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Abstract. The Visual Question Answering (VQA) task aspires to pro-
vide a meaningful testbed for the development of AI models that can
jointly reason over visual and natural language inputs. Despite a pro-
liferation of VQA datasets, this goal is hindered by a set of common
limitations. These include a reliance on relatively simplistic questions
that are repetitive in both concepts and linguistic structure, little world
knowledge needed outside of the paired image, and limited reasoning
required to arrive at the correct answer. We introduce A-OKVQA, a
crowdsourced dataset composed of a diverse set of about 25K questions
requiring a broad base of commonsense and world knowledge to answer.
In contrast to existing knowledge-based VQA datasets, the questions
generally cannot be answered by simply querying a knowledge base, and
instead require some form of commonsense reasoning about the scene
depicted in the image. We demonstrate the potential of this new dataset
through a detailed analysis of its contents and baseline performance mea-
surements over a variety of state-of-the-art vision–language models.

1 Introduction

The original conception of the Visual Question Answering (VQA) problem was
as a Visual Turing Test [11]: can a computer answer questions about an image
well enough to fool us into thinking it’s human? To truly solve this Turing Test,
the computer would need to mimic several human capacities including: visual
recognition in the wild, language understanding, basic reasoning abilities, and a
background knowledge about the world. In the years after VQA was formulated,
many of these aspects have been studied. Early datasets mostly studied the per-
ception and language understanding problem on natural image datasets [2,12,30].
Other datasets studied complex chains of reasoning about procedurally generated
images [21]. More recent datasets include questions requiring factual [32, 47, 48]
or commonsense knowledge [53] to answer.

But, VQA has largely been a victim of its own success. With the advent
of large-scale pre-training of vision–language models [5, 8, 28, 29, 38, 50, 54] and
other breakthroughs in multi-modal architectures, much of the low-hanging fruit
in the field has been plucked and many of the benchmarks have seen saturated
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Q: What does the man who sits have trouble doing?

MC Answers:
(a) Riding (b) Breathing (c) Walking (d) Magic
Direct Answers:
Walking, Walking, …

Rationale: The vehicle being used is for 
people who cannot use their legs properly 
and need it for assistance in being mobile.

Q: What could block the washer's door?

MC Answers:
(a) Stool (b) Stove (c) Window (d) Sink
Direct Answers:
Stove, Oven, …

Rationale: The washer door is right in front 
of the range preventing it from opening.

Q: How many people will dine at this table?

MC Answers:
(a) Two (b) One (c) None (d) Five
Direct Answers:
One, One person, …

Rationale: There is only one cup of water 
and main dish at this table. 

Fig. 1: A-OKVQA dataset includes questions that require reasoning via a
variety of knowledge types such as commonsense, world knowledge and visual
knowledge. We provide Multiple-Choice (MC) as well as Direct Answer evalua-
tion settings. There are 3 rationales (one shown) associated to each question in
the train set providing the explanation/knowledge for answering the question.

performance. Even performance on newer knowledge-based datasets has been
improved by such models [54]. So how can we continue developing yet more
challenging datasets? A good start is to ask which human capabilities are not
yet expressed by current models.

We propose the following options. First, continuing the direction of past work
in knowledge-requiring VQA, we further expand the areas of knowledge required.
Our dataset requires diverse forms of outside knowledge including explicit fact-
based knowledge that is likely to be contained in knowledge bases, commonsense
knowledge about human social behavior, intuitive understanding of physics, and
visual knowledge. Second, we increase the complexity of reasoning needed to an-
swer questions. Our questions require models to recognize the image, understand
the question, recall relevant knowledge, and use reasoning to arrive at an answer.
For instance, in the first question shown in Figure 1, the model should reason
that people use that type of cart to avoid walking, and therefore the old man
likely has trouble with this activity. In general, our dataset requires additional
types of world knowledge compared to our previous work OK-VQA [32]. Hence,
we call it Augmented OK-VQA (A-OKVQA).

A-OKVQA is composed of about 25K questions paired with both multiple
choice (MC) answer options and ten free-form answers to allow for direct answer
(DA) evaluation. The MC component of the dataset bypasses many di�cul-
ties inherent in (DA) evaluation and allows for a simple, clean accuracy score.
This is particularly helpful given the greater variety in answers in A-OKVQA
questions. At the same time, we believe direct answer evaluation is important to
encourage models with more real-world applicability. In addition to the questions
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and answers, we provide rationales for each question. These brief explanatory
statements provide extra information that can be used for training reasoning or
knowledge retrieval methods, or to build more explainable VQA models.

In this work, our contributions are: (i) A new benchmark VQA dataset requir-
ing diverse sources of outside knowledge and reasoning; (ii) A detailed analysis
of the dataset that highlights its diversity and di�culty; (iii) An evaluation of a
variety of recent baseline approaches in the context of the challenging questions
in A-OKVQA; (iv) An extensive analysis of the results leading to interesting
findings (e.g., how well models perform when answers are in the tail of the dis-
tribution, and the complementarity of the studied models).

2 Related Work

Visual Question Answering. Visual Question Answering (VQA) has been a
common and popular form of vision–language reasoning. Many datasets for this
task have been proposed [2,9,23,30,40,46,52,56] but most of these do not require
much outside knowledge or reasoning, often focusing on recognition tasks such
as classification, attribute detection, and counting.

