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Abstract. Accurate and reliable 3D detection is vital for many appli-
cations including autonomous driving vehicles and service robots. In this
paper, we present a flexible and high-performance 3D detection frame-
work, named MPPNet, for 3D temporal object detection with point cloud
sequences. We propose a novel three-hierarchy framework with proxy
points for multi-frame feature encoding and interactions to achieve bet-
ter detection. The three hierarchies conduct per-frame feature encoding,
short-clip feature fusion, and whole-sequence feature aggregation, respec-
tively. To enable processing long-sequence point clouds with reasonable
computational resources, intra-group feature mixing and inter-group fea-
ture attention are proposed to form the second and third feature encod-
ing hierarchies, which are recurrently applied for aggregating multi-frame
trajectory features. The proxy points not only act as consistent object
representations for each frame, but also serve as the courier to facilitate
feature interaction between frames. The experiments on large Waymo
Open dataset show that our approach outperforms state-of-the-art meth-
ods with large margins when applied to both short (e.g., 4-frame) and
long (e.g., 16-frame) point cloud sequences. Code will be publicly avail-
able at https://github.com/open-mmlab/OpenPCDet.

Keywords: 3D Object Detection, Point Cloud Sequence, LiDAR

1 Introduction

3D object detection from point clouds is an important task for 3D scene percep-
tion, which aims to output the 3D bounding boxes and semantic labels of the
objects in the given scenes. The accurate and reliable 3D detection algorithms
are essential for many applications such as the service robots and autonomous
driving vehicles, which need accurate detection results for behaviour planning.

However, as one of the most widely adopted depth sensors, LiDAR sensors
can only produce point clouds to capture one partial view of the scene at a time.
This characteristic leads to incomplete point distributions of objects in driving
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Table 1. Pilot experiments of CenterPoint [40] on Waymo validation set in terms of
mAPH (LEVEL 2) of the vehicle class by taking concatenated point clouds as input.

Frames 1-frame 4-frame 8-frame 12-frame 16-frame

mAPH@L2 64.50 65.77 65.69 65.33 64.69

scenes, posing difficulties for detection methods to accurately estimate the states
of the objects. In real-world scenarios, the sensors continuously generate point
clouds over time as the vehicle moves, and the point cloud sequence naturally
provides multiple views of objects, which makes it possible to detect challenging
objects more accurately by utilizing the sequence.

Recently, several approaches [8, 28, 40] have demonstrated that a simple con-
catenation of multi-frame point clouds can significantly improve the performance
over single-frame detection. However, this strategy is only suitable for handling
very short sequences (e.g., 2-4 frames), and its performance might even drop
when used to process more frames, since the fused point clouds of long sequences
might show “tails” (see Fig. 2 (a)) of different visual patterns from different mov-
ing objects, posing additional challenges to the detectors. As shown in Table 1,
our pilot study demonstrates that CenterPoint [40] detector achieves the best
performance with 4-frame sequences while it fails on handling longer sequences.
Hence, how to consistently improve the performance of 3D detection with multi-
frame point clouds is the main challenge we aim to address in this paper.

We propose a novel two-stage 3D detection framework, named MPPNet, to
effectively integrate features from Multi-frame point clouds via Proxy Points
for achieving more accurate 3D detection results. The first stage adopts existing
single-stage 3D detectors to generate 3D proposal trajectories, and we mainly fo-
cus on the second stage that takes a 3D proposal trajectory as input to aggregate
multi-frame features in an object-centric manner for estimating more accurate
3D bounding boxes. The key idea of our approach is a series of inherently aligned
proxy points to encode consistent representations of an object over time and a
three-hierarchy paradigm for better fusing long-term feature sequences.

Specifically, in the first stage, we adopt existing 3D detectors [40, 12] to gen-
erate high-quality 3D proposal boxes, and these boxes of all the frames are
associated to generate the proposal trajectory for each object, where the box as-
sociation is based on the predicted speeds of the object. The proposal trajectories
and their associated object points serve as the input to our second stage.

However, it is challenging to directly aggregate the object features from the
multi-frame object points, as the object points at different frames may have
significantly different spatial distributions. To address this challenge, we propose
to adopt a set of inherently aligned proxy points at each frame, which are placed
at fixed and consistent relative positions in the proposal box of each frame. These
proxy points make the aggregation of the multi-frame features easier by providing
consistent representations at different frames. Based on the proxy points, our
approach can more effectively aggregate the multi-frame features with a three-
hierarchy model for 3D temporal object detection. The first hierarchy learns
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to encode per-frame features, the second hierarchy conducts feature interaction
within each short clip (group), and the final hierarchy propagates the whole-
sequence information among all the frames and effectively enhances single-frame
representations to achieve more accurate detection.

