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Abstract. There exists no comprehensive metric for describing the com-
plexity of Multi-Object Tracking (MOT) sequences. This lack of metrics
decreases explainability, complicates comparison of datasets, and reduces
the conversation on tracker performance to a matter of leader board
position. As a remedy, we present the novel MOT dataset complexity
metric (MOTCOM), which is a combination of three sub-metrics in-
spired by key problems in MOT: occlusion, erratic motion, and visual
similarity. The insights of MOTCOM can open nuanced discussions on
tracker performance and may lead to a wider acknowledgement of novel
contributions developed for either less known datasets or those aimed at
solving sub-problems.
We evaluate MOTCOM on the comprehensive MOT17, MOT20, and
MOTSynth datasets and show that MOTCOM is far better at describing
the complexity of MOT sequences compared to the conventional density
and number of tracks. Project page at https://vap.aau.dk/motcom.

1 Introduction

Tracking has been an important research topic for decades with applications
ranging from autonomous driving to fish behavior analysis [41,26,13,34]. The
aim is to acquire the full spatio-temporal trajectory of an object of interest,
but missing or inaccurate detections can make this a complicated task. When
more objects are present in the scene simultaneously it is termed a multi-object
tracking (MOT) problem and an additional task is to keep the correct identities
of all objects throughout the sequence.

During the previous decade there has been an increase in the development
of publicly available MOT datasets [14,27,9,40,7]. However, there has been no
attempt to objectively describe the complexity of a dataset or its sequences
except for using simple statistics like density and number of tracks, which are
neither adequate nor explanatory, see Figure 1. When a new dataset emerges,
the community needs objective metrics to be able to characterize and discuss the
dataset with respect to existing datasets, otherwise, ‘gut feeling’ and ‘popularity
vote’ will rule. Furthermore, the absence of an objective MOT sequence complexity
metric hinders an informed conversation on the capabilities of trackers developed
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Fig. 1: Comparing the capability of the proposed MOTCOM metric against
the conventional metrics (number of tracks and density) for describing MOT
sequence complexity. The shared y-axis shows a HOTA [24] rank-based proxy for
the ground truth complexity of the MOTSynth sequences [12]. The x-axes show
the corresponding rank determined by each of the three metrics. The correlation
between the complexity and MOTCOM is clearly stronger compared to both
tracks and density. More details can be found in Section 5.

for different datasets. Nowadays, it is important to rank high on popular MOT
benchmark leaderboads in order to gain the attention of the community. This may
hinder the acknowledgement of novel solutions that solve sub-problems of MOT
particularly well and underrate solutions developed on less popular datasets. We
expect that a descriptive and explanatory metric can help remedy these issues.

The literature suggests that there are three main factors that make MOT
tasks difficult to solve [3,31,1,2,26]; namely, occlusion, erratic motion, and visual
similarity. We hypothesize that the complexity of MOT sequences can be expressed
by a combination of the aforementioned three factors for which we need to
construct explicit metrics. Therefore, in this paper we propose the first-ever
individual sub-metrics for describing the complexity of the three sub-problems
and a unified quantitative MOT dataset complexity metric (MOTCOM) as a
combination of these sub-metrics. In Figure 1, we illustrate that MOTCOM is
far better at estimating the complexity of the sequences of the recent MOTSynth
dataset [12] compared to the commonly used number of tracks and density.

The main contributions of our paper are as follows:

1. The novel metric MOTCOM for describing the complexity of MOT sequences.
2. Three sub-metrics for describing the complexity of MOT sequences with

respect to occlusion, erratic motion, and visual similarity.
3. We show that the conventional metrics number of tracks and density are not

strong indicators for the complexity of MOT sequences.
4. We evaluate the capability of MOTCOM and demonstrate its superiority

against number of tracks and density.

In the next section, we describe and analyse the three sub-problems followed
by a presentation of the proposed metrics. In the remainder of the paper, we
demonstrate and discuss how the metrics can describe and explain the complexity
of MOT sequences.
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2 Related Work

The majority of recent trackers utilize the strong performance of deep learning
based detectors, e.g., by following the tracking-by-detection paradigm [45,4,43],
tracking-by-regression [3], through joint training of the detection and tracking
steps [33,49], or as part of an association step [30,23,48]. Trackers like Tracktor
[3], Chained-Tracker [33], and CenterTrack [49] rely on spatial proximity which
makes them vulnerable to sequences with extreme motion and heavy occlusion.
At the other end of the spectrum are trackers like QDTrack [30], RetinaTrack [23],
and FairMOT [48] which use visual cues for tracking. They are optimized toward
tracking visually distinct objects and are not to the same degree limited by
erratic motion or vanishing objects but instead sensitive to weak visual features.
This indicates that the design of trackers is centered around three core problems:
occlusion, erratic motion, and visual similarity. Below, we dive into the literature
regarding these problems followed by insights on dataset complexity.

Occlusion. Occlusions can be difficult to handle and they are often simply
treated as missing data [2]. However, in scenes were the objects have weak or
similar visual features this can be harmful for the tracking performance [1,28,38].

Most authors state that a higher occlusion rate makes tracking harder [6,22,25],
but they seldom quantify such statements. An exception is the work proposed
by Bergmann et al. [3] where they analyzed the tracking results with respect
to object visibility, the size of the objects, and missing detections. Moreover,
Pedersen et al. [31] argued that the number of objects is less critical than the
amount and level of occlusion when it comes to multi-object tracking of fish.
They described the complexity of their sequences based on occlusions alone.