Knowledge-based VQA datasets. Several previous works have studied
the problem of knowledge-based VQA. The earliest explicitly knowledge-based
VQA datasets were KB-VQA [47] and FVQA [48]. While these benchmarks did
specifically require knowledge for questions, the knowledge required for these
benchmarks is completely “closed”. FVQA [48] is annotated by selecting a triplet
from a fixed knowledge graph. KVQA [41] is based on images in Wikipedia
articles. Because of the source of the images, these questions tend to mostly test
recognizing specific named entities (e.g., Barrack Obama) and then retrieving
Wikipedia knowledge about that entity rather than commonsense knowledge.

Most similar to our work is OK-VQA [32]. This dataset was an improvement
over prior work in terms of scale, and the quality of questions and images. It
also has the property that the required knowledge was not “closed” or explicitly
drawn from a particular source, and could be called “open”-domain knowledge.
While this is an improvement over the previous works, it still su↵ers from prob-
lems which we address in this work. The knowledge required, while “open” is
still biased towards simple lookup knowledge (e.g., what is the capital of this
country?) and most questions do not require much reasoning. In contrast, our
dataset is explicitly drawn to rely on more common-sense knowledge and to
require more reasoning to solve. In addition, our dataset includes “rationale”
annotations, which allow knowledge-based VQA systems to more densely anno-
tate their knowledge acquisition and reasoning capabilities. S3VQA [19] analyzes
OK-VQA and creates a new dataset which includes questions that require detect-
ing an object in the image, replacing the question with the word for that object
and then querying the web to find the answer. Like OK-VQA, its questions have
the shortcoming of generally requiring a single structured knowledge-retrieval,
rather than commonsense knowledge and reasoning.
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Another related line of work is Visual Commonsense Reasoning (VCR) [53].
VCR is also a VQA dataset, but is collected from movie scenes and is quite
focused on humans and their intentions (e.g. “why is [PERSON2] doing this”),
whereas our dataset considers questions and knowledge about a variety of ob-
jects. Additionally, the Ads Dataset [18] is a dataset requiring knowledge about
the topic and sentiments of the ads. Other datasets have considered knowledge-
based question answering for a sitcom [10] and by using web queries [6].

Explanation / Reasoning VQA. Visual reasoning on its own has been
studied in several VQA datasets. In CLEVR [21], the image and question are au-
tomatically generated from templates and explicitly require models to go through
multiple steps of reasoning to correctly answer. This dataset and similar datasets
which rely on simulated images su↵er from lack of visual realism and lack of rich-
ness in the images and questions and are thus prone to be overfit to with methods
achieving nearly 100% accuracy [51]. Our dataset requires reasoning on real im-
ages and free-form language. Other works [24, 34] have collected or extracted
justifications on the VQAv2 [12] dataset. However, VQAv2 mostly focuses on
questions about object attributes, counting and activities, which do not require
reasoning on outside knowledge.

3 A-OKVQA Collection

Image source. The most important attribute of an image source for this knowledge-
based VQA task is that it contains an abundance of visually rich and interesting
images. Images containing a small number of objects are typically quite chal-
lenging to write interesting questions requiring outside knowledge to answer. We
used images from the 2017 partitioning of the COCO dataset [25] in the creation
of A-OKVQA, because it (1) has many images cluttered with multiple objects
and entity types, and (2) is an established dataset with many associated models
already in existence. To ensure suitable images for annotation, we do some ad-
ditional filtering to remove uninteresting images: for the training and validation
sets, we define images with more than three objects as “interesting” and select
those for question writing. For the test set, which lacks object annotations, we
train a ResNet-50 classifier to distinguish such “interesting” images, achieving
an accuracy of 78% on our validation set. After multiple rounds of filtering
(described below), we obtain 23.7K unique images.

Question collection & filtering. The questions in A-OKVQA were writ-
ten and refined over several rounds of annotation by 437 crowd-workers on the
Amazon Mechanical Turk platform and refined through several manual and au-
tomated filtering steps to increase overall quality. As a first quality assurance
measure, workers completed a qualification task to demonstrate their ability to
write questions that met our criteria, namely that questions: (1) require looking
at the image to answer, (2) need some commonsense or specialized knowledge,
(3) involve some thinking beyond merely recognizing an object, and (4) not be
too similar to previous questions.
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To help ensure the last point, we clustered images by CLIP [37] visual fea-
tures and batched similar images together such that the same worker wrote
questions sequentially for related images (e.g., a worker might write questions
for several images showing baseball games in one task) to cut down on repetitive
questions. As an added measure to encourage question diversity, we maintained
a database of questions written and required users to check a new question
against these by displaying the five previous questions most similar in terms of
their RoBERTa [27] embeddings. We used a simple VQA model (Pythia [44]
pre-trained on VQAv2) to automatically find and remove questions we consid-
ered trivial (which the model answered correctly). Questions were then screened
by three other workers and only included if the majority agreed that it met
our criteria for inclusion. In all, 37,687 questions, or 60% of post-qualification
questions were excluded from the dataset by this process.

Answers. We asked workers to provide the correct answer along with three
distractors for the questions they wrote. After all questions and multiple-choice
options were gathered, we collected nine additional free-form answers per ques-
tion from a separate pool of workers.

Rationales. After questions and answers were collected and validated, we
performed a separate task to collect three rationales per question. Workers were
given a question and its multiple choice options and asked to explain why a
particular answer was correct (in one to two simple sentences, including any
necessary facts or prior world knowledge not shown by the images).

