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Abstract. We present a new benchmark dataset, Sapsucker Woods 60
(SSW60), for advancing research on audiovisual fine-grained categoriza-
tion. While our community has made great strides in fine-grained vi-
sual categorization on images, the counterparts in audio and video fine-
grained categorization are relatively unexplored. To encourage advance-
ments in this space, we have carefully constructed the SSW60 dataset
to enable researchers to experiment with classifying the same set of
categories in three different modalities: images, audio, and video. The
dataset covers 60 species of birds and is comprised of images from exist-
ing datasets, and brand new, expert curated audio and video datasets.
We thoroughly benchmark audiovisual classification performance and
modality fusion experiments through the use of state-of-the-art trans-
former methods. Our findings show that performance of audiovisual fu-
sion methods is better than using exclusively image or audio based meth-
ods for the task of video classification. We also present interesting modal-
ity transfer experiments, enabled by the unique construction of SSW60
to encompass three different modalities. We hope the SSW60 dataset
and accompanying baselines spur research in this fascinating area.
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1 Introduction

Image-based fine-grained visual categorization (FGVC) of natural world cate-
gories has seen impressive performance gains over the last decade of research.
This progression has been fueled by both larger datasets and improved tech-
niques for classification. For example, consider the domain of bird species classifi-
cation. The popular CUB200 [81] dataset (covering 200 classes of birds, each with
30 train and 30 test images) has seen top-1 accuracy improve from 10.3% [81]
to over 91.7% [29]. This dataset motivated the construction of the larger and
better curated NABirds [77] dataset (covering 400 species of birds, each with 60
train and 60 test images), which subsequently gave rise to the larger iNaturalist
competition datasets [1]. The latest dataset in this series has 1,486 species of
birds, most with 300 training examples, and the winners of the 2021 iNaturalist
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Fig. 1: Why audiovisual? Left: American Crow and Common Raven are vi-
sually confusing but aurally distinguishable, as illustrated by the spectrograms.
Right: Yellow Warbler and Chestnut-sided Warbler are aurally confusing but vi-
sually distinguishable. Individually, audio and visual modalities have both advan-
tages and disadvantages. We present the Sapsucker Woods 60 dataset (SSW60),
a new dataset to facilitate work in fine-grained audiovisual categorization.

competition [1] achieved 94% top-1 accuracy on these species (using geographic
location information). The release of the CUB200 dataset was a catalyst for
FGVC research, motivating the construction of improved datasets as well as
providing the means to benchmark progress. But what about the challenge of
fine-grained categorization (FGC) in modalities besides images?

Audio and video modalities receive less attention than images for the task of
fine-grained categorization. What opportunities and challenges do these modal-
ities present (see Fig. 1)? More importantly, which existing datasets allow us
to study cross-modality performance and where do they fall short? Large-scale
audiovisual datasets such as AudioSet [25] and VGGSound [13], provide a class
hierarchy more akin to coarse grained categories as perceived by humans than
fine-grained categories as typically used in the context of FGC (with classes such
as “Chirp, tweet” and “Hoot” for bird vocalizations in AudioSet).

There are a few existing bird video datasets [23,66,90], each focused primarily
on benchmarking the performance of video frame classification, as opposed to
cross-modality or audiovisual analysis. The YouTube-Birds dataset [90] almost
checks all the boxes, except upon close inspection we find multiple inconve-
niences, e.g. it consists of a collection of YouTube links, of which at least 7% are
broken at the time of writing, it contains labelling errors (typical for fine-grained
datasets curated by non-experts), and the videos are not trimmed to the content
of interest and are thus long and unwieldy. Both VB100 [23] and IBC127 [66]
sampled their videos from higher quality data sources, but they each lack the
full complement of unpaired audio and image modalities that we require for ex-
ploring audiovisual categorization. Finally, none of the prior art show the utility
of audiovisual fusion methods for FGC.

In this paper, we aim to fill this dataset gap and open up new avenues of re-
search in FGC. Our new dataset, SSW60, spans 60 species of birds that all occur
in a specific geographic location: Sapsucker Woods in Ithaca, New York, (unlike
the random collection of species present in the existing video datasets [23,66,90]).
SSW60 contains a new collection of expert curated ten-second video clips for each
species, totaling 5,400 video clips. SSW60 also contains an “unpaired” expert cu-
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rated set of ten-second audio recordings for the same set of species, totaling 3,861
audio recordings. Finally, we also collate image data for the same species from
the existing expert curated NABirds dataset [77] and the citizen science collected
iNat2021 dataset [78].