Erratic Motion. Prior information can be used to predict the next state of
an object which minimizes the search space and hence reduces the impact of
noisy or missing detections. A linear motion model assuming constant velocity
is a simple, but effective method for predicting the movement of non-erratic
objects like pedestrians [26,28]. In scenes that include camera motion or complex
movement more advanced models may improve tracker performance. Pellegrini
et al. [32] proposed incorporating human social behavior into their motion model
and Kratz et al. [19] proposed utilizing the movement of a crowd to enhance the
tracking of individuals. A downside of many advanced motion models is an often
poor ability to generalize to other types of objects or environments.

Visual Similarity. Visual cues are commonly used in tracklet association
and re-identification and are well studied for persons [46], vehicles [18], and
animals [37] such as zebrafish [15] and tigers [36]. Modern trackers often solve
the association step using CNNs, like Siamese networks, based on a visual affinity
model [3,21,44,47]. Such methods rely on visual dissimilarity between the objects.
However, tracklet association becomes more difficult when objects are hard to
distinguish purely by their appearance.
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Dataset Complexity. Determining the complexity of a dataset is a non-trivial
task. One may have a “feeling” or intuition about which datasets are harder
than others, but this is subjective and can differ depending on who you ask, as
well as differ depending on the task at hand. In order to objectively determine
the complexity of a dataset, one has to develop a task-specific framework. An
early attempt at this was the suite of 12 complexity measures (c-measures)
by Ho and Basu [17], based on concepts such as inter-class overlap and linear
separability. However, these c-measures are not suitable for image datasets due
to unrealistic assumptions, such as the data being linearly separable. Therefore,
Branchaud-Charron et al. [5] developed a complexity measure based on spectral
clustering, where the inter-class overlap is quantified through the eigenvalues of
an approximated adjacency matrix. This approach was shown to correlate well
with the CNN performance on several image datasets. Similarly, Cui et al. [8]
presented a framework for evaluating the fine-grainedness of image datasets, by
measuring the average distance from data examples to the class centers. Both
of these approaches rely on embedding the input images into a feature space
by using, e.g., a CNN, and determining the dataset complexity without any
indication of what makes the dataset difficult.

In contrast, dataset complexity in the MOT field has so far been determined
through simple statistics such as the number of tracks and density. These quan-
tities are currently displayed for every sequence alongside other stats such as
resolution and frame rate for the MOTChallenge benchmark datasets [9]. The
preliminary works of Bergmann et al. [3] and Pedersen et al. [31] have attempted
to further explain what makes a MOT sequence difficult by investigating the
effect of occlusions. However, there is no clear way of describing the complexity
of MOT sequences and the current methods have not been verified.

3 Challenges in Multi-Object Tracking

MOT covers the task of obtaining the spatio-temporal trajectories of multiple
objects in a sequence of consecutive frames. Depending on the specific task, the
objects may be represented as 3D points [31], pixel-level segmentation masks [42],
or bounding boxes [29]. Despite the different representation forms, the concepts
of occlusion, erratic motion, and visual similarity apply to all of them and add
to the complexity of the sequences.

Occlusion. Occlusion describes situations where the visual information of an
object within the camera view is partially or fully hidden. There are three types
of occlusion: self-occlusion, scene-occlusion, and inter-object-occlusion [1]. Self-
occlusion can reduce the visibility of parts of an object, e.g., if a hand is placed in
front of a face, but defining the level of self-occlusion is non-trivial and depends
on the type of object. Scene-occlusion occurs when a static object is located in
the line of sight between the camera and the target object, thereby decreasing
the visual information of the target. A scene-occlusion is marked by the red box
in Figure 2a, where flowers partially occlude a sitting person.
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Inter-object-occlusion is typically the most difficult to handle, especially if
the objects are of the same type, as the trajectories of multiple objects cross.
An example can be seen in Figure 2a, where the blue box marks a person that
partially occludes another person.

Erratic Motion. We use motion as a term for an object’s spatial displacement
between frames. This is typically caused by the locomotive behavior of the
object itself, camera motion, or a combination. As the number of factors that
influence the observed motion increases, the motion becomes harder to predict.
An example of two objects exhibiting different types of motion is presented in
Figure 2b. The blue object moves with approximately the same direction and
speed between the time steps. Predicting the next state of the object seems trivial
and the search space is correspondingly small. On the other hand, the red object
behaves erratically and unpredictably while the motion model is less confident as
illustrated by the larger search space.

Visual Similarity. The visual appearance of objects can vary widely depending
on the type of object and type of scene. Appearance is especially important when
tracking is lost, for example, due to occlusion, and re-identification is a common
tool for associating broken tracklets. The complexity of this process depends
on the visual similarity between objects, but intra-object similarity also plays a
role. As an object moves through a scene, its appearance can change from the
perspective of the viewer. The object may turn around, increase its distance to
the camera, or the illumination conditions may change. Aside from the visual
cues, the object’s position is also critical. Intuitively, it becomes less likely to
confuse objects as the spatial distance between them increases.

  

  

(a) (b)

Fig. 2: a) Sample from MOT17-04 [27]. The yellow boxes illustrate objects partly
occluded by scene-occlusion (red) and inter-object-occlusion (blue). b) The blue
object displays nearly linear motion, whereas the red object is behaving erratically.
The ellipsoids symbolize the confidence of an artificial underlying motion model.
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4 The MOTCOM Metrics

We propose individual metrics to describe the level of occlusion, erratic motion,
and visual similarity for MOT sequences. Subsequently, we combine these three
sub-metrics into a higher-level metric that describes the overall complexity of
the sequences.

