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Fig. 1. BEVFormer leverages queries to lookup spatial/temporal space and aggregate
spatiotemporal information correspondingly, hence benefiting stronger representations
for perception tasks.

Abstract. 3D visual perception tasks, including 3D detection and
map segmentation based on multi-camera images, are essential for au-
tonomous driving systems. In this work, we present a new framework
termed BEVFormer, which learns unified BEV representations with
spatiotemporal transformers to support multiple autonomous driving
perception tasks. In a nutshell, BEVFormer exploits both spatial and
temporal information by interacting with spatial and temporal space
through predefined grid-shaped BEV queries. To aggregate spatial in-
formation, we design spatial cross-attention that each BEV query ex-
tracts the spatial features from the regions of interest across camera
views. For temporal information, we propose temporal self-attention to
recurrently fuse the history BEV information. Our approach achieves
the new state-of-the-art 56.9% in terms of NDS metric on the nuScenes
test set, which is 9.0 points higher than previous best arts and on par
with the performance of LiDAR-based baselines. The code is available
at https://github.com/zhiqi-li/BEVFormer.
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1 Introduction

Perception in 3D space is critical for various applications such as autonomous
driving, robotics, etc. Despite the remarkable progress of LiDAR-based meth-
ods [41,20,52,48,8], camera-based approaches [43,30,45,28] have attracted exten-
sive attention in recent years. Apart from the low cost for deployment, cameras
own the desirable advantages to detect long-range distance objects and identify
vision-based road elements (e.g., traffic lights, stoplines), compared to LiDAR-
based counterparts.

Visual perception of the surrounding scene in autonomous driving is expected
to predict the 3D bounding boxes or the semantic maps from 2D cues given by
multiple cameras. The most straightforward solution is based on the monocular
frameworks [43,42,29,33,3] and cross-camera post-processing. The downside of
this framework is that it processes different views separately and cannot capture
information across cameras, leading to low performance and efficiency [30,45].

As an alternative to the monocular frameworks, a more unified framework
is extracting holistic representations from multi-camera images. The bird’s-eye-
view (BEV) is a commonly used representation of the surrounding scene since it
clearly presents the location and scale of objects and is suitable for various au-
tonomous driving tasks, such as perception and planning [27]. Although previous
map segmentation methods demonstrate BEV’s effectiveness [30,18,27], BEV-
based approaches have not shown significant advantages over other paradigm
in 3D object detections [45,29,32]. The underlying reason is that the 3D object
detection task requires strong BEV features to support accurate 3D bounding
box prediction, but generating BEV from the 2D planes is ill-posed. A popu-
lar BEV framework that generates BEV features is based on depth informa-
tion [44,30,32], but this paradigm is sensitive to the accuracy of depth values
or the depth distributions. The detection performance of BEV-based methods is
thus subject to compounding errors [45], and inaccurate BEV features can seri-
ously hurt the final performance. Therefore, we are motivated to design a BEV
generating method that does not rely on depth information and can learn BEV
features adaptively rather than strictly rely on 3D prior. Transformer, which uses
an attention mechanism to aggregate valuable features dynamically, meets our
demands conceptually.

Another motivation for using BEV features to perform perception tasks
is that BEV is a desirable bridge to connect temporal and spatial space. For
the human visual perception system, temporal information plays a crucial role
in inferring the motion state of objects and identifying occluded objects, and
many works in vision fields have demonstrated the effectiveness of using video
data [2,25,24,31,19]. However, the existing state-of-the-art multi-camera 3D de-
tection methods rarely exploit temporal information. The significant challenges
are that autonomous driving is time-critical and objects in the scene change
rapidly, and thus simply stacking BEV features of cross timestamps brings extra
computational cost and interference information, which might not be ideal. In-
spired by recurrent neural networks (RNNs) [17,10], we utilize the BEV features
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to deliver temporal information from past to present recurrently, which has the
same spirit as the hidden states of RNN models.

