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Abstract. Although a plethora of architectural variants for deep classi-
fication has been introduced over time, recent works have found empir-
ical evidence towards similarities in their training process. It has been
hypothesized that neural networks converge not only to similar repre-
sentations, but also exhibit a notion of empirical agreement on which
data instances are learned first. Following in the latter works’ footsteps,
we define a metric to quantify the relationship between such classifica-
tion agreement over time, and posit that the agreement phenomenon
can be mapped to core statistics of the investigated dataset. We empiri-
cally corroborate this hypothesis across the CIFAR10, Pascal, ImageNet
and KTH-TIPS2 datasets. Our findings indicate that agreement seems
to be independent of specific architectures, training hyper-parameters or
labels, albeit follows an ordering according to image statistics.

Keywords: neural network learning dynamics, deep classifier agree-
ment, data instance ordering, image dataset statistics

1 Introduction

Can we make the learning process of a neural network more transparent? Is
there any order in which a network is learning dataset instances? Various prior
works posit that certain data instances are easier to learn than others. Arpit
et al.[3] argue that neural networks prioritize simple patterns first during the
learning process by analyzing the nature of the decision boundary. Mangalam
and Prabhu [35] extend the results, showing that neural networks first learn in-
stances, classified correctly by shallow models like Random Forests and Support
Vector Machines. Geirhos et al.[14] and Shah et al.[41] specify which patterns are
simple for neural networks to learn, namely that they exhibit a simplicity bias
during training by relying on simple-but-noisy features like color and texture, in-
stead of shape. Recently, Hacohen et al.[15] have shown that there is agreement
over learned examples throughout the entire learning process of a neural net-
work, which is independent of initialization and batch-sampling and occurs also
when changing different hyperparameter settings, like learning rate, optimizer,
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weight-decay and architecture. If certain examples are easier for a neural network
to learn than others, it can be hypothesized that the difficulty of an example
depends on dataset and image statistics to a larger degree than the learner itself.
Hence, different neural networks would learn the same (easy) examples at the
same time, despite common epoch-wise random shuffling of the data during the
training process and strong regularization through noise of mini-batch stochastic
gradient descent. In this spirit, we extend the analysis to a stricter agreement
metric and not only replicate the presence of agreement, but also correlate it to
chosen image statistics, in an attempt to clarify the reason why certain image
examples are more difficult to learn than others. Our contributions are:

– We design a strict instance-based agreement metric to quantify how learning
progresses and data instances are classified correctly across neural networks.

– With our metric, we replicate insights on classifier agreement from Hacohen
et al.[15] in terms of consistent neural network agreement across batch-sizes
and architectures, as well as investigate the role of labels through a label
randomization study.

– We select promising image statistics to correlate with neural network data
instance agreement. We empirically corroborate correlations for metrics such
as entropy, segment count, number of relevant frequency coefficients and
summed edge strengths on popular image classification datasets: CIFAR10,
Pascal, KTH-TIPS2b and ImageNet.

The analysis we conduct might help to better understand the tools - neural
networks - we use for training. Further, as the next step, these insights could drive
us towards the design of a learning curriculum [29,27,4,16], in which the dataset
instances could be sampled according to a high correlation between observed
agreement and the inspected metrics. We posit that this could lead to training
speed ups and performance improvements. Our code is available at: https:
//github.com/ccc-frankfurt/intrinsic_ordering_nn_training.

2 Problem statement and motivation

Let us first recall the general procedure of neural network training and the ra-
tionale behind it. Assume that we have a training set X = (xn, yn)

N
n=1, where

xn are our (i.i.d.) dataset instances, yn the corresponding labels and the num-
ber of dataset instances N. We also assume access to a similarly designed non-
overlapping test set. We want to optimize a defined loss to measure and minimize
the discrepancy between our network prediction and the ground truth. For that,
we ideally want to integrate the loss L of our neural network - function fθ with
parameters θ, over the dataset distribution:∫

L(fθ(x), y)dP (x, y) (1)

In practice, we only have a limited amount of samples from the dataset distribu-
tion. Hence we compute an approximation. Typically a noisy gradient estimate

https://github.com/ccc-frankfurt/intrinsic_ordering_nn_training
https://github.com/ccc-frankfurt/intrinsic_ordering_nn_training
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Fig. 1: Agreement visualization: For each image the classification results are
compared across networks and, in addition to average accuracy over networks,
true positive agreement calculated, which is the ratio of images that all networks
classify correctly per epoch to those that at least one network classifies correctly.

