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1 Pairwise Ranking Error

In this section, we will prove the second equality of Definition 2 of our main
paper.

Rc = Px′∼D¬c,x∼Dc
(sx(x) < sc(x

′)))

= 1− Ex′∼D¬c
[Px∼Dc

(sx(x) > sc(x
′)))]

= Ex′∼D¬c
[1− rc(sc(x

′))]

=

∫ 1

0

Px′∼D¬c(rc(sc(x
′)) < β)︸ ︷︷ ︸

=g(β)

dβ = τ.

where the definition of g is

g(β) = Px′∼D¬c

(
sc(x

′) > r−1
c (β)

)
= Px′∼D¬c

(rc(sc(x
′)) < β) .

The above derivation connects the ranking error to g and the recall.

2 AP - Pairwise Ranking Error Bound

In this section, we will prove Theorem 2 of our main paper. We first derive

the and lower bounds to the variational objective
∫ 1

0
x

x+αg(x)dx under constraint∫ 1

0
g(x)dx = τ for a function g(x) ≥ 0. The AP bounds then directly reduce to

the variational objective.

Lemma 1. Consider the following variational problem

minimizeg

∫ 1

0

x

x+ αg(x)
dx

subject to

∫ 1

0

g(x)dx = τ

g(x) ≥ 0

The solution to this problem is

max

(
1−

√
2

3
ατ,

4

9

1
1
2 + ατ

)
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Proof. Consider the associated Euler-Lagrangian equation:

L(x, v(x), λ) =

∫ 1

0

x

x+ αv(x)2
dx+ λ

(∫ 1

0

v(x)2dx− τ

)

where g(x) = v(x)2 for the non-negativity constraint. To solve for minima

d

dv(x)
L(x, v(x), λ) = − αxv(x)

(x+ αv(x)2)2
+ λv(x) = 0

v(x)αx = λv(x)(x+ αv(x)2)2

=⇒ v(x) = 0 or x+ αv(x)2 =

√
xα

λ
=

√
x

√
α

λ

=⇒ v(x)2 = max

(
0,

√
x

αλ
− x

α

)
= 1[x≤α

λ ]

(√
x

αλ
− x

α

)

=⇒
∫ 1

0

αv(x)2dx = ατ =

∫ 1

0

1[x≤α
λ ]

(√
αx

λ
− x

)
dx

=

∫ κ

0

(√
αx

λ
− x

)
dx =

2

3
κ

3
2

√
α

λ
− κ2

2

where κ = min(1, α
λ ). For κ = 1:

ατ =
2

3

√
α

λ
− 1

2
=⇒

√
α

λ
=

3

2

(
ατ +

1

2

)
=⇒ x+ αv(x)2 =

√
x

√
α

λ
=

√
x
3

2

(
ατ +

1

2

)
=⇒

∫ 1

0

x

x+ αv(x)2
dx =

∫ 1

0

x
√
x 3
2 (ατ + 1

2 )
dx =

∫ 1

0

√
xdx

1
3
2 (

1
2 + ατ)

=
4

9

1
1
2 + ατ



Long-tail Detection with Effective Class-Margins 3

For κ < 1:

ατ =
2

3

(
α

λ

) 3
2
√

α

λ
− 1

2

(
α

λ

)2

=
1

6

(
α

λ

)2

=⇒ λ =
1

6

√
α

τ

=⇒
∫ 1

0

x

x+ αv(x)2
dx =

∫ κ

0

x√
αx
λ

dx+

∫ 1

κ

x

x+ 0
dx

=

√
λ

α

∫ κ

0

√
xdx+

∫ 1

κ

dx

=
2

3

√
λ

α
κ

3
2 + 1− κ

=
2

3

√
λ

α

(
α

λ

) 3
2

+ 1− α

λ

= 1− 1

3

α

λ

= 1−
√

2

3
ατ

Each case yields on lower bound, hence the combined lower bound is

max

(
1−

√
2

3
ατ,

4

9

1
1
2 + ατ

)
⊓⊔

Bonus: The two bounds meet at 2
3 :

4

9

1
1
2 + ατ

= 1−
√

2

3
ατ =

2

3
for ατ =

1

6
.