To this end, we present a transformer-based bird’s-eye-view (BEV) encoder,
termed BEVFormer, which can effectively aggregate spatiotemporal features
from multi-view cameras and history BEV features. The BEV features generated
from the BEVFormer can simultaneously support multiple 3D perception tasks
such as 3D object detection and map segmentation, which is valuable for the
autonomous driving system. As shown in Fig. 1, our BEVFormer contains three
key designs, which are (1) grid-shaped BEV queries to fuse spatial and temporal
features via attention mechanisms flexibly, (2) spatial cross-attention module to
aggregate the spatial features from multi-camera images, and (3) temporal self-
attention module to extract temporal information from history BEV features,
which benefits the velocity estimation of moving objects and the detection of
heavily occluded objects, while bringing negligible computational overhead. With
the unified features generated by BEVFormer, the model can collaborate with
different task-specific heads such as Deformable DETR [54] and mask decoder
[22], for end-to-end 3D object detection and map segmentation.

Our main contributions are as follows:
• We propose BEVFormer, a spatiotemporal transformer encoder that

projects multi-camera/timestamp input to BEV representations. With the uni-
fied BEV features, our model can simultaneously support multiple autonomous
driving perception tasks, including 3D detection and map segmentation.

• We designed learnable BEV queries along with a spatial cross-attention
layer and a temporal self-attention layer to lookup spatial features from cross
cameras and temporal features from history BEV, respectively, and then aggre-
gate them into unified BEV features.

• We evaluate the proposed BEVFormer on multiple challenging bench-
marks, including nuScenes [4] and Waymo [38]. Our BEVFormer consistently
achieves improved performance compared to the prior arts. For example, un-
der a comparable parameters and computation overhead, BEVFormer achieves
56.9% NDS on nuScenes test set, outperforming previous best detection method
DETR3D [45] by 9.0 points (56.9% vs. 47.9%). For the map segmentation task,
we also achieve the state-of-the-art performance, more than 5.0 points higher
than Lift-Splat [30] on the most challenging lane segmentation. We hope this
straightforward and strong framework can serve as a new baseline for following
3D perception tasks.

2 Related Work

Transformer-based 2D perception. Recently, a new trend is to use trans-
former to reformulate detection and segmentation tasks [7,54,22]. DETR [7] uses
a set of object queries to generate detection results by the cross-attention de-
coder directly. However, the main drawback of DETR is the long training time.
Deformable DETR [54] solves this problem by proposing deformable attention.
Different from vanilla global attention in DETR, the deformable attention in-
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teracts with local regions of interest, which only samples K points near each
reference point and calculates attention results, resulting in high efficiency and
significantly shortening the training time. The deformable attention mechanism
is calculated by:

DeformAttn(q, p, x) =

Nhead∑
i=1

Wi

Nkey∑
j=1

Aij · W ′
ix(p+∆pij), (1)

where q, p, x represent the query, reference point and input features, respectively.
i indexes the attention head, and Nhead denotes the total number of attention
heads. j indexes the sampled keys, and Nkey is the total sampled key number for
each head. Wi∈RC×(C/Hhead) and W ′

i ∈R(C/Hhead)×C are the learnable weights,
where C is the feature dimension. Aij ∈ [0, 1] is the predicted attention weight,

and is normalized by
∑Nkey

j=1 Aij = 1. ∆pij ∈R2 are the predicted offsets to the
reference point p. x(p+∆pij) represents the feature at location p+∆pij , which
is extracted by bilinear interpolation as in Dai et al. [12]. In this work, we extend
the deformable attention to 3D perception tasks, to efficiently aggregate both
spatial and temporal information.
Camera-based 3D Perception. Previous 3D perception methods typically
perform 3D object detection or map segmentation tasks independently. For the
3D object detection task, early methods are similar to 2D detection methods
[1,26,47,37,51], which usually predict the 3D bounding boxes based on 2D bound-
ing boxes. Wang et al. [43] follows an advanced 2D detector FCOS [39] and
directly predicts 3D bounding boxes for each object. DETR3D [45] projects
learnable 3D queries in 2D images, and then samples the corresponding fea-
tures for end-to-end 3D bounding box prediction without NMS post-processing.
Another solution is to transform image features into BEV features and predict
3D bounding boxes from the top-down view. Methods transform image features
into BEV features with the depth information from depth estimation [44] or
categorical depth distribution [32]. OFT [34] and ImVoxelNet [35] project the
predefined voxels onto image features to generate the voxel representation of the
scene. Recently, M2BEV [46] futher explored the feasibility of simultaneously
performing multiple perception tasks based on BEV features.