With this new dataset in hand, we perform a thorough investigation of audio-
visual classification performance. Our baseline methods utilize state-of-the-art
backbones trained on visual and audio modalities. We experiment with several
different fusion methods to combine information from both modalities and make
audiovisual informed classifications. These experiments reveal that audiovisual
methods outperform their respective single modality counterparts, advancing
the state of the art for fine-grained bird species classification. As SSW60 con-
tains images and unpaired audio examples, we conduct additional experiments
to investigate the utility of pretraining on these individual modalities prior to
working with video. We identify several insights from these experiments, includ-
ing the unexpected negative impact of pretraining on high quality images, and
the high utility of pretraining on unpaired audio samples.

In summary, we make the following contributions: 1) A new fine-grained
dataset that contains expert curated video and audio data for a shared set of
object categories. 2) A detailed analysis of cross-modality learning in the context
of fine-grained object categories, as well as benchmark results for fine-grained
audiovisual categorization.

2 Related Work

2.1 Image, Audio, and Video Datasets

Fine-Grained Image Datasets. The most commonly used classification datasets
in computer vision predominantly deal with coarse-grained object reasoning,
e.g. [65,89,40,19,48,28]. In contrast, fine-grained datasets contain subordinate
categories that can be much more challenging for non-expert human annota-
tors to discriminate. There are many fine-grained datasets spanning a wide
range of visual concepts including airplanes [53,80], automobiles [42,49,86,24],
dogs [39,60,50], fashion [34], plants [57,58,44], food [10,33], and the natural
world [79,78], to name a few.

Datasets featuring images of different species of birds have been particularly
popular in the vision community [81,9,77,41]. As a taxonomic group they present
an interesting set of challenges that make them well suited for benchmarking
advances in vision. For example, their appearance can differ based on life stage or
sex, their shape can vary significantly, and some species can be very challenging
for even expert humans to tell apart. Inspired by this, we propose a new multi-
modal bird dataset that contains data from three different modalities: images,
audio, and video.
Fine-Grained Video Datasets. The most commonly used video action recog-
nition datasets also tend to focus on coarse-grained concepts [43,71,36,11,37,17],
with some emphasizing temporal reasoning [27,54,68]. Fewer fine-grained datasets
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exist, but those that do cover concepts such as sports [47,62,69] and cars [90,4].
Most relevant to this work are the small number of existing video datasets con-
taining birds [23,66,90], see Table 1 for an overview. IBC127 [66] contains 8,014
videos across 127 bird categories. In the paper, experiments are performed for
bird (127 classes) and action (4 classes) classification from video. VB100 [23]
contains 1,416 videos from 100 bird species and evaluates on the task of species
classification from video. While a small number of audio files are also available, no
experiments are actually performed using this data. Finally, YouTube-Birds [90]
contains 18,350 videos spanning the same 200 classes represented in the CUB200
image dataset [81]. The exact same set of videos are also used in [31]. Experi-
ments are performed on the task of bird classification from video, and they show
that their approach gives a minor performance improvement compared to simple
baselines[82] which do not use any temporal information. The YouTube-Birds
data is provided as a list of YouTube video URLs, and at the time of writing
only 17,031 videos are still publicly available.

While these existing fine-grained datasets are very related to our work, they
stop short of performing any cross-modal experiments, and do not show the
benefit of audiovisual fusion methods for fine-grained categorization. Further,
the distribution of data in these datasets is highly skewed and the included
species were obviously dictated by data availability from web scraping. The
SSW60 dataset provides a nearly uniform data distribution for a set geo-spatially
co-located species. See the supplementary material for additional details.

Fine-Grained Audio Datasets. There are numerous examples of human speech
focused [22,63], coarse-grained audio classification [67,61,21,25], and binary sound
event [52,72] datasets. However, in contrast to images, there are fewer established
datasets for fine-grained audio classification. One task that is highly representa-
tive of a fine-grained audio challenge is that of species identification. As a result,
there exists a number of audio datasets focused on species identification. Exam-
ples include bird [51,55,31,16,15] and bat [88,64] species classification. Like their
image counterparts, these datasets can be challenging to collect and accurately
annotate [7]. These annotation issues can also be compounded by factors such
as background noise and low quality recordings. The audio recordings in the
SSW60 dataset have been manually vetted by domain experts to ensure that
the labels are reliable.

Audiovisual Datasets. In addition to visual content, video data can also con-
tain rich and descriptive audio information. For some fine-grained concepts, this
information can be highly complementary to the visual cues, see Fig. 1. In-
spired by these types of relationships, the vision community has developed sev-
eral benchmarks to facilitate the exploration of multi-modal reasoning. Several
different approaches have been used to construct these types of datasets.