(see appendix) is leveraged for such empirical optimization, by presenting our
data in mini-batches over several epochs t and shuffling the dataset after every
epoch, i.e. when the network has seen all the data (at least) once. Of course,
when the networks have fully converged and learnt a sufficiently large amount of
data, the dataset instances they have learnt trivially overlap. It is however not
self-evident that different approximators would learn the data in a similar way or
in other words that despite shuffling and mini-batch updating, neural networks
would learn data in the same order. We first provide a definition for such agree-
ment and then consider when networks necessarily start to agree on the dataset
instances during learning. Hacohen et al.[15] define one form of agreement as
“the largest fraction of classifiers that predict the same label” for the same data
instance, as well as true positive agreement as an “average accuracy of a single
example over multiple models”. In order to take the next step and try to quan-
tify the difficulty of the images for training, we step back from agreement as an
average and define (true positive) agreement of an instance per epoch as an exact
match, such that all K networks classify the same instance correctly in epoch t,
where K is the number of networks we have trained. True positive agreement per
epoch can then be computed as the sum of instances classified correctly by all
classifiers in that epoch, normalized by the sum of instances classified correctly
by any classifier in that epoch. Formally, true positive agreement TPa per epoch
t is defined as:

TPa(t)(x, y) =

∑
n∈N

∏
k∈K 1

f
(t)
k (xn)=yn∑

n∈N maxk∈K 1
f
(t)
k (xn)=yn

(2)

During training, we now monitor the true positive agreement in every epoch
for each training instance. Suppose that we train K networks, as in fig. 1. In
the first epoch, some models classify some dataset instances correctly (indicator
function, 1ft

k(xn)=yn
being the condition for a prediction match), but for no

instance it is the case that all models classify it correctly. In the second epoch -
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one dataset instance is classified correctly by all models. As during training more
models classify instances correctly, if they learn the same instances first, then
as soon as all models agree, it will be reflected in the agreement scores. Perfect
agreement of 100% can be reached if all models learn the same instances. So,
agreement - fraction of correctly classified instances over all models compared to
learned at all by at least one model - can be higher than average model accuracy
per epoch, which is the fraction of correctly classified instances from the whole
train set, averaged over the trained models. False positive agreement (all models
misclassify an instance in the same way), as in the case of the partly white cat
in the first two epochs (blue shaded box in fig. 1), is left out of the true positive
agreement. However, it could analyzed in future work.

To assess, how trivial it is that neural networks agree before convergence
we consider the minimum possible agreement - the lower bound. When do the
models necessarily start to agree to learn the same instances? Let us assume that
we train 2 networks and every one is 50% correct at some epoch t. Then every
network can learn the fraction of data that the other one did not. The same
applies if we train 3 networks and the accuracy is 2/3 per network, because if
we split the data into 3 portions, every network can learn 2 portions of the data
such that there is not one portion common to all 3 networks. The same occurs
for K networks with accuracy being K−1

K . In all these cases the sum of errors
errek all networks make is K ∗ 1

K = 1 or 100%. As the accuracy rises higher than
that and the error gets lower, the networks will necessarily start to learn the
fractions of data others are learning. Hence, the lower bound is 0% when the
sum of errors the networks make is bigger or equal to 100%. The lower bound
fraction, reported in the remainder of the paper in percent, can be defined as:

LBat(x, y) = 1−min(
∑
k∈K

1− accek︸ ︷︷ ︸
errek

, 1). (3)

In particular, the difference between agreement and lower bound shows us the
portion of agreement which could not have been predicted on the basis of the
lower bound alone.