Lemma 2. Consider the following variational problem

maximizeg

∫ 1

0

x

x+ αg(x)
dx

subject to

∫ 1

0

g(x)dx = τ

g(x) ≥ 0

Proof. First, let us re-formulate the problem as following

minimizeg

∫ 1

0

αg(x)

x+ αg(x)
dx

subject to

∫ 1

0

g(x)dx = τ

g(x) ≥ 0
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Without the equality constraint
∫ 1

0
g(x)dx = τ , the objective is minimized at

g(x) = 0 for all x ∈ [0, 1]. The equality constraint assigns certain values g(x)
a positive mass. The optimal solution will assign g(x) = 0 for x < 1 − τ , and
g(x) = 1 for x ≥ 1 − τ . To see this, consider a value g(x1) =

ϵ
α for x1 < 1 − τ

and one or move values g(x2) ≤ 1− ϵ
α for x2 > 1−τ . Here, a solution ĝ(x1) = 0

and ĝ(x2) = g(x2) +
ϵ
α has a lower objective

∆ =

(
αg(x1)

x1 + αg(x1)
+

αg(x2)

x2 + αg(x2)

)
−
(

αĝ(x1)

x1 + αĝ(x1)
+

αĝ(x2)

x2 + αĝ(x2)

)
=

(
αg(x1)

x1 + αg(x1)
+

αg(x2)

x2 + αg(x2)

)
− αg(x2) + ϵ

x2 + αg(x2) + ϵ

=
ϵ

x1 + ϵ
− ϵx2

(x2 + αg(x2))(x2 + αg(x2) + ϵ)
> 0

Here ∆ > 0 and the new objective is lower since x2 + αg(x2) > x2 and x2 > x1

thus (x2 + αg(x2))(x2 + αg(x2) + ϵ) > x2(x1 + ϵ).
Thus the zero-mass region should be where x is low as lower x increases the

objective. Hence, the optimality will happen when g(x) = 0 for x ∈ [0, 1−τ ], and
g(x) = 1 for x ∈ [1− τ, 1]. Thus:∫ 1

1−τ

α

α+ x
dx = α

∫ 1

1−τ

1

α+ x
dx = α(log(1 + α)− log(1− τ + α))

= −α log

(
1− τ

1 + α

)

=⇒ max
g

∫ 1

0

x

x+ αg(x)
dx = 1 + α log

(
1− τ

1 + α

)
which concludes the proof. ⊓⊔
Lemma 1 and Lemma 2 for the bounds to the AP.

Theorem 1. Average Precision can be bounded from above and below as follow-
ing

1 + αc log

(
1− Rc

1 + αc

)
≥ APc ≥ max

(
1−

√
2

3
αcRc,

8

9

1

1 + 2αcRc

)
(1)

Proof. Let us recap the definitions of AP and R:

APc =

∫ 1

0

β

β + αcPx∼D¬c
(sc(x) > r−1

c (β))
dβ

=

∫ 1

0

β

β + αc Px∼D¬c(rc(sc(x)) < β)︸ ︷︷ ︸
=g(β)

dβ

Rc =

∫ 1

0

Px′∼D¬c
(rc(sc(x

′)) < β)︸ ︷︷ ︸
=g(β)

dβ = τ
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where the second line of APc is because rc is strictly monotonously decreas-
ing. With x = β and g(x) = Px∼D¬c

(rc(sc(x)) < β), Lemma 1 and Lemma 2
are directly applicable for a function 0 ≤ g(x) ≤ 1 with a fixed Rc = τ . The
corresponding upper and lower bounds of LDet

c in the main paper is a direct con-
sequence of this theorem since LDet

c = 1−APc. ⊓⊔

3 Optimal Margins

Similar to Cao et al. [2], we aim to find optimal binary margins γ+ and γ− under
separability condition. This reduces the problem into following:

minimizeγ+,γ−

1

γ+

√
1

n+
+

1

γ−

√
1

n−
(2)

subject to γ+ + γ− = 1 (3)

Here the constraint is due to the fact that s−(x) = 1− s+(x) in binary case and
thus γ− = 1− γ+. Solving the constrained optimization problem

L(γ+, γ−, λ) =
1

γ+

√
1

n+
+

1

γ−

√
1

n−
+ λ(γ+ + γ− − 1) (4)

=⇒ ∂

∂γ+
L(γ+, γ−, λ) = − 1

γ+2

√
1

n+
+ λ = 0 (5)