Specifically, in the first hierarchy, to encode per-frame proposal features, we
adopt set abstraction [21] to aggregate the object point features to a series of
relatively consistent proxy points, which encode the object geometry of each
frame. However, encoding in each frame’s local coordinate system inevitably
loses the motion information of the proposal trajectory, which is vital for the
temporal detection task. To properly encode the motion features of per-frame
proposals, we propose to separately encode the relative positions between the
per-frame proxy points and the latest proposal box, which effectively encodes the
motion state of per-frame proposal boxes. This decoupling strategy for encoding
object geometry and motion features at each frame has been experimentally
evidenced to benefit the performance of the multi-frame 3D object detection.

The small number of proxy points are also used for feature interaction be-
tween multiple frames. However, it is still unaffordable to build connections
among all the proxy points as it might incur large costs to computational re-
sources, especially when dealing with long (e.g., 16-frame) trajectories. There-
fore, we adopt a short-clip grouping strategy to temporally divide each proposal
trajectory into a small number of groups, where each group contains a short clip
of sub-trajectory. By utilizing the per-frame proxy points as the intermediary,
our second hierarchy conducts intra-group feature mixing with a novel 3D MLP
Mixer module and the third hierarchy further utilizes cross-attention for inter-
group feature interactions. Through this multi-frame feature propagation with
our three-hierarchy model, it captures richer trajectory features by aggregating
object information from different perspectives of the trajectory, which are used
to predict a high-quality 3D bounding box by a detection head.

In a nutshell, our contributions are three-fold: 1) We propose a two-stage
3D detection framework MPPNet, which adopts a series of novel proxy points
for multi-frame feature encoding and aggregation. Such inherently aligned proxy
points not only effectively encode the geometry and motion features of the pro-
posal trajectory in a decoupled manner, but also serve as the courier to facilitate
multi-frame feature interaction. 2) We present a novel three-hierarchy model to
better fuse the multi-frame features of long trajectories, which consists of per-
frame encoding, intra-group feature mixing, and inter-group feature attention. 3)
Our framework can process long point cloud sequences to consistently improve
the performance of 3D object detection. Experiments demonstrate that our ap-
proach outperforms state-of-the-art methods by large margins when applied to
both short (e.g., 4-frame) and long (e.g., 16-frame) sequences.

2 Related Work

3D object detection with single-frame point cloud. The current single-
frame 3D detection algorithms can be roughly divided into three categories:
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point-based, voxel-based, and jointly employing both of them. First, the point-
based methods [25, 18, 38] directly extracts information from the original point
clouds. Through some well-designed operations, like set abstraction [21], the
network can perceive the spatial position features of the irregular 3D point clouds
to perform 3D object detection. Different from the point-based method, the
voxel-based strategy first converts the irregular points into a number of fixed-size
spatial voxels. Some high-efficiency methods [37, 12, 33, 5] employ the bird-eye
view (BEV) representation, integrating the height information, to encode the
voxel features, and then utilize 2D CNN for efficient 3D detection. On the other
hand, some works [36, 42, 40] exploit 3D CNN to directly extract feature of each
voxel in 3D space. Besides, some recent works [23, 13, 24] exploit a voxel-based
backbone to obtain 3D proposals, and then use point-based strategies [19, 21]
for box refinement, achieving state-of-the-art detection results.
2D object detection with image videos. Different from the scale-invariant
3D bounding boxes, 2D bounding boxes are highly affected by the relative
positions of objects and the camera. Therefore, some 2D video detection ap-
proaches [10, 11, 43, 32, 6, 9] mainly focus on using the appearance and motion
features of the previous frame to align the objects in the current frame. Previous
2D multi-frame object detection methods mainly use optical flow [44, 43, 7], mo-
tion [4, 1], LSTM [35] to align and aggregate information from different frames.
Recently, many methods [3, 34, 2] employ the popular self-attention layer [30] as
the relation modules to align the features of the previous frame to the current
frame, achieving more robust multi-frame detection results.
3D object detection with point cloud sequences. The earlier multi-frame
3D detectors generally adopt a feature-based strategy to gradually aggregate
temporal features with 2D CNN [15] or transformer [31, 41]. Besides that, some
state-of-the-art 3D detectors [8, 28, 40] have demonstrated that a simple multi-
frame point concatenation strategy can already outperform the single-frame set-
ting with remarkable margins by taking a short point cloud sequence. But when
it comes to longer sequences, this simple strategy might fail due to the challenge
of handling various moving patterns of objects. 3D-MAN [39] employs attention
mechanism to align different views from 3D object in point cloud and exploits a
memory bank to store and aggregate the temporal information to process long
point cloud sequence. SimTrack [14] presents an end-to-end trainable model for
joint detection and tracking from raw point clouds by feature alignment. Re-
cently, Offboard3D [20] proposes an offboard 3D detector that greatly improves
the detection performance by taking the whole point cloud sequence as input,
but it depends on both past and future frames for generating accurate 3D bound-
ing boxes. In this paper, we propose a two-stage 3D detector, MPPNet, where
we carefully design the multi-frame feature encoding and interaction modules.