The most basic approach is to query video media websites with keywords of
interest, with the assumption that relevant sound events will also be present.
This is the approach taken by the Flickr-SoundNet dataset [6], which contains
2M video clips with audio downloaded from Flickr, and was queried using tags
from YFCC100M [73]. An alternative approach is to use automatic filtering,
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Table 1: Overview of existing bird datasets. ◦Only 17,031 videos are currently
available online. ⋆Contains the same images as [81]. †Contains the same videos
as [90]. ‡Only spectrogram images are available, no audio files are included.

dataset classes images videos audio

CUB200 [81] 200 11,788 - -
NABirds [77] 555 48,562 - -
VB100 [23] 100 - 1,416 502
IBC127 [66] 127 - 8,014 -
YouTube-Birds [90] 200 11,788⋆ 18,350◦ -

PKU FG-XMedia [31] 200 11,788⋆ 18,350† 12,000‡

Ours 60 31,221 5,400 3,861

e.g. by making use of image or audio classification models. VGG-Sound [13]
consists of 200k, ten-second video clips from 300 different audio classes. The
object that emits each sound is visible in the video clip, however, each clip is only
labeled with one class even though multiple audio-visual events can be present.
ACAV100M [45] contains 100M ten-second clips and was constructed using an
automatic curation pipeline that maximized the mutual information between the
audio and visual channels. The final dataset construction approach is to manually
annotate some or all of the data. Kinetics-Sounds [5] features 19k, ten-second,
audio-visual clips covering 34 human orientated action classes. The videos are a
subset of the Kinetics dataset [37], which were manually filtered to ensure the
presence of the actions of interest. More detailed annotations include localizing
sound events in time or space. AVE (Audio-Visual Event) [75] is a subset of
the AudioSet dataset [25], and contains 4,143 ten-second videos covering 28
event categories with manually labeled temporal event boundaries. Each video
contains at least one two-second long audio-visual event. The LLP dataset [74]
contains 11,849 YouTube video clips with 25 event categories labeled. The goal
of the dataset is audio-visual parsing, i.e. deciding whether an event is audible,
visible, or both. Manual temporal event annotations are provided for a subset
of the videos. Finally, [12] adds image bounding boxes to audible sound sources
for 5k videos in VGG-Sound [13]. In addition, the community has been working
on audiovisual datasets for violence detection[83], as well as VQA [87,46]

None of the above datasets explore the problem of fine-grained audiovisual
reasoning. In this work, we make use of high quality image and audio classifiers
in order to select video clips that are highly likely to contain the discriminative
audiovisual events for a set of 60 bird species.

2.2 Multi-modal Learning

Audiovisual Fusion. There is large and growing literature on multi-modal fu-
sion for audiovisual understanding. Early methods adopted straightforward early
or score fusion strategies, e.g. [14]. Subsequent research applied modality-specific
networks with learning-driven information combinations in mid or late stage fu-
sion strategies. Representative methods include activation summations [38], lat-
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House Finch Purple Finch

Downy Woodpecker Hairy Woodpecker

Fig. 2: Visual and audio examples (frames and spectrograms) for example bird
species from the SSW60 dataset. Clockwise from top left: House Finch, Purple
Finch, Hairy Woodpecker, and Downy Woodpecker. For each species, the five
rows show modality samples from: (1) “Images NAB” - from NABirds [77]; (2)
“Images iNat” - from iNaturalist2021 [78]; (3) “Video Frames” - center frames;
(4) “Video Audio” - spectrogram that covers the three seconds of audio near the
center frame; and (5) “Audio” - spectrogram generated from three seconds near
the center of the file.

eral connections [84], attention based re-weighting [20], among others. A compre-
hensive review can be found in [8]. The recent success of adopting transformer
architectures in the vision [18] and audio [26] communities empowered more ad-
vanced audiovisual fusion methods. A representative state-of-the-art work [56]
carefully studied audiovisual fusion with transformers and we adopt this as our
primary baseline.