Actually, generating BEV features from multi-camera features is more exten-
sively studied in map segmentation tasks [30,28]. A straightforward method is
converting perspective view into the BEV through Inverse Perspective Mapping
(IPM) [33,5]. In addition, Lift-Splat [30] generates the BEV features based on
the depth distribution. Methods [28,16,9] utilize multilayer perceptron to learn
the translation from perspective view to the BEV. PYVA [49] proposes a cross-
view transformer that converts the front-view monocular image into the BEV,
but this paradigm is not suitable for fusing multi-camera features due to the
computational cost of global attention mechinism [40]. In addition to the spa-
tial information, previous works [18,36,6] also consider the temporal information
by stacking BEV features from several timestamps. Stacking BEV features con-
straints the available temporal information within fixed time duration and brings
extra computational cost. In this work, the proposed spatiotemporal transformer
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Fig. 2. Overall architecture of BEVFormer. (a) The encoder layer of BEVFormer
contains grid-shaped BEV queries, temporal self-attention, and spatial cross-attention.
(b) In spatial cross-attention, each BEV query only interacts with image features in
the regions of interest. (c) In temporal self-attention, each BEV query interacts with
two features: the BEV queries at the current timestamp and the BEV features at the
previous timestamp.

generates BEV features of the current time by considering both spatial and tem-
poral clues, and the temporal information is obtained from the previous BEV
features by the RNN manner, which only brings little computational cost.

3 BEVFormer

Converting multi-camera image features to bird’s-eye-view (BEV) features
can provide a unified surrounding environment representation for various au-
tonomous driving perception tasks. In this work, we present a new transformer-
based framework for BEV generation, which can effectively aggregate spatiotem-
poral features from multi-view cameras and history BEV features via attention
mechanisms.

3.1 Overall Architecture

As illustrated in Fig. 2, BEVFormer has 6 encoder layers, each of which follows
the conventional structure of transformers [40], except for three tailored designs,
namely BEV queries, spatial cross-attention, and temporal self-attention. Specif-
ically, BEV queries are grid-shaped learnable parameters, which is designed to
query features in BEV space from multi-camera views via attention mechanisms.
Spatial cross-attention and temporal self-attention are attention layers working
with BEV queries, which are used to lookup and aggregate spatial features from
multi-camera images as well as temporal features from history BEV, according
to the BEV query.

During inference, at timestamp t, we feed multi-camera images to the back-
bone network (e.g., ResNet-101 [15]), and obtain the features Ft={F i

t }
Nview
i=1 of

different camera views, where F i
t is the feature of the i-th view, Nview is the total
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number of camera views. At the same time, we preserved the BEV features Bt−1
at the prior timestamp t−1. In each encoder layer, we first use BEV queries Q to
query the temporal information from the prior BEV features Bt−1 via the tem-
poral self-attention. We then employ BEV queries Q to inquire about the spatial
information from the multi-camera features Ft via the spatial cross-attention.
After the feed-forward network [40], the encoder layer output the refined BEV
features, which is the input of the next encoder layer. After 6 stacking encoder
layers, unified BEV features Bt at current timestamp t are generated. Taking the
BEV features Bt as input, the 3D detection head and map segmentation head
predict the perception results such as 3D bounding boxes and semantic map.

3.2 BEV Queries

We predefine a group of grid-shaped learnable parameters Q ∈RH×W×C as the
queries of BEVFormer, where H,W are the spatial shape of the BEV plane.
To be specific, the query Qp ∈ R1×C located at p = (x, y) of Q is responsible
for the corresponding grid cell region in the BEV plane. Each grid cell in the
BEV plane corresponds to a real-world size of s meters. The center of BEV
features corresponds to the position of the ego car by default. Following common
practices [14], we add learnable positional embedding to BEV queries Q before
inputting them to BEVFormer.

3.3 Spatial Cross-Attention

Due to the large input scale of multi-camera 3D perception (containing Nview

camera views), the computational cost of vanilla multi-head attention [40] is
extremely high. Therefore, we develop the spatial cross-attention based on de-
formable attention [54], which is a resource-efficient attention layer where each
BEV query Qp only interacts with its regions of interest across camera views.
However, deformable attention is originally designed for 2D perception, so some
adjustments are required for 3D scenes.