4 Dataset Statistics

The A-OKVQA dataset contains 24,903 (Question + Answer + Rationale)
triplets in 17.1K (train) / 1.1K (val) / 6.7K (test) splits. These preserve the
train/val/test splits in COCO 2017. The average lengths of and numbers of
unique words in the questions, answers, and rationales are shown in Table 1.

In Figure 2a we show the distribution of answer options in our dataset. What
we see is a fairly typical long-tail distribution of labels, as is seen in many open-
labeled image tasks [55]. A few answers occur quite often in the dataset, but
most fall into the long tail of the distribution.

We are also interested in the amount of answer set overlap between the
training set and the validation / testing sets. We find that 87.6% of val set and
82.7% of test set questions have correct answers that appear as options in the
train set. While this demonstrates a reasonable similarity between our splits,
there remains a significant portions the test set that requires an answer not
seen during training. Thus, models must be able to generate answers that are
out-of-distribution or based on some knowledge outside of the dataset.

Comparison with other datasets. In Table 1, we show dataset properties
and statistics for A-OKVQA compared to related datasets. We have 2-10x more
questions than the more knowledge-focused natural image datasets, such as OK-
VQA, while VCR (focused on images of people in movies) has 10x more than
ours. This is unsurprising because we intentionally filter out similar questions,
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(a) Answer occurrence distribution of
A-OKVQA.

(b) Knowledge type distribution for a
random subset of the dataset.

Fig. 2: Dataset statistics.

Table 1: Comparison of knowledge-based VQA datasets. Data based on
reported numbers and available annotations. Thus, some statistics may exclude
test sets. Answer statistics for A-OKVQA is based on the direct answer set.
Rationales are not available (or not in sentence form) in all datasets. Q: question,
I: image, A: answer, R: rationale, DA: Direct Answer, MC: Multiple Choice.

Q I Rationale
Knowledge

type
Ans type

Avg. length

(Q/A/R)

unique words

(Q/A/R)

KB-VQA [47] 2,402 700 8 fixed KB DA 6.8/2.0/— 530/1,296/—

FVQA [48] 5,826 2,190 3 fixed KB DA 9.5/1.2/— 3,010/1,287/—

OK-VQA [32] 14,055 14,031 8 factoid DA 8.1/1.3/— 5,703/11,125/—

S3VQA [19] 7,515 7,515 8 factoid DA 12.7/2.8/— 7,515/8,301/—

VCR [53] 290k 99,904 3 people actions MC 8.7/7.7/16.8 11,254/18,861/28,751

A-OKVQA 24,903 23,692 3 common/world DA/MC 8.8/1.3/11.0 7,248/17,683/20,629

making our questions more diverse (see Table 2). However, these are also di�cult
to collect at scale. Unlike these other datasets, ours has both multiple choice and
direct answer annotations. Our dataset also has rationales, unlike OK-VQA,
S3VQA and KB-VQA. Rationales in FVQA are in the form of knowledge tuples,
rather than full sentences. VCR has the most similar rationales to our own. Since
our rationales are more knowledge-based and have more possible variations per
question, we collect three, unlike both FVQA and VCR which collect just one.
Our questions are longer on average than in all datasets besides S3VQA and
FVQA. Ours also contain the most unique words besides S3VQA (which has a
similar number) and VCR (which has many more questions).

Knowledge types. The most significant factor di↵erentiating our dataset
is the kind of knowledge required. Datasets such as FVQA have fixed knowledge
bases that are used to write the questions, and so the knowledge required can
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be found in e.g. ConceptNet [26] directly. OK-VQA and S3VQA focus on more
factoid knowledge (e.g., years of invention or countries of origin). Researchers
have found that these datasets take the form of finding an entity in the image
and/or question and searching and retrieving knowledge about that particular
entity [19]. VCR requires images to have people in them and overwhelmingly
depicts people interacting in television shows and movies. Thus, the required
knowledge is very focused on commonsense about human behavior and inten-
tions. In our dataset, we require broader areas of knowledge, including the fac-
toid knowledge likely to be contained in knowledge bases (as in FVQA, KB-
VQA, OKVQA and S3VQA) and commonsense knowledge (similar to VCR, but
broader in scope).

To analyze the knowledge required in A-OKVQA more quantitatively, we
annotated a randomly sampled subset of 1,000 questions in the test set. In
this experiment, we asked the annotators to label the knowledge type required
to answer each question: (1) Commonsense knowledge about human social
behavior (e.g. that many donuts being made in a cart implies they are for sale
rather than for personal consumption), (2) Visual knowledge (e.g. muted color
pallets are associated with the 1950s), (3) Knowledge bases (e.g. hot dogs
were invented in Austria), and (4) Physical knowledge about the world that
humans learn from their everyday experiences (e.g., shaded areas have a lower
temperature than other areas). The distribution is shown in Figure 2b. Most of
our questions cluster around commonsense and visual knowledge. It should be
noted that sometimes there is no clear distinction between these two categories,
and a question can belong to either category.