Preliminaries We define a MOT sequence as a set of frames F = {1, 2, . . . }
containing a set of objects K = {k1, k2, . . . }. The objects do not have to be
present in every frame, therefore, we define the set of frames where a given
object is present by F k = {t1, t2, . . . }. The objects present in a given frame t
are defined as the set Kt = {k|k ∈ K ∧ t ∈ F k}. At each frame t an object k is
represented by its center-position in image coordinates and the height and width
of the surrounding bounding box kt = (x, y, h, w).

4.1 Occlusion Metric

As mentioned in Section 3, occlusion can be divided into three types: self-, scene-
and inter-object occlusion. In order to quantify the occlusion rate in a sequence,
one should ideally account for all three types. However, it is most often non-trivial
to determine the level of self-occlusion and it is commonly not taken into account
in MOT. Pedersen et al. [31] used the ratio of intersecting object bounding boxes
to determine the inter-object occlusion rate. Similarly, the MOT16, MOT17, and
MOT20 datasets include a visibility score based on the intersection over area
(IoA) of both inter- and scene-objects [9], where IoA is formulated as the area of
intersection over the area of the target.

Following this trend, we omit self-occlusion and base the occlusion metric,
OCOM, on the IoA and compute it as

OCOM =
1

|K|

K∑

k

ν̄k, (1)

where ν̄k is the mean level of occlusion of object k. νkt is in the interval [0, 1]
where 0 is fully visible and 1 is fully occluded. It is assumed that terrestrial
objects move on a ground plane which allows us to interpret their y-values as
pseudo-depth and decide on the ordering. Annotations are needed to calculate
the occlusion level for objects moving in 3D. OCOM is defined in the interval
[0, 1] where a higher value means more occlusion and a harder problem to solve.

4.2 Motion Metric

The proposed motion metric, MCOM, is based on the assumption that objects
move linearly when observed at small time steps. If this assumption is not upheld,
it is a sign of erratic motion and thereby a more complex MOT sequence.
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Fig. 3: a) Illustrative example of how the positional error ∆t is calculated as
the distance between the true position pt+β and estimated position λt+β . b)
The three objects have traveled an equal distance. Relative to their size, the
two smaller objects are displaced by a larger amount and the bounding box
overlap disappears. c) If the size of an object increases between two time steps
the displacement is relatively less important, compared to when the size of the
object decreases.

Initially, the displacement vector, P k
t , between the object’s position in the

current and past time step is calculated as

P k
t = pkt − pkt−β , (2)

where pt is the position of object k at time t, defined by its x- and y-coordinates,
and β describes the temporal step size. When calculating the displacement
between two consecutive frames β = 1. The displacement vector in the first frame
of a trajectory is set to zero and β is capped by the first and last frame of a
trajectory when the object is not present at time t± β.

The position in the next time step is predicted using a linear motion model with
constant velocity based on the current position and the calculated displacement
vector. The position is predicted by

λk
t+β = P k

t + pkt . (3)

The error between the predicted and true position of the object is calculated by

∆k
t = ℓ2(p

k
t+β , λ

k
t+β) (4)

where ℓ2 is the Euclidean distance function and a larger ∆k
t indicates a more

complex motion. See Figure 3a for an illustration of how the displacement error
is calculated. This approach may seem overly simplified, but it encapsulates
changes in both direction and velocity. Furthermore, it is deliberately sensitive
to low frame rates and camera motion, as both factors add to the complexity of
tracking sequences.

Inspired by the analysis of decreasing tracking performance with respect to
smaller object sizes by Bergmann et al. [3], the size is also taken into consideration.
The combination of size and movement affects the difficulty of predicting the
next state of the object. In Figure 3b, the rectangles are equally displaced but do
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not experience the same displacement relative to their size. Intuitively, if a set
of objects are moving at similar speeds, it is harder to track the smaller objects
due to their lower spatio-temporal overlap.
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Fig. 4: α controls the growth of the
function g(x, α) and decides when an
output value of 0.5 is reached. The
dashed line illustrates g(x, α) when
using the average of a set of α values.

Accordingly, the motion-based com-
plexity measure is based on the displace-
ment relative to the size of the object. As
illustrated in Figure 3c, the size of the ob-
ject may change between two time steps.
The direction of the change is critical as
the displacement is less distinct if the size
of the object is increasing, compared to
the opposite situation. Therefore, we mul-
tiply the current size of the object with
the change in object size to get the trans-
formed object size

ρkt = skt ·
skt+β

skt
= skt+β , (5)

where skt =
√
wk

t · hk
t and hk

t and wk
t are

the height and width of object k at time
step t, respectively. The motion complexity
measure is then calculated as the mean
size-compensated displacement across all
frames, F , and all objects at each frame,
Kt, and weighted by the log-sigmoid function g(x, α)

MCOM =
1

|A|

A∑

α

g


 1
∑K

k |F k|

K∑

k

Fk∑

t

∆k
t

ρkt
, α


 , (6)

where the average of A = {0.01, 0.02, ..., 1.0} is used to avoid manually deciding
on a specific value for α. The use of the function g(x, α) is motivated by the aim
of having an output in the range [0, 1], where a higher number describes a more
complex motion. The function g(x, α) is given by

g(x, α) =
1

1 + e− log(x)α
=

1

1 + α
x

=
x

x+ α
, (7)

where α affects the gradient of the monotonically increasing function and indicates
the point where the output of the function will reach 0.5 as illustrated in Figure 4.
The function is designed such that displacements in the lower ranges are weighted
higher. The argument for this choice is based on the assumption that minor
increments to an extraordinarily erratic locomotive behavior have less impact on
the complexity.



