-shot) [71] 22.18 32.93 55.19 33.74 43.51 32.07 47.26
VinVL [71] 40.81 49.55 87.77 67.76 82.38 66.39 54.72
ViLT (zero-shot) [32] 26.84 36.81 69.00 50.35 58.83 48.63 57.38
ViLT [32] 34.58 44.27 77.81 53.72 61.81 52.18 57.63
BLIP [38] 40.52 48.43 90.99 74.30 78.30 73.11 57.17

Different negative mining (NM) strategies

PVSE K=1, No NM† 33.34 44.44 67.99 32.69 43.28 30.65 56.67

PVSE K=1, Semi-hard NM† [53] 36.63 47.36 73.97 38.17 48.49 36.00 55.15

PVSE K=1, Hardest NM† [20] 35.76 46.50 73.68 39.02 49.12 36.88 54.37

Caption, R@1 on CxC, and R@1 and R-Precision on ECCV Caption to analyze
the correlation between each evaluation metric to ECCV mAP@R.

Evaluated methods. We compare 25 state-of-the-art VL models, whose trained
weights are publicly accessible, categorized into four groups: (1) visual semantic
embedding (VSE) methods with the ResNet-152 [24] image encoder, and Bi-
GRU [14] text encoder, including VSE0, VSE++ [20], PVSE [59] (K=1 & K=2),
and PCME [15] (the official model and the CutMix pre-trained version); (2)
VSE methods with region features extracted by Visual Genome [35] pre-trained
Faster R-CNN [52] based on the implementation by Anderson et al . [1] and Lee
et al . [37], including VSRN [39], VSRN + AOQ [12], CVSE [64], SGR, SAF [18],
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(a) Comparison of COCO, CxC, ECCV and PMRP.
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(b) Comparison of Recall@1 metrics.
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(c) Comparison of ECCV metrics.

Fig. 4: Ranking correlation between different evaluation metrics. Ranking of
methods is largely perserved between COCO and CxC Recall@1, while it is rarely
preserved among COCO Recall@1, ECCV mAP@R and PMRP.

and VSE∞ with BUTD region, grid and WSL grid features [11]2. (3) Large-scale
VL pre-training (VLP) methods, including pre-trained CLIP with ViT-B/32,
ViT-B/16, and ViT/L14 backbones [50], pre-trained and fine-tuned ViLT [32],
pre-trained and fine-tuned VinVL [71], and fine-tuned BLIP [38]. Here, “pre-
trained” signifies that the model is trained with a massive image-text aligned
dataset, but is not specifically trained for COCO Caption; “fine-tuned” signifies
that the model is fine-tuned on COCO Caption for the ITM task. We note that
VL transformers except CLIP need O(|C| × |I|) forward operations to compute
the full pairwise ranks between |C| number of captions and |I| number of images,

2 Techinally speaking, VSE∞ (WSL grid) does not use region features, but CNN
features extracted from Instagram-trained ResNext [42]. This study treats all VSE∞
variants as region feature-based models for convenience.
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Table 5: Rank correlations between evaluation metrics. Higher τ denotes two
rankings are highly correlated, while τ values near zero denotes two rankings are barely
correlated. We highlight the highly correlated pairs (τ > 0.8) with red text.

COCO 1K COCO 5K CxC ECCV COCO
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@1 R-P mAP@R PMRP