3 Methodology

Most state-of-the-art 3D detection approaches adopt a simple concatenation
strategy [40, 23] to take multi-frame point clouds as input for improving 3D
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Fig. 1. The overall architecture of our proposed MPPNet. Our approach takes a point
cloud sequence as input for temporal 3D object detection, where a three-hierarchy
model is proposed for the multi-frame feature encoding and interaction.

temporal detection, which are generally effective at handling short point cloud
sequences but fail to deal with long sequences due to the challenge of point-cloud
trajectories with different moving patterns. 3D-MAN [39] utilizes the attention
networks to aggregate multi-frame features, which, however, may attend to mis-
matched proposals due to the dense connections among all proposals.

We propose MPPNet, a two-stage 3D detection framework, which takes the
point cloud sequences as input to greatly improve the detection results. In the
first stage, we adopt existing single-stage 3D detectors to generate 3D proposal
trajectories. Our main innovation focuses on the second stage that takes a 3D
proposal trajectory as input and effectively aggregates the multi-frame object
features for predicting more accurate 3D bounding boxes. In Sec. 3.1, we briefly
introduce the 1st-stage single-frame proposal generation network and the strat-
egy to generate 3D proposal trajectories. In Sec. 3.2, we present the 2nd-stage
trajectory proposal feature encoding that adopts the proxy point strategy and a
three-hierarchy model for multi-frame feature encoding and interaction. Finally,
in Sec. 3.3, we introduce the 3D detection head to generate 3D boxes from the
summarized temporal features and also discuss the optimization of our approach.

3.1 Single-frame Proposal Network and 3D Proposal Trajectories

In this section, we briefly introduce the 1st-stage of our approach that aims to
generate the 3D proposal trajectories. Given a point cloud sequence, we create
consecutive 4-frame clips and extend the single-stage 3D detectors [12, 40] as [8,
28] to generate per-frame 3D detection boxes. The choice of 4-frame clips is
determined according to the results of Table 1.
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To associate the 3D detection boxes as 3D proposal trajectories, we add an
extra speed prediction head for estimating the speeds of the detected objects,
where the speeds are utilized to associate the 3D proposal boxes with a predefined
Intersection-over-Union (IoU) threshold as in [40].

After associating per-frame 3D proposal boxes to create a 3D proposal tra-
jectory, let {B1, . . . ,BT } denote the T -frame 3D proposal trajectory and Kt =
{lt1, . . . , ltm}t=1,··· ,T denote object points region pooled [25] from each frame t.
They are input into the second stage of our framework for multi-frame feature
encoding and interaction to generate more accurate a 3D bounding box.

3.2 Three-Hierarchy Feature Aggregation with Proxy Points

The proposal trajectory and its contained object points capture an object can-
didate from multiple views, which provide richer information to estimate its 3D
bounding box more accurately. However, it is challenging to aggregate useful in-
formation from a long sequence of object points, as the number of object points
is large and they also have very different spatial distributions over time.

To address the challenge, we propose to adopt a set of inherently aligned
proxy points at each frame, which not only provide consistent per-frame repre-
sentations for the object points, but also facilitate multi-frame feature interac-
tion by serving as the courier for cross-time propagation. With the proxy points,
we further present a three-hierarchy model to effectively aggregate multi-frame
features from the object point sequence for improve the performance of 3D de-
tection, where the first hierarchy encodes the per-frame object geometry and
motion features in a decoupled manner, the second hierarchy performs the fea-
ture mixing within each short clip (group) and the third hierarchy propagates
whole-sequence information among all clips. By alternatively stacking the intra-
group and inter-group feature interactions, the multi-frame features can be well
summarized to achieve more accurate detection.
Proxy Points. The proxy points are placed at fixed and consistent relative
positions in each 3D proposal box of the proposal trajectory. Specifically, at
each time t, N = n × n × n proxy points are uniformly sampled within the
3D proposal box and are denoted as P t = {pt1, pt2, . . . , ptN}. These proxy points
maintain the temporal order as the order of the trajectory boxes. As they are
uniformly sampled in the same way across time, they naturally align the same
spatial parts of the object proposals over time.
Decoupled per-frame feature encoding. Our first hierarchy performs per-
frame feature encoding. The object geometry and motion features are separately
encoded based on the proxy points as illustrated in Fig. 2 (b).

For encoding geometry features with proxy points, the relative differences
between each object point lti ∈ Kt and the 8 corner + 1 center points of the
proposal box Bt = {btj}9j=1 are first calculated as

△lti = Concat
(
{lti − btj}9j=1

)
. (1)

Hence, the object points’ geometry representations are first enhanced as F t =
{(lti , ∆t

i)}mi=1. To encode the object geometry features via the proxy points, the
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Fig. 2. Illustration of point distribution of different objects (a) and the decoupled
feature encoding for object geometry and motion state (b).

set abstraction [21] is adopted to aggregate the neighboring object points to
every proxy point ptk as

gtk = SetAbstraction(ptk, F
t), for k = 1, . . . , N. (2)

However, the above geometry feature encoding conducted in the local coordinate
of {Bt}Tt=1, which inevitably loses the object points’ motion information.