Lastly, since one of the datasets we test our hypotheses on is multilabel, in
this scenario we extend the definition of agreement and lower bound such that
agreement and accuracy are calculated on the basis of exact match, meaning
that for all present and absent labels in an image, the prediction should exactly
match: the presence and absence of a label should be predicted correctly for all
labels. This is a criterion which is non-forgiving: if one of the two labels has
been predicted correctly, the exact match still classifies this image as wrongly
predicted. On the other hand, it is a strong criterion to test agreement on, since
what we are after is a full and not partial agreement. It is also a much stronger
criterion than investigated in Hacohen et al.[15]. Notably, our TP-agreement is
thus also different from an observed agreement, i.e. the sum over instances given
estimators classify correctly (true positives) and incorrectly (true negatives) di-
vided by the total number of instances [18]. Our choice to separate out true
positive agreement is intended to avoid potential confusion, as the number of
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true positives and negatives is not equal during training and can complicate the
assessment of reliability across estimators. The alternative Cohen’s kappa, for
example, suffers from the prevalence problem: it is non-representatively low in
case of uneven frequencies of events. An alternative PABAK measure counter-
acting the prevalence bias [6] is a linear function of observed agreement, which
takes both true positives and negatives into account. We provide a deeper dis-
cussion on alternatives in the appendix, in context of the preliminary results
shown in the upcoming section.

3 Agreement for different batch-sizes and architectures,
as well as for random labels

To reiterate, the general procedure is to train several (in our case 5) networks on
the same dataset and track examples, classified correctly per epoch per network.
Upon training several networks for the same amount of epochs, agreement per
epoch is defined as the sum of images every network classified correctly, nor-
malized by the sum of images any network classified correctly. We have seen on
the example of the lower bound that a quite high accuracy is necessary for the
networks to unavoidably learn the same instances and that this relation depends
on the number of networks trained: the more networks, the higher accuracy each
of those has to obtain to start learning the same data portion. Hence, it is not
self-evident that agreement does occur during neural network training.

If networks agree on what to learn, which factors does this agreement de-
pend on? To provide an intuition for above paragraphs, as well as to replicate
prior insights obtained by Hacohen et al.[15], we first test for the overall pres-
ence of agreement. Then, we extend our experiments to different batch-sizes and
architectures. Presence of agreement in all these diverse conditions supports the
hypothesis that agreement is not dependent on the model, but on the (sampled)
dataset population itself in terms of the nature of the true unknown underly-
ing distribution and the intrinsic characteristic of the difficulty of classification
[7]. To further investigate whether the joint dataset and label distribution leads
to agreement, or whether it is independent of labels, we test the presence of
agreement in case of random labels.

As hypothesized, mirroring prior hypothesis of Hacohen et al.[15], but using
our strict agreement criterion, we found visually clear agreement during training
of CIFAR10 [28] on DenseNet121 [22], presented in fig. 2a. Particularly in the first
epochs, as the accuracy grows, the area between agreement and the lower bound,
shaded in blue, is the most prominent. It shows that throughout training we
observe growing agreement on the learned instances, i.e. certain data instances
are labelled correctly in earlier stages than others, which is most remarkable in
the training epochs before networks converge and the accuracy plateaus.

Agreement persists also when training different architectures. We have chosen
4 diverse architectures, ranging from simple ones like LeNet5 [30] and VGG16
[43] to the more complex ones like ResNet50 [19] and DenseNet121 [22]. Training
CIFAR10 on them for the same amount of epochs, we could observe visually
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Fig. 2: Ablation study on CIFAR10: training DenseNet121 with and with-
out randomization, as well as with different architectures: LeNet5, VGG16,
ResNet50, DenseNet121. The blue area demonstrates the difference between
agreement and lower bound. The red area is the epoch-wise standard deviation
from average accuracy across trained networks.

prominent agreement as well, see fig. 2c (training details and additional plots
in the appendix). The agreement is similar to that for the same architecture.
The differences in learning speed are reflected in the standard deviation across
different model accuracies, shaded in red. Note that accuracy deviation has been
almost negligible when the same architectures have been trained.