As shown in Fig. 2 (b), we first lift each query on the BEV plane to a pillar-
like query [20], sample Nref 3D reference points from the pillar, and then project
these points to 2D views. For one BEV query, the projected 2D points can only
fall on some views, and other views are not hit. Here, we term the hit views
as Vhit. After that, we regard these 2D points as the reference points of the
query Qp and sample the features from the hit views Vhit around these reference
points. Finally, we perform a weighted sum of the sampled features as the output
of spatial cross-attention. The process of spatial cross-attention (SCA) can be
formulated as:

SCA(Qp, Ft) =
1

|Vhit|
∑

i∈Vhit

Nref∑
j=1

DeformAttn(Qp,P(p, i, j), F i
t ), (2)

where i indexes the camera view, j indexes the reference points, and Nref is the
total reference points for each BEV query. F i

t is the features of the i-th camera
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view. For each BEV query Qp, we use a project function P(p, i, j) to get the j-th
reference point on the i-th view image.

Next, we introduce how to obtain the reference points on the view image
from the projection function P. We first calculate the real world location (x′, y′)
corresponding to the query Qp located at p = (x, y) of Q as Eqn. 3.

x′=(x−W

2
)×s; y′=(y−H

2
)×s, (3)

where H, W are the spatial shape of BEV queries, s is the size of resolution of
BEV’s grids, and (x′, y′) are the coordinates where the position of ego car is the
origin. In 3D space, the objects located at (x′, y′) will appear at the height of z′

on the z-axis. So we predefine a set of anchor heights {z′j}
Nref
j=1 to make sure we

can capture clues that appeared at different heights. In this way, for each query
Qp, we obtain a pillar of 3D reference points (x′, y′, z′j)

Nref

j=1
. Finally, we project

the 3D reference points to different image views through the projection matrix
of cameras, which can be written as:

P(p, i, j) = (xij , yij)

where zij ·
[
xij yij 1

]T
= Ti ·

[
x′ y′ z′j 1

]T
.

(4)

Here, P(p, i, j) is the 2D point on i-th view projected from j-th 3D point
(x′, y′, z′j), Ti∈R3×4 is the known projection matrix of the i-th camera.

3.4 Temporal Self-Attention

In addition to spatial information, temporal information is also crucial for the
visual system to understand the surrounding environment [25]. For example, it
is challenging to infer the velocity of moving objects or detect highly occluded
objects from static images without temporal clues. To address this problem, we
design temporal self-attention, which can represent the current environment by
incorporating history BEV features.

Given the BEV queries Q at current timestamp t and history BEV features
Bt−1 preserved at timestamp t−1, we first align Bt−1 to Q according to ego-motion
to make the features at the same grid correspond to the same real-world location.
Here, we denote the aligned history BEV features Bt−1 as B′

t−1. However, from
times t−1 to t, movable objects travel in the real world with various offsets. It is
challenging to construct the precise association of the same objects between the
BEV features of different times. Therefore, we model this temporal connection
between features through the temporal self-attention (TSA) layer, which can be
written as follows:

TSA(Qp, {Q,B′
t−1}) =

∑
V ∈{Q,B′

t−1}

DeformAttn(Qp, p, V ), (5)

whereQp denotes the BEV query located at p = (x, y). In addition, different from
the vanilla deformable attention, the offsets ∆p in temporal self-attention are
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predicted by the concatenation of Q and B′
t−1. Specially, for the first sample of

each sequence, the temporal self-attention will degenerate into a self-attention
without temporal information, where we replace the BEV features {Q,B′

t−1}
with duplicate BEV queries {Q,Q}.

Compared to simply stacking BEV in [18,36,6], our temporal self-attention
can more effectively model long temporal dependency. BEVFormer extracts tem-
poral information from the previous BEV features rather than multiple stacking
BEV features, thus requiring less computational cost and suffering less disturb-
ing information.