Question diversity. To compare the diversity of A-OKVQA to other datasets,
we use the average pairwise cosine distance between questions for every dataset.
We embed our questions with a sentence transformer3. We see from Table 2 that
our dataset has the most diversity on this metric. In particular, we see a large
di↵erence compared to VCR which has many similar questions such as “What
is going to happen next?” and questions relating to what specific people in the
scene are doing and why. We also compare the diversity of rationales to VCR
and VQAv2 (using rationales from VQA-X [34] rationales), and we find that
our rationales are much more diverse than in these datasets. Qualitatively, we
also find that our dataset tends to have much more varied questions because
it is taken from the more visually diverse COCO dataset (a quality shared by
OK-VQA and VQAv2 which do almost as well on this metric) and requires more
diverse kinds of knowledge.

Finally, we use the same mean pairwise distance to look in particular at how
di↵erent our questions are from OK-VQA which is the most similar prior work
to ours. To do this we compare the minimum pairwise distance between every
question in the OK-VQA training set to every question in the OK-VQA test set
and our test set. We find that the average minimum distance from OK-VQA
train to test is 0.256 compared to 0.311 between OK-VQA train and our test

3 Specifically multi-qa-MiniLM-L6-cos-v1 [15] to avoid overlap with RoBERTa.
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Table 2: Question and Rationale Diversity. Mean pairwise cosine distances
in a sentence transformer space. 7 indicates lack of rationale. Rationales for
VQAv2 come from the VQA-X. dataset [34].

Dataset Mean Q distance Mean rationale distance

FVQA [48] 0.6199 7
VCR [53] 0.7095 0.8017

KB-VQA [47] 0.7192 7
S3VQA [19] 0.8050 7
VQAv2 [12] 0.8405 0.8228

OK-VQA [32] 0.8428 7

A-OKVQA 0.8564 0.8779

set4. This shows that there is in fact a significant di↵erence between our question
set and OK-VQA in this feature space.

5 Experiments

Next, we benchmark the A-OKVQA dataset and compare the performance of
di↵erent models. We consider three classes of methods: (1) large-scale pre-

trained models such as CLIP [37] and GPT-3 [4], (2) models that gener-

ate and use rationales, and (3) specialized models that are designed for
knowledge-based VQA (KRISP [31]) or tested for VQA (e.g., VilBERT [28]).

5.1 Evaluation

In the multiple choice (MC) setting, a model chooses its answer from one of
four options and we compute accuracy as the evaluation metric. In the direct
answer (DA) setting, a model can generate any text as its answer and we use
the standard VQA evaluation from [2].

5.2 Large-scale Pre-trained Models

We compare three types of large-scale pre-trained models (discriminative, con-
trastive, and generative) in Table 3. We also test these models in di↵erent input
settings (where questions, images, or both are provided).

We compute BERT [8,16] and CLIP ViT-B/32 text encoder representations
for questions. We also compute ResNet-50 [13] and CLIP ViT-B/32 features
for images. These are provided as inputs to the appropriate discriminative and
contrastive models. We provide questions as tokens and CLIP RN50x4 image

4 To make this comparison even, we chose a random subset of our test set to be the
same size as OK-VQA test set so that the minimum is over the same number of
possible choices in both cases.
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representations as inputs to the generative models. We generate a vocabulary
from a subset of training set answers and choices to use across all appropriate
models. We describe this vocabulary further in Appx. B.

Discriminative models. We train a multi-label linear classifier (i.e. MLP
with one hidden layer and sigmoid activation function) on top of BERT (row
d), ResNet (row i), and CLIP (rows e/j/m) representations to score answers
from the vocabulary. When questions and images are both provided, we first
concatenate their representations. For the DA setting, we predict the top scoring
vocabulary answer. For the MC setting, we instead predict the nearest neighbor5

choice to the top scoring vocabulary answer.
Contrastive models. We also evaluate models which match input questions

and/or images with answers using their CLIP encodings. First, we evaluate the
zero-shot setting (rows f/k/n). If both questions and images are provided as
inputs, we first add their representations. We select the answer whose encoding
has the greatest cosine similarity to our input representation. We select from
vocabulary answers in DA and the given choices in MC.

We also train a single-layer MLP on top of our input representations (rows
g/l/o). If both questions and images are provided, we first concatenate their
representations. Our MLP produces a 512-d embedding and we train this with
a CLIP-style contrastive loss between embeddings and their corresponding an-
swers. We describe this loss further in Appx. B. We repeat the evaluation from
the zero-shot setting, using these learned embeddings.

Generative models. We also evaluate models (GPT-3 [5] and ClipCap [33])
that generate answers directly as text. For both models, we predict the generated
text for DA and the generated text’s nearest neighbor choice for MC.

We prompt GPT-36 (row h) with 10 random questions and answers from the
training set, followed by a new question, and let GPT-3 generate an answer to
that question, in a manner similar to [49]. We provide GPT-3 with the prompt
template “Question: ... Answer: [...]”, expecting it to complete the answer for
each evaluation question.

ClipCap [33] (row p) is an image captioning method that passes CLIP image
features through a trained network to GPT-2 (as input tokens). We adapt this
model by adding question tokens (and answer choices if applicable) to the prompt
of GPT-2, generate answers instead of captions, and fine-tune on our data. We
provide additional details, diagrams, and variations in Appx. B.

Results. Table 3 shows the results of our evaluation of these models. Rows
a-c show the biases in our dataset, but that the direct answer setting is appro-
priately challenging. Question-only baselines (rows d-h) show poor performance
in both MC and DA settings. However, it is interesting that GPT-3 performs
similarly to the fine-tuned CLIP models (whichever is better per setting). The
zero-shot CLIP model (row f ) is least e↵ective, indicating that training is neces-
sary to repurpose CLIP text encodings for language-only tasks. Unsurprisingly,
CLIP image features are very strong for zero-shot multiple choice matching (row

5 Cosine similarity between mean GloVe [17,35] word embeddings.
6 We use the second largest available GPT-3 model, Curie, as in [49].



