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Here, we present additional details, results and analyses that could not be
included in the main paper due to page-limit constraints. All references and
figures in this supplementary file are self-contained.

1 Anatomy of Video Editing (AVE): Dataset

In Fig. 1, Fig. 2 and Fig. 3, we plot the class-wise distribution statistics for all
shot attributes. We can infer two key things from the figures. First, there is a
long tail label distribution problem in many of the shot attributes as discussed
in the main paper. Second, we conduct all of our experiments on a very balanced
training and evaluation sets. Beyond the shot-level attributes, we further analyze
transition patterns between contiguous shots in AVE. In Fig. 4, we plot the most
frequent shot attribute transitions with respect to their probability of occurrence.
Please refer to the Project page for further qualitative analyses on the proposed
dataset and benchmark tasks.

2 Experimental Results and Discussion

2.1 Experimental Settings

Network Architecture. We use ResNet-101 [4] and R-3D [16] as visual back-
bone networks for image and video inputs, respectively. For feature extraction,
we remove the last fc layer from both networks, and obtain a visual feature of
size 1024 and 512 for ResNet-101 and R-3D backbones, respectively. Visual back-
bone networks are initialized with pretrained weights (ResNet-101 - pretrained
on ImageNet [3] and R-3D - pretrained on Kinetics-400 [5]) and fine-tuned dur-
ing training. To extract features from the audio input, we designed AudioNet,
which is a feed-forward network with three convolutional and two linear

layers. We use kernel sizes of {(7 × 3), (5 × 3), (5 × 5)} and stride sizes of
{(3 × 1), (3 × 1), (3 × 3)} for the 3 convolutional layers, respectively. Each
convolutional layer is followed by a ReLU activation layer. After processing
the audio input through the convolutional layers, we apply a global pooling

layer to obtain a one dimensional audio feature. This feature is further pro-
cessed using 2 linear layers with a ReLU activation layer in between. The visual

https://sites.google.com/view/anatomy-of-video-editing/home
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Fig. 1: Class-wise distribution statistics in training, validation and testing splits for
shot size, shot angle and shot type attributes.
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Fig. 2: Class-wise distribution statistics in training, validation and testing splits for
shot motion, shot location and shot subject attributes.
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Fig. 3: Class-wise distribution statistics in training, validation and testing splits for
num. of people and sound source attributes.

and audio features are then concatenated channel-wise to obtain an audio-visual
feature. We use the same visual and audio networks for all tasks in the main
paper.

For shot attributes classification task, the audio-visual feature is feed into
eight classifier networks. We use a network with two linear layers as a classifier
network for each attribute. A dropout and a ReLU activation layers are used in
between the linear layers. The final linear layer outputs a logit vector with
size equal to the number of classes for the respective shot attribute.

For shot sequence ordering task, the feature fusion network in the late
feature fusion baseline (Baseline-I) is a simple network with linear, ReLU
activation and dropout layers. The feature fusion network inputs the hierar-
chically concatenated features and outputs a fused feature representation. The
classifier networks in both Baseline-I and Baseline-II (early input fusion)
have the same architecture as the classifier in the previous task.

For next shot selection task, a recurrent network is used to learn the shot
sequence pattern. We use a two-layered (stacked) LSTM module with a hidden
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Table 1: Train-val-test split statistics for different tasks

# of shots Train Val Test Total

Num. of scenes - 3914 559 1118 5591

Shot attributes classification 1 151053 15040 30083 196176
Camera setup clustering - - - - -
Shot sequence ordering 3 75000 7500 15000 97500
Next shot selection 9 75000 7500 15000 97500
Missing shot attributes prediction 3 75000 7500 15000 97500

size of 128 to obtain anchor, positive and negative embeddings from an input
sequence of audio-visual features.

For missing shot attributes prediction task, a label-to-feature (L2F) net-
work is used to incorporate the attributes of the input shots along with their
audio-visual features. We use a simple 1-layered linear network to transform an
attribute vector of size 8 to a feature representation. A feature fusion net-
work (like the one used in shot sequence ordering task) is then used to combine
the cross-modal features extracted from the two input shots. The output of the
feature fusion network is feed into eight classifiers to predict the attributes
of the missing shot. We use the same classifier architecture as the one used in
shot attributes classification task.