The per-frame motion information is also important for the object points
and also needs to be properly encoded. We propose to separately calculate the
relative positions between the per-frame proxy points P t and the latest proposal
box’s 8 corner + 1 center points {bTj }9j=1 as Eq. (1):

∆ptk = Concat
(
{ptk − bTj }9j=1

)
. (3)

Here, note that the per-frame proxy point ptk and the box point bTj are all
transformed to the same world coordinate system to correctly capture the global
motion information. This strategy effectively encodes the motion state of each
proposal box Bt with respect to the latest box BT , as the proxy points at each
time t have fixed relative positions in the proposal boxes.

With an extra one-dimensional time offset embedding et, the final motion
encoding of each proxy point is formulated as

f t
k = MLP(Concat(∆ptk, e

t)), for k = 1, . . . , N. (4)

By adding the per-frame object geometry features and the motion features, the
features of the each proxy point is calculated as

rtk = gtk + f t
k, for k = 1, . . . , N, (5)

which forms the final per-frame object features Rt = {rt1, . . . , rtN} at time t.
Grouping for multi-frame feature interaction. The above per-frame en-
coding aggregates per-frame information to the proxy points, which serve as
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the representations of each frame to facilitate the multi-frame feature interac-
tion. However, naively establishing dense connections among all frames’ proxy
points is still unaffordable and unscaleable in consideration of the tremendous
computational costs and GPU memory. Therefore, we adopt a grouping strat-
egy to temporally divide the long proposal trajectory into a small number of
non-overlapping groups, where each group contains a short sub-trajectory.

Specifically, the trajectory’s per-frame features {R1, . . . , RT } are evenly di-
vided into S groups and each group has T ′ frames (we assume that T = T ′×S).
The proposed grouping strategy enables the following multi-frame feature inter-
action to be more efficiently conducted with the proposed intra-group feature
mixing and inter-group cross-attention.
Intra-group feature mixing. The second hierarchy aims to encode group-wise
temporal features of the proposal trajectory by conducting the feature interac-
tions within each group. We first collect the features of the inherently aligned
per-frame proxy points within each group i as Gi = {rt1, . . . , rtN}t∈Gi , where Gi

is the temporal index set indicating which frames are included in the i-th group
(e.g., G1 = {1, 2, 3, 4} or {1, 5, 9, 13} when S = 4). The group feature Gi can
be represented as a three-dimensional feature matrix that has Gi ∈ RT ′×N×D,
where D is the feature dimension of each proxy point. This feature matrix Gi

can be considered as an N × (T ′ ×D) matrix and input to an MLP to obtain
group-level proxy points as Ĝi = MLP

(
Gi

)
, where Ĝi ∈ RN×D, and the MLP(·)

fuses each group’s representation from (T ′ ×D) to D dimensions.
To further conduct the feature interaction among all proxy points within each

group, inspired by [29], we propose the 3D MLP Mixer module to mix each group
i’s features in the x, y, z and channel dimensions separately and sequentially. As
illustrated in Fig. 1 (a), we conduct the feature interaction for each Ĝi as

Ĝi = MLP4d(Ĝi), for s = 1, . . . , S, (6)

where MLP4d(·) indicates an MLP with four axis-aligned projection layers for
feature mixing along the spatial x, y, z axes and along the channel axis (c) on
the proxy points, respectively.
Inter-group feature attention. After the intra-group feature mixing, our
third hierarchy aims to propagate information of the group-level proxy points
across different groups to capture richer whole-sequence information. We ex-
ploit the cross-attention per-group feature representations by querying from the
features of the all-group summarization of the whole sequence.

Specifically, the all-group features {Ĝ1, . . . , ĜS} can be represented as a
three-dimensional feature matrix denoted as H ∈ RS×N×D. It can be consid-
ered as an N × (S × D) matrix and input to an MLP to obtain the all-group
summarization as Ĥ = MLP (H), where Ĥ ∈ RN×D and the MLP(·) fuses the
all-group summarization from (S ×D) to D dimensions.

Using the all-group summarization as a intermediary, we conduct the inter-
group cross-attention for each group Ĝi to aggregate features from Ĥ as

Ĝi = MultiHeadAttn(Q(Ĝi + PE),K(Ĥ+ PE), V (Ĥ)), for i = 1, . . . , S, (7)
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where Q(·),K(·), V (·) are linear projection layers to generate query, key, value
features for the multi-head cross-attention [30], and ‘PE’ represents a learnable
index-based 3D positional embedding for each proxy point, obtained by project-
ing proxy points’ indices (i, j, k) via a MLP.