COCO 1K R@1 - 0.87 0.86 0.89 0.97 0.92 0.89 0.72 0.39 0.47 0.45
COCO 1K R@5 0.87 - 0.97 0.79 0.88 0.93 0.79 0.81 0.49 0.58 0.39
COCO 1K R@10 0.86 0.97 - 0.77 0.86 0.91 0.77 0.79 0.49 0.57 0.43
COCO 5K R@1 0.89 0.79 0.77 - 0.89 0.83 1.00 0.65 0.30 0.39 0.45
COCO 5K R@5 0.97 0.88 0.86 0.89 - 0.95 0.89 0.75 0.41 0.50 0.43
COCO 5K R@10 0.92 0.93 0.91 0.83 0.95 - 0.83 0.80 0.47 0.55 0.38
CxC R@1 0.89 0.79 0.77 1.00 0.89 0.83 - 0.65 0.30 0.39 0.45
ECCV R@1 0.72 0.81 0.79 0.65 0.75 0.80 0.65 - 0.65 0.74 0.29
ECCV R-P 0.39 0.49 0.49 0.30 0.41 0.47 0.30 0.65 - 0.90 0.17
ECCV mAP@R 0.47 0.58 0.57 0.39 0.50 0.55 0.39 0.74 0.90 - 0.20
PMRP 0.45 0.39 0.43 0.45 0.43 0.38 0.45 0.29 0.17 0.20 -

while other methods only need O(|I|) + O(|C|) forward operations to compute
the full pairwise ranks based on the cosine similarity. For example, VinVL takes
25 hours to compute the full pairwise ranks for the COCO Caption test split
by a single A100 GPU core, while VSE++ only takes 1 minute in the same
environment. (4) PVSE models with different negative mining (NM) methods,
including no NM, semi-hard NM (SHM) [53], and hardest NM (HNM) [20].

We use the official trained weights for each model with a few exceptions.
We re-implement VSE0, VSE++, PCME with CutMix pre-trained ResNet, and
PVSEmodels with various NM strategies. The training details are in AppendixD.2

4.2 Re-evaluation of ITM methods

Table 4 and Figure 4 shows the full comparisons of 25 VL models with different
evaluation metrics. We report the Kendall’s rank correlations (tau-b) between
metrics in Table 5; larger τ denotes two metrics are more correlated. We report
the full table including modality-wise results, R@5 and R@10 scores in Appendix
D.3. We first observe that R@k scores across different datasets have high correla-
tions among themselves (Figure 4b and Appendix D.3). In terms of the ranking
correlation, we observe that COCO 1K R@1 shows almost τ=0.9 with the rank-
ing yielded by R@5 (0.87), COCO 5K R@1 (0.89) and R@5 (0.97), or CxC R@1
(0.89). This implies that measuring Recall@k on different benchmarks, such as
the original COCO Caption, CxC, and ECCV Caption are not more informa-
tive than only measuring Recall@k on COCO 1K or 5K. On the other hand,
the rankings by COCO 1K are not preserved well to PMRP (0.45), ECCV R@1
(0.72), ECCV R-Precision (0.39) and ECCV mAP@R (0.47) in Kendall’s τ . This
implies that enlarging K of R@k (e.g ., using R@5, R@10 instead of R@1) cannot
be an alternative of mAP@R because R@k metrics are highly correlated each
other as shown in Table 5. We also observe that the rankings by PMRP are rel-
atively less correlated to the other metrics, such as COCO R@1 (0.45), ECCV
R@1 (0.29) or ECCV mAP@R (0.20) in Kendall’s τ .
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(a) Triplet mining strategies.
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(b) Contrastive methods.
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(c) Best R@1 models.

Fig. 5: Rankings of different VL models. Ranking of (a) PVSE models with diverse
triplet mining strategies (b) contrastive methods (c) the best models are shown.

Our re-evaluation shows that existing ITM evaluation benchmarks can over-
estimate the VL model performance by focusing only on COCO R@1, where the
rankings between COCO R@1 and ECCV mAP@R are not largely preserved. For
example, we observe that the hardest negative mining technique [20], previously
deemed useful for ITM tasks, is actually selectively effective for R@1, rather than
for the actual task itself. Under our new metrics like ECCV mAP@R, we ob-
serve that the milder strategy of semi-hard negative mining is more effective – See
Figure 5a. Chun et al . [15] also observed a similar pattern in the CUB Caption
dataset [63] by using the class-defined positives. Our finding is the first obser-
vation in the practical large-scale VL dataset. Similarly, we observe that many
large-scale VL pre-training methods with high R@1 scores show inferior ECCV
mAP@R scores compared to other visual semantic embedding techniques. For
example, CLIP ViT-L/14 shows superior COCO 1K R@1 than PCME (55.4%
and 40.1%, respectively). However, in terms of ECCV mAP@R, CLIP shows
inferior performances than PCME (28.0% and 37.1%, respectively).