=⇒ γ+ =

√
n+

− 1
2

λ
, γ− =

√
n−

− 1
2

λ
(6)

=⇒ ∂

∂λ
L(γ+, γ−, λ) = γ+ + γ− − 1 = 0 (7)

=⇒ γ+ + γ− =

√
n+

− 1
2

λ
+

√
n−

− 1
2

λ
= 1 (8)

=⇒
√
λ =

√
n+

− 1
2 +

√
n−

− 1
2

1
(9)

=⇒ γ+ =
n+

− 1
4

n+
− 1

4 + n−
− 1

4

=
n−

1
4

n+
1
4 + n−

1
4

(10)

γ− =
n−

− 1
4

n+
− 1

4 + n−
− 1

4

=
n+

1
4

n+
1
4 + n−

1
4

(11)

which are as desired. The exact same process can be repeated for each class
c ∈ C and we will have our Effective Class-Margins. ⊓⊔
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4 Surrogate Scoring Function

In this section, we will justify the choice of our surrogate scoring function.

ŝc(x) =
w+

c e
f(x)c

w+
c ef(x)c + w−

c e−f(x)c
(12)

The decision boundary is then

ŝc(x) = ŝ¬c(x) = 1− ŝc(x) (13)

=⇒ w+
c e

f(x)c

w+
c ef(x)c + w−

c e−f(x)c
=

w−
c e

−f(x)c

w+
c ef(x)c + w−

c e−f(x)c
(14)

=⇒ logw+
c + f(x)c = logw−

c − f(x)c (15)

=⇒ f(x)c =
1

2
(logw−

c − logw+
c ) (16)

In the unweighted sigmoid function, this point will lie at

sc(x) =
ef(x)c

ef(x)c + e−f(x)c
(17)

=
e

1
2 (logw−

c −logw+
c )

e
1
2 (logw−

c −logw+
c ) + e

1
2 (logw+

c −logw−
c )

(18)

=

√
w−

c

w+
c√

w−
c

w+
c
+
√

w+
c

w−
c

=

√
γ+
c

γ−
c√

γ+
c

γ−
c
+
√

γ−
c

γ+
c

=
γ+
c

γ+
c + γ−

c
(19)

= γ+
c (20)

=⇒ s¬c(x) = γ−
c (21)

since γ+
c + γ−

c = 1. Hence, we have shown that our surrogate scoring function
with effective class-margins shifts the decision boundary of sigmoid function to
γ+
c and γ−

c as desired. ⊓⊔

5 Margins vs Weights vs Gradients

In this section, we provide more intuitions about the relationship between mar-
gins, weights, and gradients. The gradient of positive and negative samples with
ECM Loss is the following:

∂

∂f(x)c
ℓECM(x, y) =

2w¬ce
f(x)¬c

wcef(x)c + w¬cef(x)¬c
∝ w¬c =

1

γ¬c
∝ n¬c (22)

∂

∂f(x)¬c
ℓECM(x, y) =

2wce
f(x)c

wcef(x)c + w¬cef(x)¬c
∝ wc =

1

γc
∝ nc (23)

where we omit detection weightmc for simplicity. The positive gradient is greater
for rare classes (higher n¬c) compared to frequent classes, whereas the negative
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Fig. 1: Visualization of the positive and negative gradients from ECM Loss with
different positive and negative samples ratios.
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Fig. 2: Visualization of the positive and negative margins and weights as a func-
tion of the sample ratio αc.

gradient is lower. This coincides with the intuitions from prior works based
on heuristics or indirect measure of a model. Below, we show visualization of
positive and negative gradients as a function of logit with different positive and
negative ratios ac =

n¬c

nc
. In Figure 1, low a means frequent classes whereas high

a means rare classes. Our surrogate scoring function ŝc balances the gradient
values based on the frequency of each class. Frequent classes get lower positive
gradient and higher negative gradient (red in 1) whereas rare classes get higher
positive gradient and lower negative gradient (blue in 1). In Figure 2, we further
visualize the relationship between the positive and negative margins and weights
as a function of the ratio αc.

In Figure 3, we visualize the computed weights for our scoring function ŝc in
Equation (11) of the main paper for w+

c (left) and w−
c (right).
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Fig. 3: Visualization of the computed the positive and negative weights used in
our scoring function ŝc for each class c ∈ C. The prior distribution is from LVIS
v1 training annotations over 1203 classes. The weights are sorted in ascending
order and background probability is measured with Mask R-CNN with ResNet-
50 backbone.