The above intra-group feature mixing and inter-group cross-attention are
recurrently stacked for multiple times so that the trajectory’s representations
gradually become aware of both global and local contexts for predicting a more
accurate 3D bounding box from the trajectory proposal.

3.3 Temporal 3D Detection Head and Optimization

Through the proposed three-hierarchy feature aggregation, our model obtains
richer and more reliable feature representation from input point cloud sequences.
A 3D detection head to generate final bounding boxes is introduced on top of the
above trajectory temporal features, which is supervised by the training losses.
3D temporal detection head with transformer. Given the aforementioned
group feature Ĝi, we propose to adopt a simple transformer layer to obtain a
single feature vector from each group. Specifically, we create a learnable feature
embedding E ∈ R1×D as the query, to aggregate features from each group feature
Ĝi with a multi-head attention as

Ei = MultiHeadAttn(Q(E), K(Ĝi + PE), V (Ĝi)), for i = 1, . . . , S, (8)

where ‘PE’ is similarly defined as that in Eq. (7). In addition to group features ex-
tracted from the raw point clouds, following [20], we also exploit a PointNet [19]
that takes {B1, . . . ,BT } as input to extract the boxes’ embedding, where each
box is treated as a point with 7-dim geometry and 1-dim time encoding.

Our detection head therefore integrates group-wise features {E1, . . . , ES}
from both the object points and the boxes’ embedding via feature concatenation,
for the final confidence prediction and box regression.
Training losses. The overall training loss is the summation of the confidence
prediction loss Lconf , the box regression loss Lreg as:

L = Lconf + αLreg, (9)

where α is the hyper-parameter for balancing different losses. We adopt the same
binary cross entropy loss and box regression loss, employed in CT3D [22], as our
Lconf and Lreg. At training stage, we use the intermediate supervision by adding
loss to the intra-group output of each iteration and sum all the intermediate
losses to train the model. At test time, we only use the bounding boxes and
confidences results predicted from the last intra-group output feature.

4 Experiments

4.1 Dataset and Implementation Details

Waymo Open Dataset. The Waymo dataset [27] is a large-scale 3D detection
dataset in autonomous driving scenarios, which contains 1150 sequences divided
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into 798 training, 202 validation, and 150 testing sequences. All frames of each
sequence are well-calibrated so the 3D temporal detection can be performed. Our
models are trained on the training set and evaluated on both the validation set
and testing set. The official evaluation metrics are standard 3D mean Average
Precision (mAP) and mAP weighted by heading accuracy (mAPH). Meanwhile,
according to the number of inside points for each object, the data is split into
two difficulty levels: LELVEL 1 where objects include more than 5 points and
LELVEL 2 where objects include at least 1 points.

Implementation Details. The two stages of our MPPNet are trained sepa-
rately. We follow the official training strategy for our adopted 1st-stage sub-
network (RPN) [40, 12], while the 2nd-stage sub-network is trained with the
ADAM optimizer for 6 epochs with an initial learning rate of 0.003 and a batch
size of 16. We set the IoU matching threshold to 0.5 for generating the propose
trajectories in the 1st stage. During training, we conduct the proposal-centric
box jitter augmentation as PointRCNN [25] on the per-frame 3D proposal box.
We randomly sample 128 raw LiDAR points and set N = 64 for the proxy points
of each proposal in a trajectory. The feature dimension D of each proxy point is
set as 256. For the multi-frame feature interaction, we set the number of groups
as S = 4 for different lengths of trajectories (e.g., for 4-frame input, each frame
forms a group; for 16-frame input, every 4 frames forms a group). We alternately
conduct the intra-group feature mixing and inter-group feature attention mod-
ule for 2 times, followed by an extra intra-group module to attach our proposed
3D detection head for predicting the confidence and 3D bounding box. We set
α = 2 for balancing the terms in the overall loss. During inference, we can store
objects’ feature of past frames in a memory bank to speed up.

4.2 Main Results of MPPNet on Waymo Open Dataset

Waymo Validation Set. Table 2 shows the result of published state-of-the-art
single-frame and multi-frame methods. Firstly, when compared with state-of-the-
art single-frame method PV-RCNN++ [24], our MPPNet, using CenterPoint [40]
with 4-frame input as 1st-stage, improves the overall 3D mAPH (LEVEL 2) sig-
nificantly by 5.05%, 8.76%, 4.9% on vehicle, pedestrian and cyclist, respectively,
by exploiting 16-frame point cloud sequences as input. Secondly, compared with
multi-frame methods, MPPNet improves the overall 3D mAPH (LEVEL 2) of
the vehicle class by 7.82% for 3D-MAN [39] and 4.12% for CT3D-MF, where we
extend the open-sourced codes of CT3D [22] to a multi-frame version CT3D-MF
by using the point concatenation strategy. Considering that CT3D is a high-
performance method, where both the features of raw LiDAR point and proposals
from region proposal network are employed, we think it is suitable as a baseline
to evaluate the temporal impact from multi-frame points and 3D proposals.