We have also replicated the presence of agreement for different batch-sizes in
the appendix. A comparison shows that agreement curves are similar for simpler
architectures and smaller batch-sizes, as well as more complex architectures and
larger batch-sizes, suggesting that model capacity and enhanced randomness
when training with smaller batch sizes slow down the learning and agreement.

Above experiments suggest that batch-size or architecture type are not the
underlying causes for agreement during training. Next, we test whether it is the
structure of the data itself, or the relationship between the training data and
its human assigned labels that account for it. To test this hypothesis, we assess
agreement under label randomization. State-of-the-art convolutional networks
can fit random labels with ease [49]. Maennel et al.[34] argue further that during
training with random labels an alignment between the principal components
of data and network parameters takes place. Hence, if the dataset structure is
responsible for agreement, it should be visible also in case of random labels.
fig. 2b supports this hypothesis. We observe that the accuracy grows at a slower
pace and that agreement grows more slowly than during training with ground
truth labels. This may reflect the fact that it takes longer for the network to
start learning the dataset structure without label guidance. Nonetheless, there
is still sufficient agreement once accuracy starts to rise. Interestingly, here we
disagree with [15], who did not find agreement with randomized labels.

To conclude, we have observed a clear gap between theoretical lower-bound
and observed agreement, independence on semantic labels and architecture, even
coherence in between them. This supports the existence of a fundamental core
mechanism linked to more elemental dataset properties. To further support and
strengthen our early results, we show in the appendix that observed trends of
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true positive agreement clearly surpassing the lower-bound persist even when
comparing it to the expected random agreement. The latter is computed as the
product of accuracies for a given epoch. It is based on the assumption that
networks classify instances independently of each other, which does not seem to
be the case, partly because, as we show, the dataset structure plays an important
role. In addition, we also compute the standard deviation on agreement for Pascal
in the appendix, showing that it is negligibly small.

4 Dataset metrics

In the face of the insight that dataset properties are the probable cause of agree-
ment, we proceed by choosing several diverse datasets, as well as dataset metrics
to establish a correlation between them and training agreement. We have cho-
sen the following datasets to validate our agreement hypothesis: a tiny-sized
CIFAR10 [28] for ablation experiments, a diverse dataset with objects differing
in illumination, size and scale - Pascal Visual Object Classes (VOC) 2007 and
2012 [11,10], a large-scale ILSVRC-2012 (ImageNet) [9,40], as well as a texture
dataset KTH-TIPS2b [8]. CIFAR10, Pascal and ImageNet have been gathered by
means of search engines and then manual clean-up. In case of ImageNet, classes
to search for were obtained from the hierarchical structure of WordNet and the
manual clean-up proceeded by means of the crowdsourcing platform Amazon
Mechanical Turk. On the example of the person category, Yang et al.[48] elabo-
rate that a dataset gathered in such a manner is as strong as the semantic label
assumptions and distinctions on which it is based, the quality of the images ob-
tained using search engines (e.g. lack of image diversity), as well as the quality of
the clean-up (annotation) procedure. In distinction to the above three datasets,
though KTH-TIPS2b is a quite small dataset, it has been carefully designed,
controlling for several illumination and rotation conditions, and varying scales.

Prior work: What surrogate image statistics may be used to study the
agreement between classifiers on the order of learning? Let us look at some prior
works in this direction. First, some dataset properties make learning difficult in
general, namely the diverse nature of the data itself: the difficulty of assigning
image categories due to possible image variation, e.g. rotation, lighting, occlu-
sion, deformation [38]. Second, learning algorithms also show preferences for
particular kinds of data. Russakovsky et al.[39] analyze the impact onto Ima-
geNet classification and localization performance of several dataset properties
on the image and instance level, like object size, whether the object is human-
or man-made, whether it is textured or deformable. Their insights are consistent
with the intuition that object classification algorithms rely more on texture and
color as cues than shape. They further argue that object classification accuracy
is higher for natural than man-made objects. Hoiem et al.[21] analyze the impact
of object characteristics on errors in several non-neural network object detectors,
coming to the conclusion that the latter are sensitive to object size and confusion
with semantically similar objects.