Cross-Modal Analysis. [35] defined and measured the impact of several dif-
ferent domain shift factors in the context of training object detectors on video
frames and images. These factors included the accuracy of the training bounding
boxes, appearance diversity, image quality, and object size. They showed that
these factors, in combination, are almost completely responsible for the perfor-
mance difference as compared to training and testing on the same domain. Their
conclusion was that if one wants to achieve the best performance they should
train and test on the same domain. In this work, we analyse domain differences
arising from depictions of the same concept (i.e. fine-grained bird categories)
across different modalities.
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3 SSW60 Dataset

In this section we describe the SSW60 dataset and the steps taken to construct
it. The dataset is built around 60 species of birds that have a high propensity
to be seen or heard on a live “feeder-cam” (i.e., a static camera monitoring a
bird feeder) that is continuously recording in Ithaca, New York. These species,
therefore, represent a realistic fine-grained challenge experienced by humans (un-
like, e.g., CUB200 where the categories of birds come from all over the world).
A model that can recognize these species and interpret their behaviors will be
particularly relevant in assisting biologists with analyzing large collections of
video footage from these cameras. We plan for future versions of this dataset
to directly incorporate video from the live cams. For each of the 60 species we
sampled data from three different modalities: videos (containing paired frames
and audio), audio recordings, and images. Here videos are unique as they contain
both visual and audio modalities, while the additional unpaired audio record-
ings and image datasets only consist of one modality respectively. See Fig. 2 for
examples from the various modalities and Table 2 for per-modality statistics.

Video. The videos in SSW60 come from recordings archived at the Macaulay
Library at the Cornell Lab of Ornithology [2]. These videos are contributed by
professional and enthusiast videographers from the around the world, and can
range in duration from a few seconds to multiple minutes. The camera view
points are not fixed and can move in order to track the bird as it moves through
the environment. Each video is associated with a particular “target species”
that is known to be present in the video. For each video we isolated a ten-second
clip where the task of species classification is particularly relevant. To accomplish
this, we applied the following procedure: 1) For each of the 60 species of birds, we
sampled all of their respective videos in the Macaulay Library. 2) We then used
an image based bird detector and classifier (trained on the 30M+ images from
the Macaulay Library) to identify the sections of video where the target species
was present. This gave us candidate video sections to extract ten-second clips.
3) To further refine the candidate clips, we ran the Merlin Sound ID model [3],
a high performing acoustic bird classification model, across the audio tracks of
the candidate clips to determine if the target species was vocalizing. 4) For each
video, we keep the clip with the highest likelihood of the target species vocalizing.
5) Finally, for each species, we select 90 video clips for the dataset, where each
clip comes from a unique video.

We found that most videos in the Macaulay Library do not have complete
metadata indicating the exact recording time and date. We therefore split the
video files into train and test sets by splitting on the videographers. All of the
videos from a particular videographer are either in the train split or the test
split. We found that this tactic was necessary to prevent multiple, highly similar
videos uploaded by the same videographer winding up in both the train and
test sets (a problem found in existing datasets [23,66]). All videos are converted
to a frame rate of 25FPS. This modality is referred to as “Video Frames” in
the experiment section when considering only the frames of the videos, and is
referred to as “Video Audio” when considering only the audio channel.
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Table 2: Summary of the train/test split sizes for each modality in SSW60, along
with information about the number of examples per class.

source total min max median

Images NAB [77] 5050, 5171 30, 31 221, 214 60, 60
Images iNat [78] 18000, 3000 300, 50 300, 50 300, 50

Audio ours 2597, 1264 28, 12 52, 30 45, 21
Video ours 3462, 1938 38, 22 68, 52 59, 31

Note that some of the ten-second clips in SSW60 do not have the target
species vocalizing; we do not treat this as a problem but view it as a challenge
and inherent property of “in-the-wild” video. The process of a human uploading
a video (as opposed to an audio recording) to the Macaulay Library, means
that the videos in SSW60 will be biased towards visually relevant information
for classification, as opposed to aurally relevant information. Using an acoustic
classifier to find those sections of video with both visual and aurally relevant
information helps mitigate this, but does not completely remove the visual bias.

Audio. All 60 bird species in SSW60 have unpaired audio recordings from the
Macaulay Library. These recordings are unpaired in the sense that they do not
have any associated visual data, i.e. no videos or images. Each audio recording
is annotated with a particular “target species” that is known to be vocalizing in
the file. However, it is not specified at what moment in time the target species
is vocalizing, and recordings can be multiple minutes long. We sampled audio
recordings for each of our 60 species and had an expert ornithologist provide
temporal onset and offset annotations for the target species. We then trimmed
the audio files to ten-second clips that contain the target species’ vocalization.
The result is an expert curated audio dataset for each of the 60 species in SSW60.
The audio files are stored in WAV format at a sampling rate of 22.05kHz.

Audio is split between train and test sets by ensuring that audio files from
the same recording session are placed in the same split. This prevents models
from exploiting common background noise that might be heard across multiple
recordings from the same location and time. This modality is referred to as
“Audio” in the experiment section.