10 Dustin Schwenk et al.

Table 3: Large-scale pre-trained models. We also compare with no input
heuristics (rows a-c). Random is a uniform sampling from choices (for MC) or
answers in the training set (for DA). Random (weighted) uses weighted sampling
proportional to correct answer frequencies. Most Common selects the most fre-
quent answer in train.

Multiple Choice Direct Answer

Method Val Test Val Test

(a) Random 26.70 25.36 0.03 0.06

(b) Random (weighted) 29.49 30.87 0.15 0.10

(c) Most Common 30.70 30.33 1.75 1.26

Question

(d) BERT [8] (classifier) 32.93 33.54 9.52 8.41

(e) CLIP [37] (classifier) 32.74 33.54 13.10 10.24

(f) CLIP [37] (zero-shot) 30.42 30.58 0.44 0.57

(g) CLIP [37] (contrastive) 37.40 38.58 5.56 3.83

(h) GPT-3 [4] 35.07 35.21 12.98 11.49

Image

(i) ResNet [13] (classifier) 28.19 28.81 2.68 2.30

(j) CLIP [37] (classifier) 33.21 32.56 5.15 4.38

(k) CLIP [37] (zero-shot) 56.28 53.94 2.24 2.29

(l) CLIP [37] (contrastive) 52.56 50.09 2.33 2.45

Question & Image

(m) CLIP (classifier) 40.84 38.30 18.95 14.27

(n) CLIP (zero-shot) 48.19 45.72 1.08 0.71

(o) CLIP (contrastive) 53.77 51.01 10.36 7.10

(p) ClipCap [33] 56.93 51.43 30.89 25.90

k). However, they are not as strong as for the fine-tuned classifier (row j ) in DA.
ClipCap (row p) outperforms all other baselines in DA, because we use powerful
image features and also fine-tune a strong language model for our task.

5.3 Rationale Generation

We are interested in whether we can improve GPT-3 prompting results by pro-
viding additional image- and question- specific context and report results for
the following methods in Table 4. So, we fine-tune ClipCap (given images and
questions, but not choices) as above, but for the task of generating rationales
instead of answers. Our model scores 10.2 (val) / 9.58 (test) on SacreBLEU [36]
and 0.271 (val) / 0.256 (test) on METEOR [3]. We can then prompt GPT-3
(as above) but also provide these generated rationales as “Context: ...”. This
model is denoted by ‘ClipCap ! Ratl. ! GPT’. We provide additional details,
diagrams, and examples of generated rationales in Appx. C. We repeat this ex-
periment using captions (generated from only images) from the original ClipCap
model: ‘ClipCap ! Cap. ! GPT’.

Results. We show results from these experiments in Table 4. Interestingly,
prompting GPT-3 with ground-truth rationales (row d) is competitive with the
best model in Sec. 5.2 (Table 3, row p) in MC and significantly outperforms the
question-only GPT-3 method (Table 3, row h). When we prompt GPT-3 with
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Table 4: Models using generated and GT rationales as described in
Sec. 5.3. We are unable to evaluate the GT Caption ! GPT setting on the
test set, as captions are not available in the COCO [7] test set.

Multiple Choice Direct Answer

Method Val Test Val Test

(a) ClipCap ! Cap. ! GPT 42.51 43.61 16.59 15.79

(b) ClipCap ! Ratl. ! GPT 44.00 43.84 18.11 15.81

Oracles

(c) GT Caption ! GPT 45.40 — 16.39 —

(d) GT Rationale ! GPT 56.74 56.75 24.02 20.75

Table 5: Specialized models results. Baselines trained for VQA or knowledge-
based VQA, and fine-tuned on A-OKVQA. The bottom two rows are not com-
parable with the others since they use ground-truth rationales at test time.

Multiple-Choice Direct Answer

Method Val Test Val Test

(a) Pythia [20] 49.0 40.1 25.2 21.9

(b) ViLBERT [28] - OK-VQA 32.8 34.1 9.1 9.2

(c) ViLBERT [28] - VQA 47.7 42.1 17.7 12.0

(d) ViLBERT [28] 49.1 41.5 30.6 25.9

(e) LXMERT [45] 51.4 41.6 30.7 25.9

(f) KRISP [31] 51.9 42.2 33.7 27.1

(g) GPV-2 [22] 60.3 53.7 48.6 40.7

Oracles

(h) GPV-2 [22] + Masked Ans. 65.1 58.3 52.7 43.9

(i) GPV-2 [22] + GT Ratl. 73.4 67.2 58.9 51.7

ground-truth rationales (row d), we see higher performance than when we pro-
vide ground-truth captions (row c). This a�rms that rationales contain useful
information (i.e. specific to our questions and answers) in addition to captions.
However, the additional performance of prompting GPT-3 using generated ratio-
nales (row b) over generated captions (row a) is not as significant. This indicates
potential room for improvement in our approach for generating rationales.