8 I. Pliushch et al.

In an attempt to mimic the decisions of a human learner, several image
features have been related to image memorability and object importance. Isola
et al.[25] investigate memorability of an image as a stable property across viewers
and its relation to basic image and object statistics, like mean hue and number
of objects in the image. Spain and Perona [45], on the other hand, establish the
connection between image object features and the importance of this object in
the image, which is the probability that a human observer will name it upon
seeing the image. Berg et al.[5] extends this analysis to encompass semantic
features like object categories and scene context.

Knowing which image cues the learning process is sensitive to gives room for
improving it. Alexe et al.[2] design an objectness measure generic over classes
from image features (multi-scale saliency, color contrast, edge density and su-
perpixels straddling) which can be used as a location prior for object detection.
Extending the latter work, Lee and Grauman [31] use this objectness measure,
as well as an additional familiarity metric (whether it belongs to a familiar cat-
egory) to design a learing procedure which first considers easy objects. Liu et
al.[33] fit a linear regression model with several image features, like color, gra-
dient and texture, to estimate the difficulty of segmenting an image. In [46] an
active learner is designed, which partly on the basis of edge density and color
histogram metrics, proposes which instances to annotate and estimates the an-
notation cost for the multi-label learning task. Notably the question of whether
the networks learn the same examples first is different from the question whether
they learn the same representations [47,32], but if the former is correct, then the
latter is more probable.

Our choice: Several works have correlated basic image statistics to various
human-related concepts, like memorability [25], importance [45] or image diffi-
culty [24], or directly attempted to find out the influence of such metrics onto
object classification [39,2]. Inspired by these approaches, we have chosen 4 image
statistics to correlate agreement to: segment count [12], (sum of) edge strengths
[26], (mean) image intensity entropy [13,44] and percentage of coefficients needed
to reconstruct the image based on the DCT coefficient matrix [1]. First 3 metrics
are shown in fig. 3 (DCT coefficients matrix in the appendix).

The choice of the first two is inspired by [24], who correlate several image
properties, including segment count and (sum of) edge strengths, to the image
difficulty score, defined as a normalized response time needed for human annota-
tions to detect the objects in the image. Their hypothesis is that segments divide
the image into homogeneous textural regions, such that the more regions - the
more cluttered an image might be (and the more difficult an object to find). The
same line of reasoning goes for the sum of edge strengths: the more edges, the
more time might be needed to get a grasp of the image. If the way humans search
for objects in the image corresponds to some degree to the way a neural networks
learns to predict their presence, segment count and the (sum of) edge strengths
might be predictive for the agreement during training. Mean image entropy and
DCT coefficients have been chosen for a similar line of reasoning. Both entropy
and DCT coefficients, similar to edge strengths and segment count, provide a
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(a) Image (b) Edge strengths (c) Entropy (d) Segments

Fig. 3: Visualization of selected metrics on Pascal examples. For intuition, we
have chosen an ”easy” and a ”difficult” image according to Ionescu et al.[24].
Implementation details can be found in the appendix.

measure of variability: how uniform the variation in image pixels is in the case
of entropy and how many (vertical and horizontal) frequencies are needed to
describe an image in the case of DCT coefficients. Recently, [36] have analyzed
how certain dataset features relate to classification, stating, for instance, that
for MNIST and ImageNet the decision boundary is small for low frequency and
high for high frequency components. In other words, the classifier develops a
strong invariance along high frequencies. Hence, frequency-related information
might influence agreement.

In addition, for Pascal, which contains further annotations, we considered
the number of object instances (since it is a multilabel dataset such that several
label instances may be present in the same image) and the bounding box area
(ratio of the area taken by objects divided by the image size), as well as the image
difficulty scores described above, computed by [24]. KTH-TIPS2b, is constructed
in such a way that for each texture type, there are 4 texture samples, each
of which varies in illumination, scale and rotation, which we also considered.
Finally, for the CIFAR10 test set, Peterson et al.[37] have computed soft labels,
reflecting human uncertainty that the given target class is in the image, to test
whether networks trained on soft labels are more robust to adversarial attacks
and generalize better than those trained on hard one-hot labels. Soft label entropy
shows weak negative correlation with test agreement (see Fig. 5 of the appendix).