As demonstrated in Table 2, MPPNet can effectively integrate temporal in-
formation in point cloud sequences to improve detection accuracy. Specifically,
MPPNet achieves significantly gains compared to single-frame detectors, which
verifies that our approach successfully exploits temporal information for more
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Table 2. Performance comparison on the validation set of Waymo Open Dataset.
† indicates the method implemented by us. The Centerpoint with 4-frame input is
adopted as MPPNet’s 1st-stage.

ALL (3D APH) VEH (3D AP/APH) PED(3D AP/APH) CYC(3D AP/APH)
Method Frames

L1 L2 L1 L2 L1 L2 L1 L2

SECOND [36] 1 63.05 57.23 72.27/71.69 63.85/63.33 68.70/58.18 60.72/51.31 60.62/59.28 58.34/57.05
PointPillar [12] 1 63.33 57.53 71.60/71.00 63.10/62.50 70.60/56.70 62.90/50.20 64.40/62.30 61.90/59.90
LiDAR R-CNN [13] 1 66.20 60.10 73.50/73.00 64.70/64.20 71.20/58.70 63.10/51.70 68.60/66.90 66.10/64.40
RSN [28] 1 - - 75.10/74.60 66.00/65.50 77.80/72.70 68.30/63.70 - -
Pyramid [16] 1 - - 76.30/75.68 67.23/66.68 - - - -
PV-RCNN [23] 1 69.63 63.33 77.51/76.89 68.98/68.41 75.01/65.65 66.04/57.61 67.81/66.35 65.39/63.98
Part-A2 [26] 1 70.25 63.84 77.05/76.51 68.47/67.97 75.24/66.87 66.18/58.62 68.60/67.36 66.13/64.93
Centerpoint [40] 1 - 65.50 - -/66.20 - -/62.60 - -/67.60
CT3D [22] 1 - - - 69.04/- - - - -
PV-RCNN++ [24] 1 75.21 68.61 79.10/78.63 70.34/69.91 80.62/74.62 71.86/66.30 73.49/72.38 70.70/69.62

3D-MAN [39] 16 - - 74.53/74.03 67.61/67.14 - - - -
† Centerpoint [40] 4 74.88 69.38 76.71/76.17 69.13/68.63 78.88/75.55 71.73/68.61 73.73/72.96 71.63/70.89
† CT3D-MF [22] 12 - - 79.30/78.82 71.82/70.84 - - - -
† CT3D-MF [22] 16 - - 79.04/78.55 71.14/70.68 - - - -
MPPNet (Ours) 4 79.83 74.22 81.54/81.06 74.07/73.61 84.56/81.94 77.20/74.67 77.15/76.50 75.01/74.38
MPPNet (Ours) 16 80.40 74.85 82.74/82.28 75.41/74.96 84.69/82.25 77.43/75.06 77.28/76.66 75.13/74.52

accurately estimating the 3D bounding boxes of some difficult cases in single-
frame setting. Moreover, MPPNet still performs much better than state-of-the-
art multi-frame 3D detector 3D-MAN [39] when utilizing the same input length
of point cloud sequences, indicating that our three-hierarchy design can aggre-
gate spatial-temporal information more thoroughly to benefit 3D detection.

In addition, we also provide the performance of MPPNet with short sequence
input. It can be seen that even with 4-frame input, our method still has advan-
tages over both single-frame and multi-frame methods, improving 3.7% over PV-
RCNN++ [24] and 2.77% over CT3D-MF [22] in terms of 3D mAPH (LEVEL 2)
of the vehicle class. Note that 3D-MAN [39], a representative detection algorithm
that can handle long sequence inputs, uses a low-performance PointPillar [12] as
their 1st-stage single-frame detection model. For fair comparison with 3D-MAN,
we also adopt a 1st-stage model that has similar performance with theirs then
we extend the model with 4-frame input to get the speed for trajectory genera-
tion. Table 4 demonstrates that MPPNet achieves better results than 3D-MAN.
Our proposed MPPNet greatly improves the L2 mAPH of single-frame RPN
by 16.26%, which indicates that our MPPNet can extract useful information
to benefit the detection even with the noisy input trajectories. Moreover, when
employing a higher-performance single-frame detection model, the performance
of our MPPNet can be further improved.
Waymo Testing Set.We also evaluate our method on the testing set of Waymo
dataset to further validate the generalization of our approach. As shown in Ta-
ble 3, our approach achieves much better performance than both the state-of-the-
art single-frame method [24] and multi-frame methods [40, 39] by large margins.
Note that we do not use test-time augmentations and model ensemble.

4.3 Ablation Studies

We conduct comprehensive ablation studies to verify the effectiveness of each
component of MPPNet. To save the training cost, unless otherwise mentioned,
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Table 3. Performance comparison on the testing set of Waymo Open Dataset.