Dataset. We follow a train-val-test scene split of 70-10-20 in all experiments
(see Table 1). As the scenes in the proposed dataset are non-overlapping, the
train, validation and test splits are disjoint sets. For shot attributes classification
task, we use all the shots in the respective scene split for training and evaluation,
i.e. 151053 training, 15040 validation and 30083 testing shots. For shot ordering
and missing shot attributes prediction tasks, we generate train, validation and
test sets by sampling 3 consecutive shots from a scene at a time. As shown
in Table 1, we create a total of 97500 shot triplets, where 75000, 7500 and
15000 shot sequences are used for training, validation and testing, respectively.
The sequences are randomly shuffled during training for shot ordering task,
thereby creating an augmented dataset that is significantly larger than the initial
samples. For next shot selection task, we sample 9 consecutive shots from a scene
at a time. The first 4 shots in the sequence are used as a context. The remaining
5 shots are used to make a candidate list. We generate 75000 training, 7500
validation and 15000 testing shot sequences for conducting experiments.

Implementation Details. We use ffmpeg to extract frames of size 1280× 720
from a given shot clip. We crop 50 pixels from the top and bottom corners of
each frame to remove the logo of the channel from where the movie scenes are
crawled and create consistency across the dataset 3. We then uniformly sample
16 frames and resize each sampled frame to a size of 320 × 130 to represent a
shot clip as a video input to R-3D. We pick the central frame from the extracted
frame sequence of a shot and resize it to 640 × 260 to represent a shot clip as
a single frame input to ResNet-101. The audio file from a given shot clip is

3 MovieClips YouTube Channel

https://www.youtube.com/user/movieclips
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extracted in a ‘.wav’ format using ffmpeg. We then use the torchaudio [17]
library to load the ‘.wav’ file as a 2D spectrogram image of size 513 × 32, by
applying zero padding when necessary. The spectrogram image is then feed into
AudioNet to extract audio features. We implement our models in PyTorch [12].
We use SGD optimizer [14] with a momentum, weight decay and initial learning
rate, 0.9, 1e− 4 and 1e− 3, respectively, for all tasks.

For shot attributes classification task, we train our framework for 100 epochs,
with the learning rate decaying by 0.1 at 40, 60 and 80 epochs. We use a batch
size of 50 during training. We deal with the long tail label distribution problem by
adjusting the logits [10] of each classifier according to the label frequencies in the
respective shot attribute. Note that logit adjustment is used only during training.
To scale the cross entropy loss from each classifier for multi-task training, we
follow [7] and implement dynamic weight averaging technique with a temperature
parameter T = 2. For single-task training, we simply optimize the cross entropy
loss of the classifier.

For camera setup clustering task, we experiment with several feature ex-
traction methods. For SIFT [9], we use the implementation from OpenCV 4. For
CLIP [13], we use the image encoder part of the official pretrained model with
‘ViT-B/32’ backbone. For ResNet-101 [4] and R-3D [16], we use the pretrained
models (with the last fc layer removed) from PyTorch [12]. For standard clus-
tering algorithms such as K-Means [8], Hierarchical Agglomerative Clustering
(HAC) [11] and OPTICS [1], we use the scikit-learn implementations 5. For
FINCH [15], we use the official code.

For shot sequence ordering task, we train both Baseline-I and Baseline-II

for 100 epochs, with the learning rate decaying by 0.1 at 40, 60 and 80 epochs.
We used a batch size of 50 during training. We use the cross entropy loss for
training both baselines.

For next shot selection task, we train our network for 200 epochs, with the
learning rate decaying by 0.1 at 100, 150 and 175 epochs. We used a batch
size of 100 during training. We use the supervised NT-Xent loss [2,6] with a
temperature parameter of 0.02 for training.

For missing shot attributes prediction task, we use the same training setting
as the shot attributes classification task.

2.2 Experimental Results

Shot Attributes Classification. In Table 2, we compare the class-wise per-
formance in each attribute for a network trained with and without taking the
long tail label distribution problem into account. Here, we consider a multi-
task training setting with video + audio input. As can be seen from Table 2,
for attributes with imbalanced label distributions such as shot size and shot

angle, naiv̈ely trained network performs very well for the dominant classes but
extremely poorly for low frequency classes. On the other hand, a network trained

4 OpenCV SIFT
5 Scikit-learn Clustering

https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html
hhttps://scikit-learn.org/stable/modules/clustering.html
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Table 2: Class-wise performance analysis on shot attributes classification.