MOTCOM: The Multi-Object Tracking Dataset Complexity Metric 9

4.3 Visual Similarity Metric

In order to define a metric that links an object’s visual appearance with tracking
complexity, we investigate how similar an object in one frame is compared to
itself and other objects in the next frame. Two objects may look similar, but they
cannot occupy the same spatial position. Therefore, we propose a spatial-aware
visual similarity metric called VCOM.

VCOM consists of a preprocessing, feature extraction, and distance evaluation
step. For every object k ∈ K in every frame t ∈ F an image Ikt is produced with
the object’s bounding box in focus and a heavy blurred background. We blur the
image using a discrete Gaussian function, except in the region of the object’s
bounding box as visualized in Figure 5a.

A feature embedding is then extracted from each of the preprocessed images.
As opposed to looking at the bounding box alone, using the entire image allows us
to retain and embed spatial information in the feature vector. The object’s location
is especially valuable in scenes with similarly looking objects and the blurred
background contributes with low frequency information of the surroundings.

We blur the image with a Gaussian kernel with a fixed size of 201 and a
sigma of 38 and extract the image features using an ImageNet [10] pre-trained
ResNet-18 [16] model. We measure the similarity between the feature vector of
the target object in frame t and the feature vectors of all the objects in frame
t+ 1 by computing the Euclidean distance. The uncertainty increases if more
objects are located within the proximity of the target. Therefore, we do not only
look for the nearest neighbor, but rather the number of objects within a given
distance, d(r), from the target feature vector

d(r) = dNN + dNN · r (8)

(a)

r = 0.00

FDR
1.00

r = 0.25

FDR
1.00

r = 0.50

FDR
0.75

r = 0.75

FDR
0.83

r = 1.00

FDR
0.92

(b)

Fig. 5: a) Example showing three images with the object in focus and a blurred
background produced from a frame from the MOT17-05 sequence. b) The distance
ratio, r, affects the FDR when other objects are in the proximity of the target.
The red dot is the nearest neighbor, the green dot is the true positive match, and
the remaining dots are other objects.
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where dNN is the distance to the nearest neighbor and r is a distance ratio. The
ratio is multiplied by the distance to the nearest neighbor in order to account for
the variance in scale, e.g., as induced by object resolution or distinctiveness.

An object within the distance boundary that shares the same identity as
the target object is considered a true positive (TP) and all other objects are
considered false positives (FP). By measuring the complexity based on the false
discovery rate, FDR = FP

FP+TP , we get an output in the range [0, 1] where a higher
number indicates a more complex task. An illustrative example of how the FDR is
determined based on the distance ratio r can be seen in Figure 5b. It is ambiguous
to choose a single optimal distance ratio r. Therefore, we calculate VCOM based
on the average of distance ratios from the set R = {0.01, 0.02, ..., 1.0}

VCOM =
1

|R|

R∑

r

1

|F |

F∑

t

1

|Kt|

Kt∑

k

FDRd(r)(k) (9)

4.4 MOTCOM

Occlusion alone does not necessarily indicate an overwhelming problem if the
object follows a known motion model or if it is visually distinct. The same is
true for erratic motion and visual similarity when viewed in isolation. However,
the combination of occlusion, erratic motion, and visual similarity becomes
increasingly difficult to handle.

Therefore, we combine the occlusion, erratic motion, and visual similarity
metrics into a single MOTCOM metric that describes the overall complexity of a
sequence. MOTCOM is computed as the weighted arithmetic mean of the three
sub-metrics and is given by

MOTCOM =
wOCOM ·OCOM+ wMCOM ·MCOM+ wVCOM ·VCOM

wOCOM + wMCOM + wVCOM
(10)

where wOCOM, wMCOM, and wVCOM are the weights for the three sub-metrics.
Equal weighting can be obtained by setting wOCOM = wMCOM = wVCOM, while
custom weights may be suitable for specific applications. During evaluation we
weight the sub-metrics equally as we deem each of the sub-problems equally
difficult to handle.

5 Evaluation

In the following experimental section, we demonstrate that MOTCOM is able
to describe the complexity of MOT sequences and is superior to density and
number of tracks. In order to do this, we compare the estimated complexity
levels with ground truth representations. Such ground truths are not readily
available, but a strong proxy can be obtained by ranking the sequences based on
the performance of state-of-the-art trackers [20]. There exist many performance
metrics with two of the most popular being MOTA [39] and IDF1 [35]. However,
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we apply the recent HOTA metric [24], which was proposed in response to the
imbalance between detection, association, and localization within traditional
metrics. Additionally, HOTA is the tracker performance metric that correlates
the strongest with MOT complexity based on human assessment [24]. In the
remainder of this section, we present the datasets and evaluation metrics we use
to experimentally verify the applicability of MOTCOM.

5.1 Ground Truth

In order to create a strong foundation for the evaluation, we are in need of
benchmark datasets with consistent annotation standards and leader boards with
a wide range of state-of-the-art trackers. Therefore, we evaluate MOTCOM on
the popular MOT17 [27] and MOT20 [9] datasets4. There are seven sequences in
the test split of MOT17 and four sequences in the test split of MOT20, some
of which are presented in Figure 6. Furthermore, leader boards are provided for
both benchmarks with results from 212 trackers for MOT17 and 80 trackers
for MOT20. We use the results from the top-30 ranked trackers5 based on the
average HOTA score, so as to limit unstable and fluctuating performances.