3.5 Applications of BEV Features

Since the BEV features Bt ∈ RH×W×C is a versatile 2D feature map that can be
used for various autonomous driving perception tasks, the 3D object detection
and map segmentation task heads can be developed based on 2D perception
methods [54,22] with minor modifications.
For 3D object detection, we design an end-to-end 3D detection head based on
the 2D detector Deformable DETR [54]. The modifications include using single-
scale BEV features Bt as the input of the decoder, predicting 3D bounding boxes
and velocity rather than 2D bounding boxes, and only using L1 loss to supervise
3D bounding box regression. With the detection head, our model can end-to-end
predict 3D bounding boxes and velocity without the NMS post-processing.
For map segmentation, we design a map segmentation head based on a 2D
segmentation method Panoptic SegFormer [22]. Since the map segmentation
based on the BEV is basically the same as the common semantic segmentation,
we utilize the mask decoder of [22] and class-fixed queries to target each semantic
category, including the car, vehicles, road (drivable area), and lane.

3.6 Implementation Details

Training Phase. For each sample at timestamp t, we randomly sample another
3 samples from the consecutive sequence of the past 2 seconds, and this random
sampling strategy can augment the diversity of ego-motion [55]. We denote the
timestamps of these four samples as t−3, t−2, t−1 and t. For the samples
of the first three timestamps, they are responsible for recurrently generating
the BEV features {Bt−3, Bt−2, Bt−1} and this phase requires no gradients. For
the first sample at timestamp t− 3, there is no previous BEV features, and
temporal self-attention degenerate into self-attention. At the time t, the model
generates the BEV features Bt based on both multi-camera inputs and the prior
BEV features Bt−1, so that Bt contains the temporal and spatial clues crossing
the four samples. Finally, we feed the BEV features Bt into the detection and
segmentation heads and compute the corresponding loss functions.
Inference Phase. During the inference phase, we evaluate each frame of the
video sequence in chronological order. The BEV features of the previous times-
tamp are saved and used for the next, and this online inference strategy is time-
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efficient and consistent with practical applications. Although we utilize temporal
information, our inference speed is still comparable with other methods [43,45].

4 Experiments

4.1 Datasets

We conduct experiments on two challenging public autonomous driving datasets,
namely nuScenes dataset [4] and Waymo open dataset(WOD) [38] and experi-
ments on WOD were introduced in the supplementary.
The nuScenes dataset [4] contains 1000 scenes of roughly 20s duration each,
and the key samples are annotated at 2Hz. Each sample consists of RGB images
from 6 cameras and has 360° horizontal FOV. For the detection task, there are
1.4M annotated 3D bounding boxes from 10 categories. We follow the settings
in [30] to perform BEV segmentation task. This dataset also provides the official
evaluation metrics for the detection task. The mean average precision (mAP) of
nuScenes is computed using the center distance on the ground plane rather than
the 3D Intersection over Union (IoU) to match the predicted results and ground
truth. The nuScenes metrics also contain 5 types of true positive metrics (TP
metrics), including ATE, ASE, AOE, AVE, and AAE for measuring translation,
scale, orientation, velocity, and attribute errors, respectively. The nuScenes also
defines a nuScenes detection score (NDS) as NDS = 1

10 [5mAP+
∑

mTP∈TP(1−
min(1,mTP))] to capture all aspects of the nuScenes detection tasks.

4.2 Experimental Settings

Following previous methods [43,45,29], we adopt two types of backbone:
ResNet101-DCN [15,12] that initialized from FCOS3D [43] checkpoint, and
VoVnet-99 [21] that initialized from DD3D [29] checkpoint. By default, we uti-
lize the output multi-scale features from FPN [23] with sizes of 1/16, 1/32, 1/64
and the dimension of C = 256. For experiments on nuScenes, the default size
of BEV queries is 200×200, the perception ranges are [−51.2m, 51.2m] for the
X and Y axis and the size of resolution s of BEV’s grid is 0.512m. We adopt
learnable positional embedding for BEV queries. The BEV encoder contains 6
encoder layers and constantly refines the BEV queries in each layer. The input
BEV features Bt−1 for each encoder layer are the same and require no gradients.
For each local query, during the spatial cross-attention module implemented by
deformable attention mechanism, it corresponds to Nref = 4 target points with
different heights in 3D space, and the predefined height anchors are sampled
uniformly from −5 meters to 3 meters. For each reference point on 2D view
features, we use four sampling points around this reference point for each head.
By default, we train our models with 24 epochs, a learning rate of 2×10−4.
Baselines. To eliminate the effect of task heads and compare other BEV gen-
erating methods fairly, we use VPN [28] and Lift-Splat [30] to replace our BEV-
Former and keep task heads and other settings the same. We also adapt BEV-
Former into a static model called BEVFormer-S via adjusting the temporal
self-attention into a vanilla self-attention without using history BEV features.
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Table 1. 3D detection results on nuScenes test set. ∗ notes that VoVNet-
99 (V2-99) [21] was pre-trained on the depth estimation task with extra data [29].
“BEVFormer-S” does not leverage temporal information in the BEV encoder. “L” and
“C” indicate LiDAR and Camera, respectively.