ALL (3D APH) VEH (3D AP/APH) PED(3D AP/APH) CYC(3D AP/APH)
Method Frames

L1 L2 L1 L2 L1 L2 L1 L2

StarNet [17] 1 - - 61.50/61.00 54.90/54.50 67.80/59.90 61.10/54.00 - -
PointPillar [12] 1 - - 68.60/68.10 60.50/60.10 68.00/55.50 61.40/50.10 - -
CenterPoint [40] 1 - - 80.20/79.70 72.20/71.80 78.30/72.10 72.20/66.40 - -
PV-RCNN++ [24] 1 75.65 70.21 81.62/73.86 81.20/73.47 80.41/74.12 74.99/69.00 71.93/69.28 70.76/68.15

RSN [28] 3 - - 80.70/80.30 71.90/71.60 78.90/75.60 70.70/67.80 - -
Centerpoint [40] 2 77.18 71.93 81.05/80.59 73.42/72.99 80.47/77.28 74.56/71.52 74.60/73.68 72.17/71.28
PV-RCNN Ens [23] 2 76.90 71.52 81.06/80.57 73.69/73.23 80.31/76.28 73.98/70.16 75.10/73.84 72.38/71.16
Pyramid [16] 2 - - 81.77/81.32 74.87/74.43 - - - -
3D-MAN [39] 16 - - 78.71/78.28 70.37/69.98 69.97/65.98 63.98/60.26 - -
MPPNet (Ours) 16 80.59 75.67 84.27/83.88 77.29/76.91 84.12/81.52 78.44/75.93 77.11/76.36 74.91/74.18

Table 4. Performance comparison with
3D-MAN [39], where ES and FT indicate
early-stop and fully-trained models.

Method Frames mAPH@L2

PointPillar 1 54.69
PointPillar-ES 1 55.13
PointPillar-FT 1 64.37

3D-MAN w/ PointPillar 16 67.14 (+12.45)
Ours w/ PointPillar-ES 16 71.39 (+16.26)
Ours w/ PointPillar-FT 16 72.90 (+8.53)

Table 5. Effects of the input trajectory
length. All experiments adopt the Cen-
terPoint [40] as RPN by training with
6 epochs for saving the training cost.

Method CT3D-MF MPPNet

4-frame 70.19 72.63
8-frame 70.71 (+0.52) 73.22 (+0.59)
12-frame 70.84 (+0.65) 73.55 (+0.92)
16-frame 70.68 (+0.49) 73.81 (+1.18)

all ablation experiments of MPPNet are trained on the vehicle category for 3
epochs by taking four-frame point cloud as input. We take the mAPH (LEVEL
2) as the default metric for comparison. The results are shown in Table 6.
Effects of the input length of trajectory and boxes’ embedding. Table 5
verifies the ability of MPPNet to aggregate multi-frame temporal information
from the trajectories with different lengths. We observe that CT3D-MF [22]
achieves the best performance when processing 12-frame sequences, demonstrat-
ing that it has relatively better temporal modeling capabilities than Center-
Point [40] but still struggles at handling longer sequences (e.g. 16 frames). In
contrast, our MPPNet can constantly improve the performance by taking longer
sequences (i.e., from 4 to 16 frames) as input, which demonstrates the effec-
tiveness of our proxy point based three-hierarchy model for multi-frame feature
encoding and interaction. In addition, removing the boxes’ embedding leads to
a slight performance drop of −0.1% (see the last row of Table 6).
Effects of proxy points. We investigate the importance of the proposed proxy
points by comparing with a baseline that directly use raw LiDAR points. Con-
sidering that the raw LiDAR points are unordered, we first replace 3D MLP
Mixer with a self-attention module for intra-group feature fusion, and then we
employ 128 LiDAR points’ feature as the representation of each proposal for
the multi-frame feature interaction. The 2rd and 3th rows of Table 6 show that
removing the proxy point substantially decreases the performance by 1.95%.
It demonstrates that our proposed proxy points can provide consistent repre-
sentations for different frames and greatly benefit feature propagation among
all the frames, while directly aggregating temporal features from the unordered
point clouds is very less effective. Moreover, we explore the effects of different
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Table 6. Effects of different components in our proposed framework, where the first
row is our MPPNet with 4-frame sequences and default settings for comparison.