In order to strengthen and support the evaluation, we include the training
split of the fully synthetic MOTSynth dataset [12] which contains 764 varied
sequences of pedestrians. A few samples from the dataset can be seen in Figure 7.
In order to obtain ground truth tracker performance for MOTSynth, we train
and test a CenterTrack model [49] on the data. We have chosen CenterTrack as
it has been shown to perform well when trained on synthetic data [12].

4 With permission from the MOTChallenge benchmark authors.
5 Leader board results obtained on March 4, 2022.

(a) (b)

Fig. 6: Sample images from a) MOT17 [27] and b) MOT20 [9]. MOT17 contains
varied urban scenes with and without camera motion. MOT20 contains crowded
scenes captured from an elevated point of view and without camera motion.

Fig. 7: Sample images from the MOTSynth dataset [12]. The sequences vary in
camera motion and perspective, environment, and lighting.
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5.2 Evaluation Metrics

We evaluate and compare the dataset complexity metrics by their ability to
rank the MOT sequences according to the HOTA score of the trackers. We rank
the sequences from simple to complex by their density, number of tracks (abbr.
tracks), MOTCOM score, and HOTA score. Depending on the metric, the ranking
is in decreasing (HOTA) or increasing order (density, tracks, MOTCOM). The
absolute difference between the ranks, known as Spearman’s Footrule Distance
(FD) [11], gives the distance between the ground truth and estimated ranks

FD =

n∑

i=1

|rank(xi)− rank(HOTAi)|, (11)

where n is the number of sequences and x is density, tracks, or MOTCOM. In
order to directly compare results of sets of different lengths, we normalize the
FD by the maximal possible distance FDmax which is computed as

FDmax =

{∑n
i=1 i−

n
2 {n | 2m , m ∈ Z+}∑n

i=1 i−
n+1
2 {n | 2m− 1 , m ∈ Z+}

. (12)

Finally, we compute the normalized FD, NFD = FD
FDmax

.

6 Results

In Table 1, we present the mean FD of the ranks of density, tracks, and MOTCOM
against the ground truth ranks dictated by the average top-30 HOTA performance
on the MOT17 and MOT20 test splits (individually and in combination). The
numbers in parentheses are the normalized FD. Generally, MOTCOM has a con-
siderably lower FD compared to density and tracks. This suggests that MOTCOM
is better at ranking the sequences according to the HOTA performance.

A similar tendency can be seen for the CenterTrack-based results presented
in Table 2. In order to increase the number of samples, we have evaluated
CenterTrack on both the train and test splits of the MOT17 and MOT20 datasets.
MOTChltest and MOTChltrain are the test and train sequences, respectively, of
MOT17 and MOT20. MOTChlboth includes all the sequences from MOT17 and
MOT20. These results support our claim that MOTCOM is better at estimating
the complexity of MOT sequences compared to density and tracks.

Table 1: Ground truth ranks are based on the average top-30 HOTA performance.
The results are presented as the mean FD and the NFD in parentheses. A lower
score is better and the results in bold are the lowest

Top-30 MOT17test MOT20test Combined

Density 1.71 (0.50) 1.00 (0.50) 3.82 (0.70)
Tracks 2.57 (0.75) 1.50 (0.75) 3.82 (0.70)
MOTCOM 0.86 (0.25) 0.00 (0.00) 1.45 (0.27)
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Table 2: Ground truth ranks are based on the CenterTrack HOTA performance.
The results are presented as the mean FD and the NFD in parentheses. A lower
score is better and the results in bold are the lowest
CenterTrack MOTChltest MOTChltrain MOTChlboth MOTSynth

Density 3.27 (0.60) 4.18 (0.77) 7.36 (0.67) 238.71 (0.63)
Tracks 2.73 (0.50) 3.64 (0.67) 6.64 (0.60) 193.50 (0.51)
MOTCOM 2.36 (0.43) 2.18 (0.40) 4.82 (0.44) 100.17 (0.26)

MOTC
OM

VCOM
OCOM

MCOM
de

nsi
ty

tra
cks

HOTA

MOTA

IDF1

-0.79 -0.7 -0.44 -0.37 -0.07 0.1

-0.7 -0.5 -0.39 -0.37 0.01 -0.01

-0.75 -0.67 -0.53 -0.33 -0.15 0.12

Spearman's correlation matrix

Fig. 8: Spearman’s correlation matrix
based on the performance of the top-30
trackers on MOT17 and MOT20.

We present a Spearman’s correla-
tion matrix in Figure 8 based on the
top-30 trackers evaluated for the com-
bined MOT17 and MOT20 test splits.
It indicates that the density and tracks
do not correlate with HOTA, MOTA,
or IDF1, whereas MOTCOM has a
strong negative correlation with all
the performance metrics. Trackers eval-
uated on sequences with high MOT-
COM scores tend to have lower perfor-
mance while sequences with low MOT-
COM scores gives higher performance.
This underlines that MOTCOM can
indeed be used to understand the com-
plexity of MOT sequences.

7 Discussion

Our complexity metric MOTCOM provides tracker researchers and dataset
developers a comprehensive score to investigate and describe the complexity of
MOT sequences without the need for multiple baseline evaluations of different
tracking methods. This allows for an objective comparison of different datasets
without introducing potential training bias. Currently, the assessment of tracker
performance is roughly speaking reduced to a placement on a benchmark leader
board. This underrates novel solutions developed for less popular datasets or
methods designed explicitly to solve sub-tasks such as occlusion or erratic motion.