Method Modality Backbone NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

SSN [53] L - 0.569 0.463 - - - - -
CenterPoint-Voxel [50] L - 0.655 0.580 - - - - -
PointPainting [41] L&C - 0.581 0.464 0.388 0.271 0.496 0.247 0.111

FCOS3D [43] C R101 0.428 0.358 0.690 0.249 0.452 1.434 0.124
PGD [42] C R101 0.448 0.386 0.626 0.245 0.451 1.509 0.127
BEVFormer-S C R101 0.462 0.409 0.650 0.261 0.439 0.925 0.147
BEVFormer C R101 0.535 0.445 0.631 0.257 0.405 0.435 0.143

DD3D [29] C V2-99∗ 0.477 0.418 0.572 0.249 0.368 1.014 0.124
DETR3D [45] C V2-99∗ 0.479 0.412 0.641 0.255 0.394 0.845 0.133
BEVFormer-S C V2-99∗ 0.495 0.435 0.589 0.254 0.402 0.842 0.131
BEVFormer C V2-99∗ 0.569 0.481 0.582 0.256 0.375 0.378 0.126

Table 2. 3D detection results on nuScenes val set. “C” indicates Camera.

Method Modality Backbone NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

FCOS3D [43] C R101 0.415 0.343 0.725 0.263 0.422 1.292 0.153
PGD [42] C R101 0.428 0.369 0.683 0.260 0.439 1.268 0.185
DETR3D [45] C R101 0.425 0.346 0.773 0.268 0.383 0.842 0.216
BEVFormer-S C R101 0.448 0.375 0.725 0.272 0.391 0.802 0.200
BEVFormer C R101 0.517 0.416 0.673 0.274 0.372 0.394 0.198

4.3 3D Object Detection Results

We train our model on the detection task with the detection head only for fairly
comparing with previous state-of-the-art 3D object detection methods. In Tab. 1
and Tab. 2, we report our main results on nuScenes test and val splits. Our
method outperforms previous best method DETR3D [45] over 9.2 points on val

set (51.7% NDS vs. 42.5% NDS), under fair training strategy and comparable
model scales. On the test set, our model achieves 56.9% NDS without bells and
whistles, 9.0 points higher than DETR3D (47.9% NDS). Our method can even
achieve comparable performance to some LiDAR-based baselines such as SSN
(56.9% NDS) [53] and PointPainting (58.1% NDS) [41].

Previous camera-based methods [45,29,43] were almost unable to estimate the
velocity, and our method demonstrates that temporal information plays a crucial
role in velocity estimation for multi-camera detection. The mean Average Veloc-
ity Error (mAVE) of BEVFormer is 0.378 m/s on the test set, outperforming
other camera-based methods by a vast margin and approaching the performance
of LiDAR-based methods [41].
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Table 3. 3D detection and map segmentation results on nuScenes val set.
Comparison of training segmentation and detection tasks jointly or not. *: We use
VPN [28] and Lift-Splat [30] to replace our BEV encoder for comparison, and the task
heads are the same. †: Results from their paper.

Method
Task Head 3D Detection BEV Segmentation (IoU)
Det Seg NDS↑ mAP↑ Car Vehicles Road Lane