5.4 Specialized Models

In this section, we evaluate some recent high-performing, open-source models
trained on knowledge-based VQA or the traditional VQA. The models we con-
sider are Pythia [20], VilBERT [28], LXMERT [45], KRISP [31], and GPV-2 [22].
As the first four models are part of MMF [43], it is easier to compare them fairly.
KRISP is a high-performing model on OK-VQA [32]. It provides a suitable base-
line as it was designed to perform well on knowledge-based VQA. GPV-2 per-
forms multiple vision and vision–language tasks and has learned a large number
of concepts, so it can be a strong baseline for A-OKVQA. All of these models
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are fine-tuned on A-OKVQA. We adapt them to MC using the nearest choice
method described above. See Appx. D for the details of each model.

Results. Unsurprisingly, these models, which are specialized for DA and
some of which are specialized for knowledge-based VQA perform very well on the
DA evaluation and quite well on MC. Of the models trained only on A-OKVQA
KRISP does the best, likely because it is trained to directly use outside knowl-
edge graphs. GPV-2, however, performs best of all, beating all other models
(that do not use ground-truth rationales) in all settings, possibly because of the
large number of concepts it has learned.

Transfer results. We train ViLBERT on VQAv2 and OK-VQA datasets
(denoted by ‘ViLBERT-VQA’ and ‘ViLBERT-OK-VQA’ in Table 5) to evaluate
whether the knowledge from those datasets is su�cient for A-OKVQA. The low
performance shows that significant di↵erences exist between these datasets and
A-OKVQA.

Ground-truth Rationales. To evaluate how well the model performs if it
is provided with high-quality rationales, we use ground-truth rationales at test.
We show these results with GPV-2 (our best model). Ground-truth rationales
are appended to questions as additional input text (‘GPV-2 + GT Ratl.’). For
this experiment, we used only one of the rationales. Comparing rows g and i of
Table 5 shows rationales are helpful. To evaluate how much of this improvement
can be attributed to rationales and not the fact that sometimes rationales con-
tain the answer, we replaced answers in the rationales with [answer] token. The
performance drops (row i vs row h), however, it is still higher than the case that
we do not use rationales (row h vs row g).

6 Analysis of Models

Next, we analyze the predictions that our baseline models make to see if we
can learn more about A-OKVQA: what kinds of questions do di↵erent types
of approaches do better / worse on? For these experiments, we choose some of
the best performing models on Direct Answer: VilBERT [28], LXMERT [45],
KRISP [31], ClipCap [33] and GPV-2 [22]. We also use the ClipCap ! Ratio-
nale ! GPT model from Table 4, which will be referred to as ‘GR-GPT’ for
Generated Rationales GPT.

Answer Frequency. First, we look at how answer frequency a↵ects perfor-
mance in Table 6. We first count the number of times any answer appears in the
direct answers in the training set. We then divide these into bins and look at
the direct DA test accuracy of our baselines for each of these frequency bins. We
find that GPV-2, and to a lesser extent ClipCap and GR-GPT perform better
on questions whose answers do not appear often in the training set (1-5 and 6-10
columns of Table 6). GPV-2 in particular (which is fine-tuned on several vision
and language tasks) is able to predict these tail answers much better than other
methods, especially the discriminative methods such as LXMERT.
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Table 6: Results across di↵erent answer frequencies. The questions are
categorized based on the frequency of the GT answer in the training set. Columns
show accuracy for answers that appear 1-5 times, 6-10 times, etc. If multiple
direct choices, we default to most common one.

Model 1-5 6-10 11-20 21-50 51-100 101-200 201+

VilBERT [28] 0.00 0.00 3.68 10.97 19.95 26.53 35.91

LXMERT [45] 0.00 0.00 4.29 13.73 20.18 26.69 34.31

KRISP [31] 0.00 0.61 6.34 13.99 21.78 28.55 35.22

ClipCap [33] 4.71 4.24 9.10 17.90 25.93 29.44 33.99

GR-GPT 8.18 9.29 9.41 17.39 18.31 21.98 24.65

GPV-2 [22] 10.16 12.12 22.60 31.04 38.40 41.60 44.69

Prediction overlap/di↵erence. Finally, we look at some statistics on a
question by question level in the A-OKVQA test set. Specifically we look at the
overlap in which methods answered which questions correctly7.

First, we find that only 5.85% of questions in test were answered correctly by
all models and 30.96% of questions had no model predict a correct answer for.
Considering the worst performing model of these gets 15.81% DA accuracy and
the best gets 40.7%, it implies that there is actually a large variation between
these models beyond some just being generally better than others and thus
getting “hard” questions right and keeping performance on “easy” questions.

In Table 7, we show the di↵erence between the questions each model gets right
on A-OKVQA test. Each row shows the percentage of that method’s correctly
answered questions that were not correctly answered by the comparison model in
each column. If we look at the row for the lowest performing model (GR-GPT)
for the column for the best performing model (GPV-2), we still see that 29.2%
of GR-GPT’s correctly answered questions are answered wrongly by GPV-2!

Finally, to further illustrate the point that di↵erent models have very di↵erent
mistake patterns, we take the prediction of all of these models except for GPV-2
for each question and take the majority vote between these. This majority vote
combination gets an accuracy of 29.5 compared to the best of these models
which gets 27.1. This does not work when GPV-2 is added (this majority model
gets 35.60 which is lower than GPV-2’s 40.7). We can also look at the Oracle
combination accuracy. That is, from our six models, choose the answer with the
highest ground-truth value and take that as the oracle combination answer. This
DA accuracy is 56.87 versus the single best performance of 40.7, again showing
that even worse performing models get many questions right that the best model
gets wrong.