5 Do basic image statistics correlate with training
learning dynamics?

Our initial investigation of section 3 suggests that neither the labels, nor the
precisely chosen neural architecture or optimization hyper-parameters seem to
be the primary source for agreement, eliminating all factors of eq. (1) other
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than the data distribution itself. As such, we investigate the question “do image
statistics provide a sufficient description in correlation for agreement?” on four
datasets: Pascal [11], CIFAR10 [28], KTH-TIPS2b [8], and ImageNet [9].
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Fig. 4: Pascal DenseNet: Agreement visualization on train set. In addition
to accuracy (red), agreement (blue curve) and its difference to lower-bound
(shaded blue area) (left y-axis), dataset metric values are shown in purple
(right y-axis). Pearson’s correlation coefficient between agreement (blue curve)
and metric values (in purple) quantitatively supports the visible correlation.

To make the full upcoming results easier to follow, we first start by visualiz-
ing and discussing one example metric, namely entropy on Pascal in fig. 4. In a
given epoch, the agreement (blue) and accuracy (red) curves can be compared to
the average entropy of the agreed upon instances (in purple). Again, the shaded
blue area accentuates the difference between lower bound and agreement. Since
we have chosen a step-wise learning rate scheduler for training, in order to reach
roughly 50% exact match accuracy on the test set, the step-wise learning is re-
flected in the accuracy and agreement curve. As a new addition to our previously
shown figures, we now notably also observe a strong positive correlation with
the dataset entropy metric. This correlation between network agreement and
the entropy of the correspondingly agreed upon instances is further quantified
through a high Pearson correlation coefficient of 0.88.

We continue our analysis in this form for all other mentioned metrics and
dataset combinations in fig. 6 and fig. 7. To better evaluate the shown corre-
lations, we have visualized the distribution (in the form of a histogram) of the
values for each dataset metric on the train sets in the appendix. Since the metrics
fluctuate a lot in the first epochs due to predictions being primarily random, we
omit plotting them for the first 5 epochs. For reference, we provide the agree-
ment, accuracy and lower-bound curves in the style of our previous figures in
fig. 5. To clarify potential correlations, these curves are then followed by visu-
alizations and quantitative Pearson’s r values of only agreement to the set of
chosen image metrics in fig. 6 and fig. 7.

For the Pascal dataset, shown in fig. 6a, the correlations between agreement
and average dataset metrics are apparent (apart from sum of edge strengths).
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Fig. 5: On DenseNet: Agreement, accuracy and lower bound as in fig. 4

The correlations suggest that as the models learn, they in progression first learn
dataset instances with lower entropy, segment count, number of significant DCT
coefficients and number of object instances, meaning that less labels are present
in the same image. The distribution for the number of instances (in the appendix)
shows that the number of labels in most images is only 1 (equivalent to the single
label classification), less for 2 and 3. This is reflected in the correlation, which
goes up from 1.1 to 1.4. There is also a correlation between image difficulty (how
much time humans need to find the objects in the image) and agreement, which
is consistent with the other metrics, namely that easy examples are learnt first.
This result is further supported by the bounding box size, where we see an inverse
correlation, such that large objects are learnt first, in agreement with insights
presented in the dataset metrics section. However, note that particularly for
segment count, frequency coefficients and ”image difficulty” the dataset metric
curve first goes down, before it reverses its direction for the remainder of epochs.
What we observe is that when accuracy is low and the model is trying to find
an optimal trajectory to learn, there are more random fluctuations, due to the
stochasticity of the learning process. In the appendix we show the correlations for
Pascal ResNet with the same training setup. There, the trend of metric values
first going down in first epochs (until the agreement approximatively reaches
20%) and then up is even more pronounced for some metrics.