Lift-Splat† [30] ✗ ✓ - - 32.1 32.1 72.9 20.0

FIERY† [18] ✗ ✓ - - - 38.2 - -

VPN∗ [28] ✓ ✗ 0.333 0.253 - - - -
VPN∗ ✗ ✓ - - 31.0 31.8 76.9 19.4
VPN∗ ✓ ✓ 0.334 0.257 36.6 37.3 76.0 18.0
Lift-Splat∗ ✓ ✗ 0.397 0.348 - - - -
Lift-Splat∗ ✗ ✓ - - 42.1 41.7 77.7 20.0
Lift-Splat∗ ✓ ✓ 0.410 0.344 43.0 42.8 73.9 18.3
BEVFormer-S ✓ ✗ 0.448 0.375 - - - -
BEVFormer-S ✗ ✓ - - 43.1 43.2 80.7 21.3
BEVFormer-S ✓ ✓ 0.453 0.380 44.3 44.4 77.6 19.8
BEVFormer ✓ ✗ 0.517 0.416 - - - -
BEVFormer ✗ ✓ - - 44.8 44.8 80.1 25.7
BEVFormer ✓ ✓ 0.520 0.412 46.8 46.7 77.5 23.9

4.4 Multi-tasks Perception Results

We train our model with both detection and segmentation heads to verify the
learning ability of our model for multiple tasks, and the results are shown in
Tab. 3. While comparing different BEV encoders under same settings, BEV-
Former achieves higher performances of all tasks except for road segmentation
results is comparable with BEVFormer-S. For example, with joint training, BEV-
Former outperforms Lift-Splat∗ [30] by 11.0 points on detation task (52.0% NDS
v.s. 41.0% NDS) and IoU of 5.6 points on lane segmentation (23.9% v.s. 18.3%).
Compared with training tasks individually, multi-task learning saves computa-
tional cost and reduces the inference time by sharing more modules, including
the backbone and the BEV encoder. In this paper, we show that the BEV fea-
tures generated by our BEV encoder can be well adapted to different tasks, and
the model training with multi-task heads performs even better on detection tasks
and vehicles segmentation. However, the jointly trained model does not perform
as well as individually trained models for road and lane segmentation, which is
a common phenomenon called negative transfer [11,13] in multi-task learning.

4.5 Ablation Study

To delve into the effect of different modules, we conduct ablation experiments on
nuScenes val set with detection head. More ablation studies are in Appendix.
Effectiveness of Spatial Cross-Attention. To verify the effect of spatial
cross-attention, we use BEVFormer-S to perform ablation experiments to ex-
clude the interference of temporal information, and the results are shown in
Tab. 4. The default spatial cross-attention is based on deformable attention.
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Table 4. The detection results of different methods with various BEV en-
coders on nuScenes val set. “Memory” is the consumed GPU memory during train-
ing. *: We use VPN [28] and Lift-Splat [30] to replace BEV encoder of our model for
comparison. †: We train BEVFormer-S using global attention in spatial cross-attention,
and the model is trained with fp16 weights. In addition, we only adopt single-scale fea-
tures from the backbone and set the spatial shape of BEV queries to be 100×100 to
save memory. ‡: We degrade the interaction targets of deformable attention from the
local region to the reference points only by removing the predicted offsets and weights.

Method Attention NDS↑ mAP↑ mATE↓ mAOE↓ #Param. FLOPs Memory

VPN∗ [28] - 0.334 0.252 0.926 0.598 111.2M 924.5G ∼20G
List-Splat∗ [30] - 0.397 0.348 0.784 0.537 74.0M 1087.7G ∼20G

BEVFormer-S† Global 0.404 0.325 0.837 0.442 62.1M 1245.1G ∼36G
BEVFormer-S‡ Points 0.423 0.351 0.753 0.442 68.1M 1264.3G ∼20G
BEVFormer-S Local 0.448 0.375 0.725 0.391 68.7M 1303.5G ∼20G

For comparison, we also construct two other baselines with different attention
mechanisms: (1) Using the global attention to replace deformable attention;
(2) Making each query only interact with its reference points rather than the
surrounding local regions, and it is similar to previous methods [34,35]. For a
broader comparison, we also replace the BEVFormer with the BEV generation
methods proposed by VPN [28] and Lift-Spalt [30]. We can observe that de-
formable attention significantly outperforms other attention mechanisms under
a comparable model scale. Global attention consumes too much GPU memory,
and point interaction has a limited receptive field. Sparse attention achieves bet-
ter performance because it interacts with a priori determined regions of interest,
balancing receptive field and GPU consumption.