Images. Finally, we also preform experiments with images from two existing
datasets: NABirds [77] and iNat2021 [78]. The 60 species in SSW60 conveniently
overlap with the species in these existing datasets, and we incorporate all im-
ages available into SSW60 while maintaining the original train/test splits. For
the NABirds dataset, we merged the respective “visual categories” that com-
prise each species. The images in NABirds are of particularly high quality, rep-
resenting a best case scenario for visual classification (i.e. someone using high
quality camera equipment to carefully compose a photograph for the goal of vi-
sual identification). The images in iNat2021 are more mixed in terms of quality
and therefore represent a more difficult visual classification task. See Fig. 2 for
sample images from both datasets. These modalities are referred to as “Images
NAB” and “Images iNat” in the experiment section.
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4 Methods

We are interested in exploring fine-grained categorization in two areas: cross-
modal analysis and audiovisual fusion.

For cross-modal analysis, we assume a fixed backbone architecture that
can be utilized for processing data from multiple modalities. For the audio
modality, we convert the waveforms to spectrogram images. For videos, we adopt
TSN [82] style methods using 2D image backbones to encode features and per-
form fusion on top of them. Our experimental procedure is straightforward: we
train the backbone model using a particular training modality (see Sec 3 for
the options) and then evaluate the performance on an evaluation modality di-
rectly. As we have the same species in each modality, the trained backbone can
be used directly on the evaluation modality. However, there is a domain trans-
fer problem to consider (i.e. moving from images to video frames), so we also
evaluate the trained backbone by first fine-tuning the weights using the training
split of the evaluation modality, and then evaluate on that evaluation modality.
We use top-1 accuracy as the evaluation criteria for all experiments. Unlike ex-
isting bird video datasets [23,66,90], our evaluation splits are uniform for each
species, which makes top-1 accuracy across examples an unbiased assessment of
performance. All backbone models are trained using softmax cross-entropy.

In addition to cross-modality analysis, we study fine-grained audiovisual
fusion using the paired “Video Frames” and “Video Audio” data in SSW60. We
adopt a transformer-based backbone and experiment with mid-fusion through
the state-of-the-art multimodal bottleneck fusion approach of [56], as well as
late and score-fusion. Thanks to the image and audio recordings provided in
SSW60, we are able to study the effect of different pretraining dataset choices
(e.g. ImageNet, Images iNat, and Images NAB) on audiovisual fusion.

4.1 Implementation Details

Image Modality. We adopt the standard ImageNet [65] training paradigm.
During training, we randomly crop and resize a square portion of the image to
224×224 pixels, followed by a random flip augmentation; during evaluation, the
shorter edge of the image is resized to 256 pixels first, and then a center crop
of 224×224 is extracted for classification. We perform evaluation using a CNN-
based ResNet50 [30] and transformer-based ViT-B [18] for experiments on the
image modality, as they are the most popular choices in the image recognition
community. Both are initialized with ImageNet pretrained weights.

Audio Modality. For audio processing, we convert the audio waveforms into
spectrogram images. Concretely, the raw audio signal is resampled to a rate
of 16kHz. We then apply the short-time Fourier transform algorithm using a
window size of 512 and a stride length of 128. The frequency values are then
transformed using the “mel-scale” with 128 bins. Finally we convert the mag-
nitude values to decibel units and normalize to generate the final spectrogram
image. This image is duplicated three times to create the RGB input for the
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network. For a 10-second long audio clip, the shape of the generated spectro-
gram image is approximately 128×1250, where 128 is the number of mel-scaled
frequency bands and 1250 is the temporal span. During training, we utilize two
augmentations to avoid overfitting: time cropping and frequency masking [59].
For time cropping, we randomly sample a window of length 400 time bins (span-
ning all 128 frequency bands) from the original spectrogram image (400 time
bins corresponds to approximately 3 seconds of audio). For frequency masking,
we randomly mask out 15 consecutive frequency bands. During evaluation, we
densely sample five windows of length 400 time bins (spanning all 128 frequency
bins) from the original spectrogram images using a stride of 150. We average the
logits across the 5 windows to use as the final prediction. Earlier work [32] used
VGG-style [70] backbones which we also compare to for completeness.
Video Frame Modality. We adopt the segment sampling strategy of TSN [82]
where we first divide the video clip into eight uniform segments. During train-
ing we randomly sample one frame from each segment, while for evaluation we
select the center frame of each segment. Each of the eight selected frames is
passed through the 2D ResNet50 or ViT-B backbone for feature extraction us-
ing images of size 224×224 pixels. We then average the eight feature vectors to
generate the final feature representation for the video clip. This global feature is
then passed through a fully connected layer to produce a vector of logits. We ini-
tially conducted experiments with video-specific 3D convolution networks with
dense frame sampling using S3D [85]. However we found that S3D (pretrained on
Kinetics-400 [37]) performed worse than our TSN-style baselines (pretrained on
ImageNet) for SSW60. Furthermore, using a 2D network like ResNet50 or ViT-
B as the backbone provides the flexibility for easily studying feature transfer
between video frames and images. We leave experimentation with more sophis-
ticated video backbones for future work.
Audiovisual Fusion. We briefly recap the transformer architecture and then
describe how we conduct audiovisual fusion experiments. Given an input image
or audio spectrogram, it is first divided into non-overlapping patches. Each patch
is projected to a token using a linear layer and a special learnable classification
token is added. More details can be find in the original ViT paper [18]. After
tokenization, the tokens are passed through a stack of transformer layers. We
denote the input of the l-th layer as zl, which results in zl+1 = trans layerl(z

l).
The computation inside trans layerl can be written as

yl = MSA(LN(zl)) + zl, (1)

zl+1 = MLP(LN(yl)) + yl, (2)

where LN denotes layer normalization, MSA denotes multi-head self-attention.
In our audiovisual fusion, we use two identical L = 12 layer transformers to
take the visual and audio input separately. The forward process for the visual
modality is thus zl+1

v = v trans layerl(z
l
v), and zl+1

a = a trans layerl(z
l
a) for

the audio modality.
For mid-fusion, we use the state-of-the-art multimodal bottleneck trans-

former [56]. Here a set of learnable tokens zb are used as the fusion bottleneck
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[zl+1
v ||ẑb] = v trans layerl([z

l
v||zb]), (3)

[zl+1
a ||zb] = a trans layerl([z

l
a||ẑb]). (4)

[.||.] denotes the concatenation of tokens. In each layer, zb first interacts with
the visual tokens zlv and gets updated to ẑb. Then ẑb interacts with the audio
tokens zla to finish the audio visual fusion. Following [56], we conduct this fusion
in the last four layers of the transformer.

For late fusion, we concatenate the class tokens of both modalities after the
last transformer block, written as [zL+1

v [0]||zL+1
a [0]] and apply a linear classifier

on top of it. For score fusion, we take the predictions from both modalities and
use a weighted sum of the combined final predictions. In practice, we use a weight
of 0.5 for both the visual and audio modalities.

5 Experiments

We first perform cross-modal experiments on the video and audio modalities
separately, and then explore multi-modal fusion for audiovisual categorization.

Visual Modality Categorization. Here we benchmark the performance
achieved on the Video Frames of SSW60. Table 3 (Left) shows the top-1 accu-
racy on the Video Frame test set when using a ResNet50 backbone trained on
either the Images iNat, Images NAB, or the Video Frames training datasets. We
split the results depending on whether we fine-tune (FT) the trained backbone
on the Video Frames training dataset. Training directly on the Video Frames
dataset achieves a top-1 accuracy of 54.92%. Interestingly, we see that evalu-
ating the Images iNat model directly on the Video Frames achieves an even
higher top-1 accuracy of 60.47%. This is further improved to 71.88% when fine-
tuning on the Video Frames train split. We compare these numbers to those
achieved by a model trained on the Images NAB dataset: 24.05% and 56.55%,
top-1 accuracy respectively. The Images iNat dataset has more training samples
than Images NAB, however, the images in the NABirds dataset are aesthetically
higher quality (see Section 3). These results seem to indicate that performance
on “in-the-wild” videos benefits more from “lower quality” training images.

Table 3: Top-1 accuracy on SSW60 Video-Frames using a ResNet50 backbone
(left) and SSW60 Video-Audio using a ResNet18 backbone (right) when training
on different datasets (columns). Results are presented with and without finetun-
ing (FT) on the respective video modality.

Cross-Modal - Video Frames Cross-Modal - Video Audio
FT Images iNat Images NAB Video Frames FT Unpair Audio Video Audio

60.47 24.05 54.92 24.41 10.37
✓ 71.88 56.55 - ✓ 15.33 -
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Table 4: Comparison of audio backbones trained and tested on the unpaired
audio modality in SSW60. All models are initialized from ImageNet pretrained
weights. ‘↑384’ indicates that a model is fine-tuned on ImageNet with a higher
resolution [76] and ‘AS’ is further fine-trained on AudioSet [26] before use.
Backbone VGG16 VGG19 ResNet18 ResNet50 ViT-B ViT-B↑384 ViT-B↑384 AS

Top 1 Acc 52.1% 56.1% 59.01% 63.7% 66.8% 65.9% 67.4%

Audio Modality Categorization. We next benchmark the new unpaired
audio dataset component of SSW60. Table 4 contains the results of these experi-
ments. We trained and evaluated VGG16 and 19 [70], ResNet18 and 50 [30], and
the transformer-based ViT-B [18] architectures. As expected, we see a progres-
sion of top-1 accuracy as we move from older architectures (52.1% for VGG16)
to the latest architectures (66.8% for ViT-B). We attempted to push accuracy
further by using a ViT-B model pretrained on a higher resolution image input
(224 vs 384), but we actually see performance decrease to 65.9%. However, if
we take this higher resolution model and add an additional pretraining step of
training on AudioSet [25] then we achieve a top-1 accuracy of 67.4%.

We now benchmark the Video Audio component of SSW60. For these ex-
periments we chose a ResNet18 backbone for convenience, but expect a more
powerful backbone to be slightly more performant (see Table 4 and Table 5
(Direct Eval)). The obvious result is the low performance achieved when train-
ing exclusively with the Video Audio data, achieving a top-1 accuracy of just
10.37%. Directly using a model trained on the unpaired audio achieves 24.41%,
a significant improvement. Interestingly, fine-tuning the unpaired audio model
on the Video Audio training samples leads to a decrease in performance, down
to 15.33%. This points to a recurring theme: video is biased to visual features
(simply by the nature through which it was collected), and while it contains an
audio channel, the ability to use the audio channel for classification appears to
be difficult. We show in the next section however that it is possible to improve
overall classification accuracy by incorporating audio.

Audiovisual Fine-Grained Categorization. In contrast to the rich lit-
erature of audiovisual fusion on coarse-grained video datasets, audiovisual fine-
grained categorization (FGC) remains under-explored due to a lack of appro-
priate datasets. SSW60 fills this gap and allows us to conduct a comprehensive
analysis that explores the impacts of various pretraining and fusion methods on
audiovisual FGC. We follow the paradigm employed by Nagragni et al. [56] and
use two uni-modal models to process the audio and visual modalities separately.
We adopt the ViT-B [18] backbone for both modalities (see Section 4.1). We
are interested in two research questions: 1) What is the effect of different fusion
methods? and 2) What is the effect of different pretraining datasets? For fusion
methods, we use the state-of-the-art MBT [56] as the mid-fusion algorithm, and
compare to late and score fusion techniques. For pretraining datasets, we utilize
ImageNet, Images NAB, and Images iNat for the visual modality, and ImageNet
and unpaired audio recordings for the audio modality. By construction, once a
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Table 5: Audiovisual fine-grained categorization results on SSW60 videos us-
ing ViT models. We split results into two different scenarios: evaluation on the
modalities individually (“Direct Eval” and “No Fusion”) and on both modalities
together (“Fusion”). All numbers reflect top-1 accuracy. “Direct Eval” means we
can conduct direct evaluation for modalities pretrained on datasets with the same
60 species. “No Fusion” means we take a pretrained network and fine-tune it on
the respective modality from the SSW60 training videos. For the Mid and Late
fusion algorithms in “Fusion”, we initialize the model with pretrained weights
from individual models trained on the “Pretrain” datasets. For Score fusion, we
take the best individual model for each modality (considering both “Direct Eval”
and “No Fusion” variants) and fuse their scores by a weighted sum.

Pretrain Direct Eval No Fusion Fusion

Visual Audio Vid Frames Vid Audio Vid Frames Vid Audio Mid Late Score

ImageNet ImageNet - - 59.0% 14.3% 54.3% 59.8% 58.9%
ImageNet Unpair Audio - 28.3% 59.0% 30.4% 62.0% 62.5% 63.5%

Images NAB Unpair Audio 60.0% 28.3% 64.4% 30.4% 67.5% 68.4% 68.2%
Images iNat Unpair Audio 78.0% 28.3% 76.2% 30.4% 73.5% 78.3% 80.6%

backbone has been trained on Images NAB, Images iNat, or the unpaired audio,
we are able to directly evaluate on the corresponding modality of the SSW60
video dataset, since all datasets share the same 60 species. Our results are sum-
marized in Table 5. We also provide per-class analysis between uni-modal and
audiovisual fusion performance in Fig. 3. Our best result on SSW60 (80.6% top-1
accuracy) comes from fusing the scores of a visual model pretrained on Images
iNat (and not fine-tuned on the SSW60 video frames), and an audio model pre-
trained on the unpaired audio and further fine-tuned on the audio channels of
the SSW60 videos.

We highlight three conclusions from our audiovisual fusion investigations.
First, the best result from audiovisual fusion is always better than
training on each modality separately. For each row in Table 5, the highest
top-1 accuracy is always in the Fusion column, meaning that combining infor-
mation from both modalities is always better than using a single modality. This
finding aligns well with our motivation of audiovisual fusion in Fig. 1. Second,
there is no “best” fusion method. In the four different pretraining con-
figurations, we find that late fusion works best half the time, and score fusion
works best in the other half. It is interesting that the state-of-the-art mid-fusion
method does not work as well as the simpler methods. We leave this as an open
question for the community to explore more advanced mid-fusion methods for
audiovisual FGC. Third, pretraining on external datasets can be very
beneficial. We observe a ∼ 20% increase in top-1 performance when fine-tuning
the ImageNet backbones on Images iNat and the unpaired audio (Fusion column,
row 1 vs row 4 in Table 5).



14 Van Horn et al.

0.0 0.2 0.4 0.6 0.8 1.0
Visual Accuracy (78%)

0.0

0.2

0.4

0.6

0.8

1.0

Au
di

o 
Ac

cu
ra

cy
 (3

0%
)

amecro

treswa
yelwar

rebwoo
purfin

comgra
easpho

bkcchi
whtspa

comrav

Best Video Models

-0.10

-0.05

0.0

+0.05

+0.10 M
ultim

odality 
 ACC (80%

)

ca
ng

oo
wo

od
uc

m
al

la
r3

ho
om

er
m

ou
do

v
rth

hu
m

ki
lld

e
gr

bh
er

3
gr

nh
er

sh
sh

aw
co

oh
aw

re
th

aw
gr

ho
wl

ye
bs

ap
re

bw
oo

do
ww

oo
ha

iw
oo

pi
lw

oo
no

rfl
i

am
ek

es
ea

sp
ho

re
ev

ir1
bl

uj
ay

am
ec

ro
co

m
ra

v
bk

cc
hi

tu
fti

t
tre

sw
a

ba
rs

wa
wh

bn
ut

ho
uw

re
eu

rs
ta

gr
yc

at
am

er
ob

ce
dw

ax
ho

uf
in

pu
rfi

n
co

m
re

d
am

eg
fi

ch
isp

a
fo

xs
pa

da
ej

un
wh

cs
pa

wh
ts

pa
so

ns
pa

ba
lo

ri
re

wb
la

ru
sb

la
co

m
gr

a
ov

en
bi

1
am

er
ed

ca
m

wa
r

no
rp

ar
ye

lw
ar

ch
sw

ar
bt

bw
ar

ye
rw

ar
sc

at
an

no
rc

ar
ro

bg
ro

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

1 
AC

C

audio-visual visual-only audio-only

Fig. 3: Per-species audio and visual modality performance along with the result-
ing audiovisual performance after score fusion. These results correspond to the
bottom right fusion model in Table 5. The size and color of the dots on the scat-
ter plot indicate the resulting top-1 accuracy change (from the best uni-modal
model) when fusing the predictions for audiovisual classification. Large blue dots
correspond to better audiovisual accuracy. Large red dots correspond to worse
audiovisual accuracy. Species with the largest positive and negative audiovisual
changes have been labeled. The bars for each species in the bar plot are ordered
by the modality performance. Purple bars on top reveal those species with im-
proved audiovisual accuracy. 27 species improved, 27 species remained the same,
and 6 species decreased after fusion.

6 Conclusion

We present SSW60, a new dataset for advancing fine-grained audiovisual catego-
rization. This expert curated dataset provides researchers with the tools to ex-
plore categorization across three different modalities, enabling a comprehensive
exploration of cross-modal and audiovisual fusion. Similar to how the CUB200
dataset paved the way for the larger, and better curated, NABirds and iNatural-
ist datasets, we envision SSW60 as a vital first step towards studying audiovisual
fine-grained categorization. The availability of live “feeder-cam” video featuring
the bird species in SSW60 also provides an interesting avenue for studying the
deployment of trained models for real-time audiovisual categorization - an im-
portant problem for biodiversity monitoring. At its current size, SSW60 can
also be used as an evaluation dataset for self-supervised audiovisual models. We
envision SSW60 broadly benefiting the vision community by providing ample
directions for future work on FGC and video analysis more generally.
Limitations. The size of the SSW60 dataset is a potential limitation for train-
ing models from scratch, which is why we used ImageNet pretrained models.
ImageNet does contain ∼60 classes of birds, but all models started from an Im-
ageNet pretrained backbone. The video and audio annotations in SSW60 are
“weak” in the sense that they apply to the entire ten-second clip, as opposed to
temporally localized annotations.
Acknowledgements. Serge Belongie is supported in part by the Pioneer Cen-
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