Correlations are also present on KTH-TIPS2b, visualized in fig. 6b. How-
ever, for this texture dataset, the tendency observed in Pascal is reversed, such
that entropy, summed edge strengths, segment count and frequency percentage
are inversely correlated with the dataset metric. In addition to these metrics, the
way in which the dataset has been designed allows to extract additional ones,
namely several illuminations, rotations and scales. The corresponding correla-
tions are visualized in fig. 6c. For illumination and rotation, instead of building
an average over the metric values per epoch, we calculate for each illumination
kind and rotation direction the fraction of values agreed upon, normalized by all
metric values of that type. For frontal illumination, for example, we count the
instances that models agree on and divide by the number of instances of that
type in the train set. We observe that texture patterns illuminated from the
front are agreed on slower than other illumination types, while texture patterns
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Fig. 6: Visualization of correlations between agreement and dataset metrics on
train sets for Pascal and KTH-TIPS2b.
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captured from the front are agreed on quicker than other rotation directions.
Correlation for texture scale seems absent.
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Fig. 7: Visualization of correlations between agreement and dataset metrics on
train sets for ImageNet and CIFAR10.

We have seen that correlations on Pascal and KTH-TIPS2b diverge. In fig. 7a
we also see that on ImageNet correlations, albeit on a small scale, are present
and they seem to be congruent with those on KTH-TIPS2b rather than Pascal.
Namely, first images with higher segment count, entropy and number of relevant
frequency coefficients are learned. Pascal and ImageNet are datasets of objects,
while KTH-TIPS2b of texture. Why the difference? If we follow recent hypothe-
ses on neural networks exhibiting simplicity bias and primarily using texture to
discriminate [41,14], then correlation directions on KTH-TIPS2b and ImageNet
would be the same (which our results indicate). On both Pascal and ImageNet
random-crop is used to get train images of the same size, which has been argued
by [20] to enhance texture bias. The way objects are presented in Pascal and
ImageNet differs however, for ImageNet objects are centered and not much back-
ground is present, which is not the case for Pascal, making latter classification
more challenging, but also effects of random-crop eventually different.
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On CIFAR10, the direction of correlations is more consistent with KTH-
TIPS2b and ImageNet (see fig. 7b). The correlations are marginal, however,
given that metric value range is very small. The presence of agreement with little
correlation can also be an indication that there are some other metrics which
explain it, though it may be some humanly non-interpretable noise patterns [23].

6 Discussion on limitations and prospects

Although agreement is present for every dataset, the previous sections have ex-
posed a dataset dependency with respect to how precisely correlations between
agreement and dataset metrics manifest. This means that the order, in which
dataset instances are learned, is to a large degree independent of network pa-
rameters, but instead dependent on the general dataset statistics. This seems
congruent with the ideas that a classifier compactly encodes the data in the first
layers [42], as well as that agreement results from the principal component bias
[17] in that learning order is influenced by the principal components of the data
at earlier stages. Hence, in order to better understand the learning process of
neural networks (and make a leap from correlation to causation, see appendix),
agreement should be computed for carefully designed datasets and suitable met-
rics, for which the generative process and dataset statistics are well known.

Another research direction is to assess generalization and analyze the agree-
ment on unknown test sets. Though these are often assumed to follow the same
distribution as their training counterparts, it is practically not always the case.
Supposedly, if the subset statistics are sufficiently similar, then agreement and
metrics correlations should similarly manifest, as we exemplify in the appendix.

Last but not least, as mentioned in the introduction, the insights on agree-
ment could help us design a more efficient learning curriculum, for which an
appropriate pacing function [16] should be chosen with care.

7 Conclusions and outlook

In this paper we have defined a new notion of agreement, characterising the
learning process of neural networks in a more detailed way. We have demon-
strated agreement on the train (and test set) for CIFAR10, Pascal, ImageNet
and KTH-TIPS dataset. We have further correlated agreement on these datasets
to several image statistics, in an attempt to explain why neural networks prefer
to learn dataset instances in the way they do. Our results have shown several
positive and negative correlations to dataset metrics, though different for each
dataset. For future research is left the opportunity to test the results on further
datasets, to test the correlation for further metrics, as well as to design curricula
for training neural networks based on these insights.
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