Multi-task training (Video + Audio)

Naiv̈e training Logit adjustment

Attribute Val Test Val Test

Shot size Medium 92.7 93.0 58.0 56.0
Wide 69.4 66.2 54.7 55.0
Close-up 19.0 22.1 67.1 65.9
Extreme-wide 0.0 0.0 77.5 82.8
Extreme-close-up 0.0 0.0 61.5 65.4

Average 36.2 36.4 66.8 65.0

Shot angle Eye-level 98.1 97.6 62.3 61.7
High-angle 27.5 26.6 45.3 48.2
Low-angle 12.6 14.0 49.3 54.1
Overhead 0.0 0.0 43.3 18.1
Aerial 0.0 0.0 92.9 65.4

Average 27.6 27.7 58.6 49.5

Shot type Single 84.6 85.9 68.1 70.7
Group-shot 60.7 63.5 64.1 65.1
Two-shot 57.9 55.3 52.3 49.7
Insert 64.2 65.3 76.7 78.9
OTS 68.8 70.9 75.5 76.4
Three-shot 22.4 25.2 45.6 50.9

Average 59.8 61.0 63.7 65.3

Shot motion Locked 79.9 79.8 82.0 82.1
Handheld 81.5 79.3 27.4 26.3
Tilt 0.0 0.0 40.9 38.7
Zoom 0.0 0.0 31.7 22.0
Pan 0.0 0.0 41.2 47.2

Average 32.3 31.8 44.6 43.2

Shot location Ext 73.2 67.8 84.1 81.7
Int 92.8 94.0 83.3 85.7

Average 83.0 80.9 83.7 83.7

Shot subject Human 94.9 95.3 96.0 81.2
Face 93.9 94.1 90.0 77.2
Animal 55.0 47.3 74.8 71.3
Object 30.6 36.6 40.3 45.6
Location 6.0 4.5 19.3 17.6
Limb 0.0 0.0 31.2 34.0
Text 0.0 0.0 0.0 0.0

Average 40.0 39.7 50.2 46.7

Num. of people 0 77.0 74.7 90.7 88.3
1 81.9 82.9 73.5 76.0
2 72.0 72.3 62.3 62.7
3 25.7 27.0 30.9 34.2
4 0.0 0.1 46.1 47.8
5 74.0 73.3 62.1 58.5

Average 55.1 55.3 60.9 61.4

Sound source On-screen 100.0 100.0 56.7 56.3
Off-screen 0.0 0.0 19.9 18.7
External-music 0.0 0.0 41.1 46.3
External-narration 0.0 0.0 46.1 34.3

Average 25.0 25.0 41.0 38.9

Average 44.9 44.7 58.7 56.7

with logit adjustment gives a relatively balanced per-class accuracy, and hence
a better overall performance.

In Table 3, we summarize the results of using different input representations
for shot attributes classification task in a multi-task training setting. It can be
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Table 3: Quantitative analysis on shot attributes classification.

Multi-task training

Frame Video Video + Audio

Naiv̈e Logit adj. Naiv̈e Logit adj. Naiv̈e Logit adj.

Attribute Val Test Val Test Val Test Val Test Val Test Val Test

Shot size 38.1 37.9 62.0 66.8 35.7 35.5 67.8 66.9 36.2 36.4 66.8 65.0
Shot angle 32.7 32.6 63.9 55.9 25.8 25.8 62.2 53.2 27.6 27.7 58.6 49.5
Shot type 62.0 63.2 64.3 64.7 59.5 60.8 63.9 64.9 59.8 61.0 63.7 65.3
Shot motion 26.4 26.0 31.7 33.5 32.1 31.7 42.8 42.7 32.3 31.8 44.6 43.2
Shot location 82.6 80.0 84.0 82.1 82.9 81.9 84.4 83.3 83.0 80.9 83.7 83.7
Shot subject 42.4 41.2 51.0 46.8 40.0 39.8 50.8 47.4 40.0 39.7 50.2 46.7
Num. of people 57.9 56.8 61.6 60.2 55.0 55.1 61.3 61.2 55.1 55.3 60.9 61.4
Sound source 25.0 25.0 31.3 32.0 25.0 25.0 34.4 32.6 25.0 25.0 41.0 38.9

Average 45.9 45.3 56.2 55.2 44.5 44.4 58.4 56.5 44.9 44.7 58.7 56.7

inferred from Table 3 that using a single frame to represent a shot generally
results in a lower performance compared to using video and video + audio.
However, it is worth noticing that, for attributes such as shot size and shot

angle which, in essence, does not require temporal or audio information, using a
frame representation outperforms other types of inputs. On the other hand, for
attributes such as shot motion and sound source which are closely associated
with temporal and audio contexts, respectively, using only frame as an input
gives a significantly worse performance.

