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Fig. 1. Qualitative results of Graph-Ce on the WOD validation sequences. We show
the raw point cloud in blue, ground truth in pink bounding boxes, our detected objects
in green bounding boxes, and points inside our detected bounding boxes in orange.

Fig. 2. Qualitative results of Graph-Po on the KITTI val set. We show detection
results in six scenes, where the upper is the scene image, and the lower is the front
view detection results.

Table 1. Ablation study of σ to enlarge
each proposal.

σ 0.2 0.4 0.8 1.6

Vehicle 71.95 72.10 72.12 72.16
Pedestrian 68.95 69.02 68.97 68.95

Table 2. Ablation study of λ and δ in
DFVS.

λ 0.14 0.16 0.18 0.18
δ 50 50 50 60

APH 70.78 70.81 70.83 70.81

This supplementary material contains the following sections. Sec. A illus-
trates additional visualization results. Sec. B presents more ablation studies.
Sec. C provides potential improvements and more discussions.

A Qualitative Results

Fig. 1 demonstrates the qualitative results of our method on the Waymo dataset.
Fig. 2 shows predicted 3D bounding boxes and projected 2D bounding boxes on
the KITTI dataset. Our model can predict distant cars (2nd col of 1st row)
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and highly occluded cars (1st col of 1st row), which are even not labeled. These
demonstrate the high-quality prediction results of our model.

B More Ablation Studies

Analysis of the Dynamic Point Aggregation. We ablate the hyperparameter σ
in Table 1 and find that enlarging σ to wrap contextual points is beneficial for
detection. We also study the sensitivity of the hyperparameter λ and δ of DFVS
in Table 2. We keep its efficiency similar (by randomly selecting a similar number
of non-empty voxels) and study the detection accuracy. We find DFVS is robust
to the hyperparameters.

C Potential Improvements and More Discussions

Multi-frame Fusion. Our model may benefit from multi-frame data as denser
point clouds can help improve detection performance. As the number of point
clouds in 3D proposals increases, DFVS can better balance accuracy and ef-
ficiency. Specifically, the random point sampling may become less accurate to
sample nearby objects, as it will face a more unevenly distributed point cloud.
At the same time, as the number of original point clouds grows, the sampling
efficiency of the farthest point sampling will decrease.

Feature Reuse. Reusing features from region proposal networks (RPN), e.g.,
the voxel features and point features, may achieve more stability and better
performance. For the sake of generality, we currently only take the raw point
cloud as input, which makes it not tied to a specific RPN. We can also design
our model for a specific RPN to reuse the features. For example, we can use
DPA to aggregate voxels and their voxel features from sparse convolutions [2], or
points and their point features from PointNet++ [1], and then fully utilize them
to produce robust RoI features. Especially, DPA is a differentiable operation,
which supports the back propagation of the aggregated features.
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