Qualitative Analysis. We extracted questions that all of the discussed
models fail at. Figure 3 shows an example from each knowledge type. This shows
what type of reasoning is missing in top performing models.

7 For ease of analysis we count a binary yes/no of whether a model answered correctly
if it answered any possible answer in the direct answer set.
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Table 7: Pairwise di↵erence between correctly answered questions. For
row i and column j of this table the value is percentage of questions answered
correctly by model i that j did not answer correctly.

Model VilBERT LXMERT KRISP ClipCap GR-GPT GPV-2

VilBERT [28] 0.00 29.00 27.19 43.72 59.72 26.33

LXMERT [45] 28.07 0.00 26.57 44.39 59.73 27.44

KRISP [31] 30.44 30.76 0.00 44.18 60.29 27.43

ClipCap [33] 48.72 49.98 46.76 0.00 55.94 26.64

GR-GPT 50.27 50.91 48.67 40.30 0.00 29.20

GPV-2 [22] 51.09 52.46 49.57 46.56 61.94 0.00

Q: Which position will the red 
jacket most likely finish in?
A: Fourth

Commonsense Physical Knowledge base Visual

Q: What makes those chairs 
easy to carry?
A: Foldable

Q: What was the name of the 
first cloned type of this animal?
A: Dolly

Q: What body part is he using to 
maintain balance most effectively?
A: Arms

Fig. 3: Example questions that all discussed models fail at.

Collectively, these analyses reveal several interesting findings. First, aside
from being generally di�cult, the A-OKVQA dataset shows a surprising lack of
overlap in the specific questions di↵erent models answer correctly. Second, we
see that di↵erent methods handle rare answers very di↵erently. Thirdly, di↵erent
methods perform di↵erently based on the type of knowledge required to answer
questions. Together, these features suggests that A-OKVQA contains a wide va-
riety of challenging questions which are able to reveal and contrast the strengths
and weaknesses of VQA methods.

7 Conclusion

Vision–language models have become progressively more powerful, however, eval-
uation of the reasoning capabilities of these models have not received adequate
attention. To take a step in this direction, we propose a new knowledge-based
VQA benchmark called A-OKVQA, which primarily includes questions that re-
quire reasoning using commonsense and world knowledge. We provide rationales
for each question so models can learn the line of reasoning that leads to the an-
swer. We evaluate a large set of recent, high performance baselines. While they
show impressive performance on the proposed task, it is evident that they lack
the reasoning capability and/or the knowledge required to answer the questions,
and there is a large room for improvement.
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10. Garćıa, N., Otani, M., Chu, C., Nakashima, Y.: KnowIT VQA: Answering
knowledge-based questions about videos. In: AAAI (2020) 4

11. Geman, D., Geman, S., Hallonquist, N., Younes, L.: Visual turing test for computer
vision systems. Proceedings of the National Academy of Sciences (2015) 1

12. Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in
VQA matter: Elevating the role of image understanding in visual question answer-
ing. In: CVPR (2017) 1, 4, 8, 23

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 8, 10

14. Hudson, D.A., Manning, C.D.: Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In: CVPR (2019) 23

15. HuggingFace: https://huggingface.co/sentence-transformers/
multi-qa-MiniLM-L6-cos-v1 7

16. HuggingFace: https://huggingface.co/sentence-transformers/
nli-bert-base 8

17. HuggingFace: https://huggingface.co/sentence-transformers/average_
word_embeddings_glove.6B.300d 9

18. Hussain, Z., Zhang, M., Zhang, X., Ye, K., Thomas, C., Agha, Z., Ong, N., Ko-
vashka, A.: Automatic understanding of image and video advertisements. In: CVPR
(2017) 4

https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
https://huggingface.co/sentence-transformers/nli-bert-base
https://huggingface.co/sentence-transformers/nli-bert-base
https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d
https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d


16 Dustin Schwenk et al.

19. Jain, A., Kothyari, M., Kumar, V., Jyothi, P., Ramakrishnan, G., Chakrabarti,
S.: Select, substitute, search: A new benchmark for knowledge-augmented visual
question answering. In: SIGIR (2021) 3, 6, 7, 8

20. Jiang, Y., Natarajan, V., Chen, X., Rohrbach, M., Batra, D., Parikh, D.: Pythia
v0.1: the winning entry to the VQA challenge 2018. arXiv (2018) 11, 23

21. Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C.L., Girshick,
R.: CLEVR: A diagnostic dataset for compositional language and elementary visual
reasoning. In: CVPR (2017) 1, 4

22. Kamath, A., Clark, C., Gupta, T., Kolve, E., Hoiem, D., Kembhavi, A.: Webly
supervised concept expansion for general purpose vision models. arXiv (2022) 11,
12, 13, 14, 24

23. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S.,
Kalantidis, Y., Li, L., Shamma, D.A., Bernstein, M.S., Fei-Fei, L.: Visual Genome:
connecting language and vision using crowdsourced dense image annotations. IJCV
(2017) 3, 23

24. Li, Q., Fu, J., Yu, D., Mei, T., Luo, J.: Tell-and-answer: Towards explainable visual
question answering using attributes and captions. In: EMNLP (2018) 4

25. Lin, T.Y., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Dollár,
P., Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014)
4

26. Liu, H., Singh, P.: ConceptNet—a practical commonsense reasoning tool-kit. BT
technology journal (2004) 7, 24

27. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,
Zettlemoyer, L., Stoyanov, V.: RoBERTa: A robustly optimized bert pretraining
approach. arXiv (2019) 5