Effectiveness of Temporal Self-Attention. From Tab. 1 and Tab. 3, we
can observe that BEVFormer outperforms BEVFormer-S with remarkable im-
provements under the same setting, especially on challenging detection tasks.
The effect of temporal information is mainly in the following aspects: (1) The
introduction of temporal information greatly benefits the accuracy of the veloc-
ity estimation; (2) The predicted locations and orientations of the objects are
more accurate with temporal information; (3) We obtain higher recall on heavily
occluded objects since the temporal information contains past objects clues, as
showed in Fig. 3. To evaluate the performance of BEVFormer on objects with dif-
ferent occlusion levels, we divide the validation set of nuScenes into four subsets
according to the official visibility label provided by nuScenes. In each subset, we
also compute the average recall of all categories with a center distance threshold
of 2 meters during matching. The maximum number of predicted boxes is 300
for all methods to compare recall fairly. On the subset that only 0-40% of objects
can be visible, the average recall of BEVFormer outperforms BEVFormer-S and
DETR3D with a margin of more than 6.0%.

Model Scale and Latency. We compare the performance and latency of dif-
ferent configurations in Tab. 5. We ablate the scales of BEVFormer in three
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Fig. 3. The detection results of subsets with different visibilities. We divide
the nuScenes val set into four subsets based on the visibility that {0-40%, 40-60%, 60-
80%, 80-100%} of objects can be visible. (a): Enhanced by the temporal information,
BEVFormer has a higher recall on all subsets, especially on the subset with the lowest
visibility (0-40%). (b), (d) and (e): Temporal information benefits translation, orien-
tation, and velocity accuracy. (c) and (f): The scale and attribute error gaps among
different methods are minimal. Temporal information does not work to benefit an ob-
ject’s scale prediction.

aspects, including whether to use multi-scale view features, the shape of BEV
queries, and the number of layers, to verify the trade-off between performance
and inference latency. We can observe that configuration C using one encoder
layer in BEVFormer achieves 50.1 % NDS and reduces the latency of BEVFormer
from the original 130ms to 25ms. Configuration D, with single-scale view fea-
tures, smaller BEV size, and only 1 encoder layer, consumes only 7ms during
inference, although it loses 3.9 points compared to the default configuration.
However, due to the multi-view image inputs, the bottleneck that limits the
efficiency lies in the backbone, and efficient backbones for autonomous driving
deserve in-depth study. Overall, our architecture can adapt to various model
scales and be flexible to trade off performance and efficiency.

4.6 Visualization Results

We show the detection results of a complex scene in Fig. 4. BEVFormer produces
impressive results except for a few mistakes in small and remote objects. More
qualitative results are provided in Appendix.

5 Discussion and Conclusion

In this work, we have proposed BEVFormer to generate the bird’s-eye-view fea-
tures from multi-camera inputs. BEVFormer can efficiently aggregate spatial and
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Table 5. Latency and performance of different model configurations on
nuScenes val set. The latency is measured on a V100 GPU, and the backbone is
R101-DCN. The input image shape is 900×1600. “MS” notes multi-scale view features.

Method
Scale of BEVFormer Latency (ms)

FPS NDS↑ mAP↑
MS BEV #Layer Backbone BEVFormer Head

BEVFormer ✓ 200×200 6 391 130 19 1.7 0.517 0.416

A ✗ 200×200 6 387 87 19 1.9 0.511 0.406
B ✓ 100×100 6 391 53 18 2.0 0.504 0.402
C ✓ 200×200 1 391 25 19 2.1 0.501 0.396
D ✗ 100×100 1 387 7 18 2.3 0.478 0.374
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Fig. 4. Visualization results of BEVFormer on nuScenes val set. We show the
3D bboxes predictions in multi-camera images and the bird’s-eye-view.

temporal information and generate powerful BEV features that simultaneously
support 3D detection and map segmentation tasks.
Limitations. At present, the camera-based methods still have a particular gap
with the LiDAR-based methods in effect and efficiency. Accurate inference of 3D
location from 2D information remains a long-stand challenge for camera-based
methods.
Broader impacts. BEVFormer demonstrates that using spatiotemporal infor-
mation from the multi-camera input can significantly improve the performance
of visual perception models. The advantages demonstrated by BEVFormer, such
as more accurate velocity estimation and higher recall on low-visible objects, are
essential for constructing a better and safer autonomous driving system and
beyond. We believe BEVFormer is just a baseline of the following more pow-
erful visual perception methods, and vision-based perception systems still have
tremendous potential to be explored.
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