Supplemented by the sub-metrics, MOTCOM provides a deeper understanding
and more informed discussions on dataset composition and tracker performance,
which will increase the explanability of MOT. In order to illustrate this, we
discuss the performance of CenterTrack on the MOTSynth dataset with respect
to MOTCOM. Here we see that the occlusion level (OCOM) in Figure 9 has a
strong negative correlation with the HOTA score and the visual similarity metric
(VCOM) has a relatively weak correlation with HOTA. Both cases expose the
design of CenterTrack, which does not contain a module to handle lost tracks
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Fig. 9: The CenterTrack-based HOTA scores of the MOTSynth sequences plotted
against the sub-metrics OCOM, MCOM, and VCOM, respectively.

and is not dependent on visual cues for tracking. For the motion metric (MCOM)
we see two distributions; one in the lower end and one in the upper end of the
MCOM range. The objects are expected to behave similarly, so this indicates
that parts of the MOTSynth sequences include heavy camera motion which is
difficult for CenterTrack to handle. In Figure 10, we show that MOTCOM is far
better at estimating the complexity level compared to tracks and density.

8 Conclusion

We propose MOTCOM, the first meaningful and descriptive MOT dataset com-
plexity metric, and show that it is preferable for describing the complexity of
MOT sequences compared to the conventional methods of number of tracks
and density. MOTCOM is a combination of three individual sub-metrics that
describe the complexity of MOT sequences with respect to key obstacles in MOT:
occlusion, erratic motion, and visual similarity. The information provided by
MOTCOM can assist tracking researchers and dataset developers in acquiring
a deeper understanding of MOT sequences and trackers. We strongly suggest
that the community uses MOTCOM as the prevalent complexity measure for
increasing the explainability of MOT trackers and datasets.

Acknowledgements This work has been funded by the Independent Research
Fund Denmark under case number 9131-00128B.

0.1 0.2 0.3 0.4 0.5 0.6
MOTCOM

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

HO
TA

20 40 60 80 100 120 140
Tracks

0 20 40 60 80
Density

Fig. 10: The CenterTrack-based HOTA scores of the MOTSynth sequences plotted
against MOTCOM, tracks, and density.



MOTCOM: The Multi-Object Tracking Dataset Complexity Metric 15

References

1. Andriyenko, A., Roth, S., Schindler, K.: An analytical formulation of global occlusion
reasoning for multi-target tracking. In: 2011 IEEE International Conference on
Computer Vision Workshops (ICCV Workshops). pp. 1839–1846. IEEE (2011).
https://doi.org/10.1109/ICCVW.2011.6130472

2. Andriyenko, A., Schindler, K.: Multi-target tracking by continuous energy mini-
mization. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 1265–1272 (2011). https://doi.org/10.1109/CVPR.2011.5995311

3. Bergmann, P., Meinhardt, T., Leal-Taixé, L.: Tracking without bells and whistles.
In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). pp.
941–951 (2019). https://doi.org/10.1109/ICCV.2019.00103

4. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime
tracking. In: 2016 IEEE International Conference on Image Processing (ICIP). pp.
3464–3468 (2016). https://doi.org/10.1109/ICIP.2016.7533003

5. Branchaud-Charron, F., Achkar, A., Jodoin, P.M.: Spectral metric for
dataset complexity assessment. In: 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 3210–3219 (2019).
https://doi.org/10.1109/CVPR.2019.00333

6. Cao, X., Guo, S., Lin, J., Zhang, W., Liao, M.: Online tracking of ants based on
deep association metrics: method, dataset and evaluation. Pattern Recognition 103
(2020). https://doi.org/10.1016/j.patcog.2020.107233

7. Chang, M.F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A.,
Wang, D., Carr, P., Lucey, S., Ramanan, D., Hays, J.: Argoverse: 3d track-
ing and forecasting with rich maps. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 8740–8749 (2019).
https://doi.org/10.1109/CVPR.2019.00895

8. Cui, Y., Gu, Z., Mahajan, D., van der Maaten, L., Belongie, S., Lim, S.N.: Measuring
dataset granularity (2019). https://doi.org/10.48550/ARXIV.1912.10154

9. Dendorfer, P., Osep, A., Milan, A., Schindler, K., Cremers, D., Reid, I., Roth,
S., Leal-Taixé, L.: Motchallenge: A benchmark for single-camera multiple target
tracking. International Journal of Computer Vision (IJCV) 129, 845–881 (2021).
https://doi.org/10.1007/s11263-020-01393-0

10. Deng, J., Dong, W., Socher, R., Li, L.J., Kai Li, Li Fei-Fei: Imagenet:
A large-scale hierarchical image database. In: 2009 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 248–255 (2009).
https://doi.org/10.1109/CVPR.2009.5206848

11. Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. Journal
of the Royal Statistical Society: Series B (Methodological) 39(2), 262–268 (1977).
https://doi.org/10.1111/j.2517-6161.1977.tb01624.x

12. Fabbri, M., Brasó, G., Maugeri, G., Cetintas, O., Gasparini, R., Ošep, A.,
Calderara, S., Leal-Taixe, L., Cucchiara, R.: Motsynth: How can synthetic
data help pedestrian detection and tracking? In: 2021 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV). pp. 10829–10839 (2021).
https://doi.org/10.1109/ICCV48922.2021.01067

13. Gade, R., Moeslund, T.B.: Constrained multi-target tracking for team sports
activities. IPSJ Transactions on Computer Vision and Applications 10, 2 (2018).
https://doi.org/10.1186/s41074-017-0038-z

14. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driv-
ing? the kitti vision benchmark suite. In: 2012 IEEE Conference on

https://doi.org/10.1109/ICCVW.2011.6130472
https://doi.org/10.1109/CVPR.2011.5995311
https://doi.org/10.1109/ICCV.2019.00103
https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.1109/CVPR.2019.00333
https://doi.org/10.1016/j.patcog.2020.107233
https://doi.org/10.1109/CVPR.2019.00895
https://doi.org/10.48550/ARXIV.1912.10154
https://doi.org/10.1007/s11263-020-01393-0
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1111/j.2517-6161.1977.tb01624.x
https://doi.org/10.1109/ICCV48922.2021.01067
https://doi.org/10.1186/s41074-017-0038-z


16 M. Pedersen et al.

Computer Vision and Pattern Recognition (CVPR). pp. 3354–3361 (2012).
https://doi.org/10.1109/CVPR.2012.6248074

15. Haurum, J.B., Karpova, A., Pedersen, M., Bengtson, S.H., Moeslund, T.B.:
Re-identification of zebrafish using metric learning. In: 2020 IEEE Winter
Applications of Computer Vision Workshops (WACVW). pp. 1–11 (2020).
https://doi.org/10.1109/WACVW50321.2020.9096922

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

17. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 24(3),
289–300 (2002). https://doi.org/10.1109/34.990132

18. Khan, S.D., Ullah, H.: A survey of advances in vision-based vehicle re-
identification. Computer Vision and Image Understanding 182, 50–63 (2019).
https://doi.org/10.1016/j.cviu.2019.03.001

19. Kratz, L., Nishino, K.: Tracking with local spatio-temporal motion patterns
in extremely crowded scenes. In: 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 693–700 (2010).
https://doi.org/10.1109/CVPR.2010.5540149

20. Leal-Taixé, L., Milan, A., Schindler, K., Cremers, D., Reid, I., Roth, S.: Tracking
the trackers: an analysis of the state of the art in multiple object tracking. arXiv
(2017). https://doi.org/10.48550/ARXIV.1704.02781

21. Leal-Taixé, L., Canton-Ferrer, C., Schindler, K.: Learning by tracking: Siamese
cnn for robust target association. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW). pp. 418–425 (2016).
https://doi.org/10.1109/CVPRW.2016.59

22. Liu, C., Yao, R., Rezatofighi, S.H., Reid, I., Shi, Q.: Model-free tracker for multiple
objects using joint appearance and motion inference. IEEE Transactions on Image
Processing 29, 277–288 (2020). https://doi.org/10.1109/TIP.2019.2928123

23. Lu, Z., Rathod, V., Votel, R., Huang, J.: Retinatrack: Online single stage
joint detection and tracking. In: 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 14656–14666 (2020).
https://doi.org/10.1109/CVPR42600.2020.01468

24. Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-Taixé, L., Leibe, B.:
Hota: A higher order metric for evaluating multi-object tracking. International Jour-
nal of Computer Vision (IJCV) p. 548–578 (2021). https://doi.org/10.1007/s11263-
020-01375-2

25. Luo, W., Kim, T.K., Stenger, B., Zhao, X., Cipolla, R.: Bi-label propa-
gation for generic multiple object tracking. In: 2014 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 1290–1297 (2014).
https://doi.org/10.1109/CVPR.2014.168

26. Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Kim, T.K.: Multiple ob-
ject tracking: A literature review. Artificial Intelligence 293, 103448 (2021).
https://doi.org/10.1016/j.artint.2020.103448

27. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: Mot16: A benchmark for
multi-object tracking. arXiv (2016). https://doi.org/10.48550/ARXIV.1603.00831

28. Milan, A., Roth, S., Schindler, K.: Continuous energy minimization for multitarget
tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
36(1), 58–72 (2014). https://doi.org/10.1109/TPAMI.2013.103

https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/WACVW50321.2020.9096922
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/34.990132
https://doi.org/10.1016/j.cviu.2019.03.001
https://doi.org/10.1109/CVPR.2010.5540149
https://doi.org/10.48550/ARXIV.1704.02781
https://doi.org/10.1109/CVPRW.2016.59
https://doi.org/10.1109/TIP.2019.2928123
https://doi.org/10.1109/CVPR42600.2020.01468
https://doi.org/10.1007/s11263-020-01375-2
https://doi.org/10.1007/s11263-020-01375-2
https://doi.org/10.1109/CVPR.2014.168
https://doi.org/10.1016/j.artint.2020.103448
https://doi.org/10.48550/ARXIV.1603.00831
https://doi.org/10.1109/TPAMI.2013.103


MOTCOM: The Multi-Object Tracking Dataset Complexity Metric 17

29. Milan, A., Schindler, K., Roth, S.: Challenges of ground truth evalua-
tion of multi-target tracking. In: 2013 IEEE Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW). pp. 735–742 (2013).
https://doi.org/10.1109/CVPRW.2013.111

30. Pang, J., Qiu, L., Li, X., Chen, H., Li, Q., Darrell, T., Yu, F.: Quasi-dense
similarity learning for multiple object tracking. In: 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 164–173 (2021).
https://doi.org/10.1109/CVPR46437.2021.00023

31. Pedersen, M., Haurum, J.B., Hein Bengtson, S., Moeslund, T.B.: 3d-zef: A
3d zebrafish tracking benchmark dataset. In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 2423–2433 (2020).
https://doi.org/10.1109/CVPR42600.2020.00250

32. Pellegrini, S., Ess, A., Schindler, K., van Gool, L.: You’ll never walk alone:
Modeling social behavior for multi-target tracking. In: 2009 IEEE 12th In-
ternational Conference on Computer Vision (ICCV). pp. 261–268 (2009).
https://doi.org/10.1109/ICCV.2009.5459260