28. Lu, J., Batra, D., Parikh, D., Lee, S.: VilBERT: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks. In: NeurIPS (2019) 1, 8, 11,
12, 13, 14, 23, 24

29. Lu, J., Goswami, V., Rohrbach, M., Parikh, D., Lee, S.: 12-in-1: Multi-task vision
and language representation learning. In: CVPR (2020) 1

30. Malinowski, M., Fritz, M.: A multi-world approach to question answering about
real-world scenes based on uncertain input. In: NeurIPS (2014) 1, 3

31. Marino, K., Chen, X., Parikh, D., Gupta, A.K., Rohrbach, M.: KRISP: Integrat-
ing implicit and symbolic knowledge for open-domain knowledge-based VQA. In:
CVPR (2021) 8, 11, 12, 13, 14, 24

32. Marino, K., Rastegari, M., Farhadi, A., Mottaghi, R.: OK-VQA: A visual question
answering benchmark requiring external knowledge. In: CVPR (2019) 1, 2, 3, 6,
8, 11

33. Mokady, R., Hertz, A., Bermano, A.H.: ClipCap: CLIP prefix for image captioning.
arXiv (2021) 9, 10, 12, 13, 14, 21, 24

34. Park, D.H., Hendricks, L.A., Akata, Z., Rohrbach, A., Schiele, B., Darrell, T.,
Rohrbach, M.: Multimodal explanations: Justifying decisions and pointing to the
evidence. In: CVPR (2018) 4, 7, 8

35. Pennington, J., Socher, R., Manning, C.D.: GloVe: Global vectors for word repre-
sentation. In: EMNLP (2014) 9

36. Post, M.: A call for clarity in reporting BLEU scores. In: Conference on Machine
Translation (2018) 10

37. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.: Learning transferable
visual models from natural language supervision. In: ICML (2021) 5, 8, 10



A-OKVQA: Knowledge-based VQA Benchmark 17

38. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners. OpenAI blog (2019) 1

39. Ra↵el, C., Shazeer, N.M., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y.,
Li, W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR (2020) 24

40. Ren, M., Kiros, J., Zemel, R.S.: Exploring models and data for image question
answering. In: NeurIPS (2015) 3

41. Shah, S., Mishra, A., Yadati, N., Talukdar, P.P.: KVQA: Knowledge-aware visual
question answering. In: AAAI (2019) 3

42. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In: ACL
(2018) 23, 24

43. Singh, A., Goswami, V., Natarajan, V., Jiang, Y., Chen, X., Shah, M., Rohrbach,
M., Batra, D., Parikh, D.: MMF: A multimodal framework for vision and language
research. https://github.com/facebookresearch/mmf (2020) 11

44. Singh, A., Natarajan, V., Shah, M., Jiang, Y., Chen, X., Batra, D., Parikh, D.,
Rohrbach, M.: Towards VQA models that can read. In: CVPR (2019) 5

45. Tan, H.H., Bansal, M.: LXMERT: Learning cross-modality encoder representations
from transformers. In: EMNLP (2019) 11, 12, 13, 14, 23, 24

46. Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., Fidler, S.:
MovieQA: understanding stories in movies through question-answering. In: CVPR
(2016) 3

47. Wang, P., Wu, Q., Shen, C., Dick, A.R., van den Hengel, A.: Explicit knowledge-
based reasoning for visual question answering. In: IJCAI (2017) 1, 3, 6, 8

48. Wang, P., Wu, Q., Shen, C., van den Hengel, A., Dick, A.R.: FVQA: fact-based
visual question answering. TPAMI (2017) 1, 3, 6, 8

49. West, P., Bhagavatula, C., Hessel, J., Hwang, J.D., Jiang, L., Bras, R.L., Lu,
X., Welleck, S., Choi, Y.: Symbolic knowledge distillation: from general language
models to commonsense models. arXiv preprint arXiv:2110.07178 (2021) 9

50. Yang, Z., Gan, Z., Wang, J., Hu, X., Lu, Y., Liu, Z., Wang, L.: An empirical study
of GPT-3 for few-shot knowledge-based VQA. arXiv (2021) 1

51. Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., Tenenbaum, J.B.: Neural-
symbolic VQA: Disentangling reasoning from vision and language understanding.
In: NeurIPS (2018) 4

52. Yu, L., Park, E., Berg, A.C., Berg, T.L.: Visual madlibs: Fill in the blank descrip-
tion generation and question answering. In: ICCV (2015) 3

53. Zellers, R., Bisk, Y., Farhadi, A., Choi, Y.: From recognition to cognition: Visual
commonsense reasoning. In: CVPR (2019) 1, 4, 6, 8

54. Zhang, P., Li, X., Hu, X., Yang, J., Zhang, L., Wang, L., Choi, Y., Gao, J.: VinVL:
Revisiting visual representations in vision-language models. In: CVPR (2021) 1,
2, 24

55. Zhu, X., Anguelov, D., Ramanan, D.: Capturing long-tail distributions of object
subcategories. In: CVPR (2014) 5

56. Zhu, Y., Groth, O., Bernstein, M.S., Fei-Fei, L.: Visual7W: grounded question
answering in images. In: CVPR (2016) 3, 23

https://github.com/facebookresearch/mmf

	A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge

