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1 Supplementary Material Video

We prepared a video to showcase our dataset. For a better viewing we outline
the video below. We overlay our keypoints onto the original videos, however we
only release keypoints since video copyright belongs to Red Bull, to which we
are not affiliated. The video is available at https://youtu.be/-5N6uBDfMoM.

Active dancer detection We show the input/output of our active dancer detection
algorithm, i.e. all the poses obtained with the pose estimation models and the
automatically detected performing dancer. Notice the abundant number of boxes
and keypoints and the accurate detection of the active dancer.

Merging and interpolating sequences We show a sequence of raw automatic poses
and the corresponding sequence obtained merging and interpolating automatic
and manual keypoints. Notice here the noisy estimations in the raw sequence.
Noisy poses were automatically rejected, and a few of them were manually la-
belled. The final sequence merges good automatic poses and manually annotated
keypoints, interpolating the rejected frames we did not annotate due to our dis-
count method. This example shows how our approach is able to produce good
sequences with a low annotation cost. We recommend slowing down the video
during this section. We added a text colour legend to illustrate which keypoints
were rejected or missing, manually annotated or were good automatic keypoints.

Dataset samples We show a few toprock, footwork and powermove segments. We
display the interpolated keypoint sequences and play the corresponding audio.
Notice the main characteristics that make keypoint extraction challenging: mul-
tiple moving cameras, fast lighting changes, occlusions, tangled poses and fast
movements. Complex postures and dynamic moves also make BRACE a unique
data source for dance motion synthesis.

⋆ Work done while at Nanyang Technological University. † Equal contribution.
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Experiment results We compare sequences generated with the tested baselines:
Dance Revolution [1], AIST++ [3] and Dancing to Music [2]. The input for
testing these models is an audio snippet. In the video we show the corresponding
footage segment for reference. Here we provide a few comments about these
examples:

– Dance Revolution generates sequences “that never stop”, i.e. the dancer is
constantly moving throughout the video. While this does not reflect a real
breakdancing sequence very well, the continuous motion and the plausible
movements help this model achieve the highest pose FID amongst the eval-
uated baselines.

– AIST++ is able to produce sequences following a more natural tempo, i.e. it
generates both fast and slow motions as well as a good mixture of toprock,
footwork and powermove segments. However AIST++ also picks up much of
the motion induced by the recording setting, i.e. moving/zooming/panning
cameras and shot changes, which explains the lower pose FID obtained by the
model. Note that due to the required inference seeding, the first 2 seconds of
the sequences generated by AIST++ are identical to the ground truth (more
details in Section 2).

– Dancing to Music can generate reasonable movements, however these are
severely disconnected and consequently the produced sequences do not look
realistic. This is due to the automatic decomposition of the dance as we
explained in the main text, and is the main cause of the poorer performance
of this baseline. This model too picks up camera-induced motion, although
to a lesser extent compared to AIST++.

While in the supplementary video we show only a few examples, our findings
apply to all the generated sequences we reviewed.

2 Experimental Setup

When testing models on BRACE we ensured training convergence and sensible
test output. Here we provide details about our experimental setup. We used the
same acoustic features extracted with Librosa [4] following [1] for all baselines.

Dance Revolution [1] For training we set learning rate to 1e-4 and batch size to
32. We evaluated different numbers of layers in the encoder, namely 2, 3 and 4,
as well as different sizes for the self-attention window: 15, 25, 100, 200. Training
sequence length was set to 200 frames (longer sequences are split accordingly).
Pose and frame embedding sizes were set to 34 (number of nodes times 2) and
200 respectively. The number of hidden units for the decoder was set to 1024.
The condition step q and λ parameters for the dynamic auto-condition learning
scheme were set to 10 and 0.1. Please refer to [1] for details about these hyper-
parameters.
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Table 1. Extended results obtained with Dance Revolution [1]. Here we show the
impact of varying the number of layers in the encoder as well as the size of the self-
attention window.

Layers Attention size Pose FID ↓ Beat alignment score ↑ Beat DTW cost ↓ Toprock avg Footwork avg Powermove avg

2

15 0.5239 0.269 11.89 6.92 54.20 38.88
25 1.1174 0.273 11.80 6.12 55.82 38.06
50 0.9663 0.271 11.75 6.52 55.53 37.95
100 1.0816 0.266 11.70 6.70 55.59 37.71
200 0.7924 0.265 11.67 11.11 52.13 36.77

3 15 0.5158 0.264 11.88 10.59 51.69 37.72

4 15 0.5723 0.263 11.85 10.25 52.64 37.12

AIST++ [3] For training we follow the implementation details reported in [3],
except for the sequence length. In [3] the authors used a seed motion sequence of
120 frames and a music sequence of 240 frames to predict the future 20 frames,
where L2 loss is used to optimise the network. However, since their videos are
60 fps while ours are mostly 25 fps, we adjust the seed sequence length to be 50
frames for motion and 100 frames for music, and supervise the L2 loss with the
future 8 frames. AIST++ requires a seeding sequence for inference as well. For
testing we use the first 50 frames of the motion sequence from the ground truth
to generate future frames, hence in our supplementary video it can be observed
that the first two seconds of AIST++’s sequences are identical to the ground
truth. We exclude these initial 50 frames when calculating the reported metrics.

Dancing to Music [2] We split sequences into segments of 32 frames (roughly 1.2
seconds at 25 fps) using kinematic beats. These were obtained by finding peaks in
second order derivatives of keypoint displacements. We used the same approach
to find kinematic beats to calculate the beat alignment score and DTW cost, as
mentioned in the paper. We use the split segments to train the decomposition
network. Specifically, we extract the first four segments from each sequence.
These four segments together with the corresponding music features form a
training sample for the composition network. The used hyper-parameters are
the same as those specified in the official code repository.

3 Dance Revolution extended results

Table 1 reports extended results obtained with Dance Revolution [1]. We trained
the model varying the number of layers in the encoder as well as the size of the
self-attention window. While the number of layers plays a limited role (best
results obtained with 3 layers), the attention window size has a stronger impact
on performance (best results with size 15). In particular, we observe that pose
FID degrades as the window is enlarged. This parameter controls the receptive
field of the encoder, i.e. the temporal neighbourhood each element in the input
sequence can attend to. Since our sequences display complex motion with large
displacement, a smaller receptive field is best suited at modelling the dance
patterns. We do not see noticeable changes in beat alignment score and beat
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Colour legend: left arm/leg, right arm/leg, head/torso

Fig. 1. Qualitative results for pose estimation on the external powermoves video.

DTW cost, which suggests that the ability of the network to align dance and
music is not affected by the number of encoding layers and the attention window
size.

4 Pose Estimation

We show here qualitative results for the pose estimation experiment on the
external powermoves video 1. Figure 1 compares poses estimated with the base
model (HRNet [7]) trained on COCO [5] (top row) and the model finetuned on
BRACE (bottom row). We display here particularly difficult cases where the
base model struggled due to the complex pose and the prominent motion blur.
Notice how the model finetuned on BRACE is able to predict very accurate
keypoints thanks to the additional training on our manually labelled frames.
Our data processing pipeline picks the hardest frames for manual labelling. Our
high quality labels for such difficult frames prove effective for the model to learn
to predict accurate keypoints even for very tangled postures in the presence of
motion blur. While the main scope of our work is dance motion synthesis, we
believe BRACE can also be a valuable resource for pose estimation.

5 Bézier interpolation

A Bézier curve is a parametric curve based on Bernstein polynomials. Given
a set of control points P = (P0, P1, . . . , Pd), a Bézier curve can be obtained
multiplying the Bernstein matrix by the control points. For a given order d and
a vector τ of m values uniformly spaced between 0 and 1, the Bernstein matrix
M ∈ Rm×(d+1) is defined as follows:

Mi,j+1 =

(
d

j

)
(1− τi)

d−jτ ji (1)

where 0 ≤ i < m, 0 ≤ j ≤ d and τ ∈ [0, 1]. In our case, P is unknown and is what
we need to find to fit a Bézier curve to a node trajectory. Let R ∈ Rq×2 be the

1 https://www.youtube.com/watch?v=q5Xr0F4a0iU

https://www.youtube.com/watch?v=q5Xr0F4a0iU
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matrix formed stacking the 2D coordinates of a node trajectory, i.e. Ri = (xi, yi).
R can contain a mix of automatic and manually annotated 2D points. Note
that keypoints are not expected to be temporally continuous due to missing or
discarded poses. In other words, if T (i) is a function returning the corresponding
frame number of the i-th point in the trajectory, T (i + 1) = T (i) + 1 does not
necessarily hold true. Following [6] we compute P using the least square method.
Namely, we first calculate M with a τ vector of q values and predefined order
d. We then calculate the Moore–Penrose inverse M+ of M . Finally, the fitted
control points are given by P = M+R. Once P is obtained we can generate the
interpolated trajectory by multiplying the previously calculated M by P . We
adopt a sliding window approach to interpolate keypoint sequences. Specifically,
we slide a window of 15 frames with stride 14. The overlapping frame between
windows allows for a smoother transition. We set the degree of the curve to 7.
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