6 Implementation Details

In this section, we will discuss details of the experiments and implementation.

Background count. We empirically measure the frequency of background sam-
ples as a ratio of foreground and background samples within a batch, r, in the
classification layer of a detector during the first few iterations. This ratio will
then be used to derive dataset-level count of background samples as

nbg = r
∑
c∈C

nc (24)

where nc is the number of positive samples of class c in the training dataset.
Then, we compute the sample count of each class with background as

n+
c = nc (25)

n−
c =

( ∑
c′∈C∪{bg}

nc′

)
− nc (26)

and use it to compute the effective class-margins. For one-stage detectors, we
only count for foreground classes as foreground and background imbalance is
managed from focal weight [9].

Two-stage detectors. We train two-stage instance segmentation models based
on Mask R-CNN [6] and Cascade Mask R-CNN [1] with various backbones,
ResNet-50 and ResNet-101 [7] with Feature Pyramid Network [8] pretrained
on ImageNet-1K [4], Swin Transformer [10] pretrained on ImageNet-21K with
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224x224 image resolution. We train with for 12 or 24 epochs with Repeated
Factor Sampler (RFS) [5] on a 1× or 2× schedule respectively. For CNN back-
bones, we use the SGD optimizer with 0.9 momentum, initial learning rate of
0.02, weight decay of 0.0001, with step-wise scheduler decaying learning rate by
0.1 after 8 and 11 epochs for 1x, and 20 and 22 epochs for 2x, and batch size
of 16 on 8 GPUs. Please note that the baseline methods are trained with their
optimal learning rate schedule with decaying schedule of 16 and 22 epochs. For
example, Mask R-CNN with ResNet-50 trained with Seesaw Loss [12] on decay-
ing schedule of 20 and 22 epochs result with 26.7 mAPsegm and 26.9 mAPbbox,
whereas decaying schedule of 16 and 22 (default) result with 26.7 mAPsegm and
27.3 mAPbbox. For Transformer backbones, we use the AdamW optimizer with
an initial learning rate of 0.00005, beta set to (0.9, 0.999), weight decay of 0.05,
with Cosine-annealing scheduler. For all our models, we follow the standard data
augmentation during training: random horizontal flipping and multi-scale image
resizing to fit the shorter side of image to (640, 672, 704, 736, 768, 800) at random,
and the longer side kept smaller than 1333. For Swin Transformer, we use a larger
range of scale of the short side of image from 480 to 800. For two-stage detectors,
we normalize the classification layers with temperature τ = 20 for both box and
mask classifications, and apply foreground calibration as post-process following
prior practices [3,12,15]. LVIS has more instances than COCO. We thus increase
the per-image detection limit to 300 from 100 and set the confidence threshold to
0.0001. This is common practice in LVIS [5]. For OpenImages, we train Cascade
R-CNN with ResNet-50 backbone following the baseline and experimental setup
of Zhou et al. [16]. All models in this experiment were trained for 180k iterations
with a class-aware Sampler.

One-stage detectors. For one-stage detectors, Focal Loss [9] is the standard
choice of the loss function. It effectively diminishes loss values for “easy” samples
such as the background. In this experiment, we test the compatibility of our
method with Focal weights. Specifically, we apply the computed focal weights
to our ECM Loss. Instead of a binary cross-entropy on the surrogate scoring
function ŝ, we use the focal loss. We use a number of popular one-stage detectors:
FCOS [11], ATSS [14] and VarifocalNet [13]. Each method uses either Focal Loss
or a variant [13]. We use the default hyperparameter for all types of focal weights:
γ = 2, α = 0.25 for Focal Loss, γ = 2 and α = 0.75 for Varifocal Loss [13]. In LVIS
v1.0 models expect to see more instances. We thus double the per-pyramid level
number of anchor candidates from 9 to 18 for ATSS and VarifocalNet. Similar to
2-stage detectors, we increased per-image detection to 300 and set the confidence
threshold to 0.0001. We train on ResNet-50 and ResNet-101 backbones for 12
epochs for 1x and 24 epochs for 2x, batch size of 16 on 8 GPUs. We set the
learning rate to be 0.01 which was the optimal learning rate for the baselines.
For all other settings, we follow the two-stage experiments.
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