33. Peng, J., Wang, C., Wan, F., Wu, Y., Wang, Y., Tai, Y., Wang, C., Li, J., Huang, F.,
Fu, Y.: Chained-tracker: Chaining paired attentive regression results for end-to-end
joint multiple-object detection and tracking. In: Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.M. (eds.) Computer Vision – ECCV 2020. pp. 145–161. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58548-8_9

34. Pérez-Escudero, A., Vicente-Page, J., Hinz, R.C., Arganda, S., De Polavieja, G.G.:
idtracker: tracking individuals in a group by automatic identification of unmarked an-
imals. Nature methods 11(7), 743–748 (2014). https://doi.org/10.1038/nmeth.2994

35. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures
and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.)
Computer Vision – ECCV 2016 Workshops, pp. 17–35. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48881-3_2

36. Schneider, S., Taylor, G.W., Kremer, S.C.: Similarity learning networks for animal
individual re-identification - beyond the capabilities of a human observer. In: 2020
IEEE Winter Applications of Computer Vision Workshops (WACVW). pp. 44–52
(2020). https://doi.org/10.1109/WACVW50321.2020.9096925

37. Schneider, S., Taylor, G.W., Linquist, S., Kremer, S.C.: Past, present and fu-
ture approaches using computer vision for animal re-identification from cam-
era trap data. Methods in Ecology and Evolution 10(4), 461–470 (2019).
https://doi.org/10.1111/2041-210X.13133

38. Stadler, D., Beyerer, J.: Improving multiple pedestrian tracking by track
management and occlusion handling. In: 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 10953–10962 (2021).
https://doi.org/10.1109/CVPR46437.2021.01081

39. Stiefelhagen, R., Bernardin, K., Bowers, R., Garofolo, J., Mostefa, D., Soundarara-
jan, P.: The clear 2006 evaluation. In: Stiefelhagen, R., Garofolo, J. (eds.) Multi-
modal Technologies for Perception of Humans. pp. 1–44. Springer, Berlin, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-69568-4_1

40. Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P.,
Guo, J., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam,
J., Zhao, H., Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A.,
Zhang, Y., Shlens, J., Chen, Z., Anguelov, D.: Scalability in perception for
autonomous driving: Waymo open dataset. In: 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 2443–2451 (2020).
https://doi.org/10.1109/CVPR42600.2020.00252

https://doi.org/10.1109/CVPRW.2013.111
https://doi.org/10.1109/CVPR46437.2021.00023
https://doi.org/10.1109/CVPR42600.2020.00250
https://doi.org/10.1109/ICCV.2009.5459260
https://doi.org/10.1007/978-3-030-58548-8_9
https://doi.org/10.1038/nmeth.2994
https://doi.org/10.1007/978-3-319-48881-3_2
https://doi.org/10.1109/WACVW50321.2020.9096925
https://doi.org/10.1111/2041-210X.13133
https://doi.org/10.1109/CVPR46437.2021.01081
https://doi.org/10.1007/978-3-540-69568-4_1
https://doi.org/10.1109/CVPR42600.2020.00252


18 M. Pedersen et al.

41. Uhlmann, J.K.: Algorithms for multiple-target tracking. American Scientist 80(2),
128–141 (1992)

42. Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B.B.G., Geiger, A., Leibe,
B.: Mots: Multi-object tracking and segmentation. In: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 7934–7943 (2019).
https://doi.org/10.1109/CVPR.2019.00813

43. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep
association metric. In: 2017 IEEE International Conference on Image Processing
(ICIP). pp. 3645–3649 (2017). https://doi.org/10.1109/ICIP.2017.8296962

44. Xiang, Y., Alahi, A., Savarese, S.: Learning to track: Online multi-object tracking
by decision making. In: 2015 IEEE International Conference on Computer Vision
(ICCV). pp. 4705–4713 (2015). https://doi.org/10.1109/ICCV.2015.534

45. Xu, J., Cao, Y., Zhang, Z., Hu, H.: Spatial-temporal relation networks for multi-
object tracking. In: 2019 IEEE/CVF International Conference on Computer Vision
(ICCV). pp. 3987–3997 (2019). https://doi.org/10.1109/ICCV.2019.00409

46. Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.H.: Deep learn-
ing for person re-identification: A survey and outlook. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI) 44(6), 2872–2893 (2022).
https://doi.org/10.1109/TPAMI.2021.3054775

47. Yin, J., Wang, W., Meng, Q., Yang, R., Shen, J.: A unified object motion and
affinity model for online multi-object tracking. In: 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 6767–6776 (2020).
https://doi.org/10.1109/CVPR42600.2020.00680

48. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: Fairmot: On the fairness of detec-
tion and re-identification in multiple object tracking. International Journal of Com-
puter Vision (IJCV) 129(11), 3069–3087 (2021). https://doi.org/10.1007/s11263-
021-01513-4

49. Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: Vedaldi, A.,
Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision – ECCV 2020. pp.
474–490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_28

https://doi.org/10.1109/CVPR.2019.00813
https://doi.org/10.1109/ICIP.2017.8296962
https://doi.org/10.1109/ICCV.2015.534
https://doi.org/10.1109/ICCV.2019.00409
https://doi.org/10.1109/TPAMI.2021.3054775
https://doi.org/10.1109/CVPR42600.2020.00680
https://doi.org/10.1007/s11263-021-01513-4
https://doi.org/10.1007/s11263-021-01513-4
https://doi.org/10.1007/978-3-030-58548-8_28

	MOTCOM: The Multi-Object Tracking Dataset Complexity Metric