Missing Shot Attributes Prediction. In Table 4, we present the results on
four shot attributes, i.e. shot location, shot subject, num. of people and
sound source, for a model trained in a multi-task setting. This is in continuation
of the results from Table 7 in the main paper. As can be seen from Table 4,
the proposed model outperforms the naiv̈e dominant label prediction baseline
by a large margin. It can also be inferred that incorporating the attributes of
the input shots along with other representations consistently improves model
accuracy across all attributes.

As shown in Table 5, the multi-task training setup leads to an unbalanced
performance when using frame as an input, i.e. the performance gap between
shot size and other attributes is notably large in comparison with using other
input representations (refer to Table 7 in the main paper). This is mainly be-
cause the model overfitted to the shot size attribute for this particular input
setup. To verify this hypothesis, we train our model in a single-task setting for

Table 4: Quantitative analysis on missing shot attributes prediction.

Shot location Shot subject Num. of people Sound source

Method Val Test Val Test Val Test Val Test

Dominant label 50.0 50.0 14.3 14.3 16.7 16.7 25.0 25.0

Frame 73.0 70.7 27.1 23.0 31.3 26.8 31.2 31.6
Frame + Attributes 94.6 94.4 43.4 43.1 37.9 37.4 34.8 37.1

Video 83.8 82.2 30.3 27.4 36.6 35.4 28.8 32.6
Video + Attributes 93.9 92.8 44.4 43.9 38.4 37.4 35.7 33.8

Video + Audio 85.8 83.4 31.0 28.7 37.3 36.3 29.7 33.3
Video + Audio + Attributes 95.0 94.4 45.5 45.0 38.9 38.4 40.3 41.2
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Table 5: Multi-task vs. single-task analysis on missing shot attributes prediction.

Shot size Shot angle Shot type Shot motion

Setting Method Val Test Val Test Val Test Val Test

Dominant label 20.0 20.0 20.0 20.0 16.7 16.7 20.0 20.0

Multi-task Frame 40.9 32.4 22.6 30.5 26.6 26.1 25.0 25.8
Frame + Attributes 47.8 44.6 28.5 34.1 32.0 34.5 31.0 31.8

Single-task Frame 29.4 32.2 25.6 28.4 26.5 25.2 27.2 27.7
Frame + Attributes 34.3 36.6 30.3 32.9 36.0 34.6 29.4 30.2

Table 6: Additional results for shot attributes classification task

Frame Audio + Video

CLIP ResNet-101 Weight Freeze Baseline

Attribute Val Test Val Test Val Test Val Test Val Test

Shot size 52.9 51.3 62.0 66.8 66.9 66.0 51.9 50.4 66.8 65.0
Shot angle 54.3 54.9 63.9 55.9 59.0 50.2 54.2 54.3 58.6 49.5
Shot type 56.0 58.0 64.3 64.7 62.4 64.6 49.4 51.2 63.7 65.3
Shot motion 36.6 37.6 31.7 33.5 44.7 43.2 35.6 35.2 44.6 43.2
Shot location 82.1 81.0 84.0 82.1 83.8 83.7 84.6 85.0 83.7 83.7
Shot subject 45.2 42.9 51.0 46.8 48.8 45.8 47.6 43.9 50.2 46.7
Num. of people 56.9 57.2 61.6 60.2 60.0 61.4 53.3 52.6 60.9 61.4
Sound source 44.1 43.4 31.3 32.0 43.1 40.1 41.9 40.9 41.0 38.9

Average 53.5 53.1 56.2 55.2 58.6 56.9 52.3 51.7 58.7 56.7

each attribute. As can be inferred from Table 5, the single-task setting gives a
relatively balanced performance across attributes.

2.3 Discussion

Here, we discuss the concerns raised by anonymous reviewers regarding shot-
attributes classification task. The additional results that addressed the concerns
are presented in Table 6. Experiments are conducted in a multi-task setting
applying the logit adjustment [10] technique.

Why not use SOTA methods such as CLIP? We experimented with using pre-
trained CLIP’s visual encoder as a backbone network for shot attributes classi-
fication task, however, we observed an inferior performance compared to using
ResNet-101 (see CLIP column in Table 6).

Why use vector concatenation for feature fusion? Because it is simple. We also
experimented with weighted combination of visual and audio features as a fu-
sion mechanism, however, we did not observe any significant improvement in
performance (see Weight column in Table 6)

Did you try freezing the backbones? We did. However, we opted for fine-tuning
the backbone networks along with the classifiers because it resulted in a much
better performance (see Freeze column in Table 6).
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Fig. 4: Most frequent shot attribute transitions in AVE. The y-axis indicates the prob-
ability of occurrence and the x-axis denotes the transition.
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