Similarly, we observe that PMRP shows different behaviors compared to
other metrics. Especially, we observe that the contrastive models without a neg-
ative mining strategy are specialized to PMRP metric – Figure 5b. We presume
that it is because the contrastive learning strategy enforces the features with
similar objects to be mapped to a similar embedding space. In contrastive the
best models on COCO and ECCV (e.g ., BLIP, VinVL, and VSE∞) show inferior
PMRP scores – Figure 5c. We presume that it is because PMRP only captures
the existence or absence of the objects, while an optimal retrieval also should
consider the plausibility between matched image-caption pairs.

5 Discussion and Limitations

Potential machine biases in our dataset. Our dataset construction process con-
tains the MITL annotation process, where the choice of machine annotators can
potentially harm the dataset quality. The positives in our dataset are the re-
trieved items by the machine annotators. If the machines are biased towards
undesired patterns (e.g . favoring certain items over the others), future methods
built on our benchmark will overfit those patterns. In this work, we employ five
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diverse machine annotators to reduce the potential biases by models. In Ap-
pendix E, we explore and quantify the effect of the choice of multiple machine
annotators on the dataset quality. From the study, we can conclude that our
strategy (using more models) is effective to mitigate biases by a specific model.

Scale of ECCV Caption. In this work, we subsample 1,333 caption queries (5.3%
of the full caption queries) and 1,261 image queries (25.2% of the full image
queries) to reduce the scale of annotations. Note that without subsampling, we
need to verify (25,000 + 5,000) × 5 × 5 = 750K pairs, which costs 16 times more
than our current version, almost $60K. Because we only subsample queries, not
limiting the gallery samples, our dataset is an unbiased subset of the original
COCO Caption. To scale up ECCV Caption, we have to reduce the human
verification costs by reducing the total number of human verification. This can
be achievable by applying a multi-turn MITL annotation process that alterna-
tively repeats training machine annotators with human-annotated associations
and verifying machine annotations by human workers. After enough iterations of
the multi-turn MITL annotation process, we can automatically scale up our an-
notations by using the high-quality machine annotators while only low confident
associations are verified by humans.

Noisy annotations. Despite our additional verification process to keep the quality
of the annotations, there can be noisy annotations (i.e., false positives) in ECCV
Caption due to the noisy nature of crowdsourcing annotations. The noisy anno-
tations can also occur because we use both “100% YES” and “Partially YES”
to build positive pairs. However, we still encourage to use ECCV Caption for
evaluating VL models, because the existing datasets are noisier; they usually
have only one positive item per each query and they have tremendously many
FNs. On the other hand, noisy annotations of our dataset are still “plausible”
rather than “wrong”. We provide more discussion in Appendix F. Finally, we
expect that a multi-turn MITL process can improve not only the labeling cost
but also the annotation quality as shown by Benenson et al . [3].

6 Conclusion

MS-COCO Caption is a popular dataset for evaluating image-text matching
(ITM) methods. Despite its popularity, it suffers from a large number of miss-
ing positive matches between images and captions. Fully annotating the missing
positives with human labor incurs prohibitive costs. We thus rely on machine
annotators to propose candidate positive matches and let crowdsourced human
annotators verify the matches. The resulting ITM evaluation benchmark, Ex-
tended COCO Validation (ECCV) Caption dataset, contains ×8.47 positive im-
ages and ×3.58 positive captions compared to the original MS-COCO Caption.
We have re-evaluated 25 ITM methods on ECCV Caption with mAP@R, result-
ing in certain changes in the ranking of methods. We encourage future studies
on ITM to evaluate their models on ECCV mAP@R that not only focuses on
the correctness but also on the diversity of top-k retrieved items.
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