Boxes’s
Embedding

Multi-frame Feature Fusion
Proxy Point

Per-frame Feature
Encoding Intra Inter

mAPH@L2

✓ ✓ Geometry+Motion 3D MLP Mixer Cross-Attn 73.08

× ✓ Geometry+Motion Self-Attn Cross-Attn 71.13 (-1.95)
✓ ✓ Geometry+Motion Self-Attn Cross-Attn 72.71 (-0.37)
✓ ✓ Geometry 3D MLP Mixer Cross-Attn 72.78 (-0.30)
✓ ✓ Integrated 3D MLP Mixer Cross-Attn 72.89 (-0.19)
✓ ✓ Geometry+Motion 3D MLP Mixer × 72.36 (-0.72)
✓ ✓ Geometry+Motion 3D MLP Mixer Cross-Attn w/o PE 72.97 (-0.11)
✓ ✓ Geometry+Motion 3D MLP Mixer Cross-Attn w/o Sum. 72.95 (-0.13)
✓ × Geometry+Motion 3D MLP Mixer Cross-Attn 72.98 (-0.10)

numbers of proxy points in Table 7. Here we observe that a smaller number
of proxy points (i.e., 27 = 33) degrades the performance by −0.54% since the
too few proxy points cannot finely represent the geometric details of objects,
while adopting more proxy points (i.e., 64 and 125) achieves similar perfor-
mance but more proxy points lead to more computations. Hence our MPPNet
adopts 64 = 4× 4× 4 proxy points as a trade-off.

Effects of intra-group feature mixing. We adopt different designs to inves-
tigate the effectiveness of our proposed 3D MLP Mixer for intra-group feature
mixing. As shown in the 3rd row of Table 6, we replace the proposed 3D MLP
Mixer by a standard self-attention module [30], which results in a 0.37% perfor-
mance drop compared with the 1st row. It demonstrates that the information
propagation manner in 3D MLP Mixer is better for intra-group feature fusion.

Effects of inter-group feature interaction. By comparing 1st and 6th rows
of Table 6, we observe that the performance drops a lot (−0.72%) after remov-
ing the inter-group feature attention module. It demonstrates that the inter-
actions among different groups are essential for achieving accurate detection,
since the model can better integrate multi-view information from the whole
3D trajectory. Moreover, we also provide two variants of the proposed cross-
attention module to verify the effectiveness of our design. For the first variant,
we remove our proposed index-based position embedding in the cross attention,
and by comparing 1st and 7th rows of Table 6 we observe that the proposed
index-based position embedding brings 0.11% performance gain. Meanwhile, in
another variant of inter-group cross-attention, we use each group’s features as
query (N ×D) to aggregate features from the concatenation of all other groups’
features (((S−1)×N)×D), rather than using the all-group summarization, and
the 1st and 8th rows of Table 6 show that the performance drops a bit (-0.13%).

Effects of decoupled encoding for geometry and motion Feature. As
shown in the 4th and 5th rows of Table 6, without motion encoding, MPPNet
suffers from a performance drop by −0.3%, suggesting that motion information is
beneficial for state estimation of objects from point cloud sequences. Meanwhile,
compared with our proposed decoupled encoding strategy, the integrated encod-
ing manner by attaching a per-frame time encoding to each LiDAR point will
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Table 7. Effects of different numbers of
proxy points in our MPPNet. n × n ×
n proxy points are uniformly sampled
within each proposal box.

# (Proxy Point) mAPH@L2

3 × 3 × 3 72.54
4 × 4 × 4 73.08
5 × 5 × 5 72.98

Table 8. Effects of trajectory augmenta-
tion, intermediate supervision and group-
ing strategy. The upper part investigates
the training strategy with 4-frame input,
while the lower part explores the grouping
strategy with 16-frame input.

Training
Strategy

MPPNet w/o Traj. Aug w/o Int. Loss
73.08 72.62 (-0.46) 72.47 (-0.61)

Grouping
Strategy

Stride 4 Stride 1 -
74.21 74.06 -

degrade the performance by −0.19%, which proves that the decoupled feature
encoding strategy is beneficial for the network’s feature learning.
Effects of trajectory augmentation and intermediate supervision. The
top part of Table 8 shows that the performance drops by −0.46% without data
augmentation, and drops by −0.61% without the intermediate supervisions. We
consider that the intermediate loss can help the network to gradually optimize
and refine the features by supervising them after each block.
Effects of clip grouping strategy. We investigate different grouping strate-
gies’ impact with 16-frame input. As shown in the bottom part of Table 7, when
setting stride to 4 to form the groups, e.g., {1, 5, 9, 13} (denoted as ‘stride 4’),
the network achieves better results than using temporal stride 1 to form every
group, e.g., {1, 2, 3, 4} (denoted as ‘stride 1’).

5 Conclusions

In this work, we present a two-stage 3D detection framework MPPNet, adopt-
ing a series of novel proxy points to integrate multi-frame features for 3D ob-
ject detection. With the inherently aligned proxy points, MPPNet encodes the
per-frame object geometry and motion features in an decoupled manner then
they are deeply interacted through our proposed intra-group feature mixing and
inter-group feature attention, which effectively propagate the features among the
per-frame proxy points in the whole trajectory to perform more accurate 3D de-
tection. The experiments on large-scale Waymo Open dataset demonstrate that
our approach captures better multi-view features from the point cloud sequences
and outperforms state-of-the-art methods with remarkable margins.
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