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1 Additional Experiments

1.1 Weak to strong distillation

We conduct experiments to show that our method is also effective when distilling
a weak teacher into a stronger model. Specifically, we use ATSS [15] as the
detector and use a ResNet-50 based model as teacher with a ResNet-101 based
model as student. The results are shown in Table 1. We observe that the student
AP is improved to 44.2 from 41.4, even surpassing the teacher performance. A
possible reason for this is that the student learns from the key predictive regions
where it should focus on. Then, empowered by its stronger backbone, the student
is able to surpass the teacher model.

Model AP AP50 AP75 APS APM APL

R50 (ms, 3×) 43.6 61.8 47.4 28.5 48.1 54.3

R101 (1×) 41.4 59.8 45.2 24.2 45.8 53.8

R50→R101 (1×) 44.2 62.7 47.9 28.8 48.7 55.7

Table 1: Distillation results using our PGD on ATSS detector. Training settings are
inherited from the paper: teacher is trained for 3× schedule with multi-scale input;
Student and KD models are trained for 1× schedule with single-scale input.
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Fig. 1: TIDE error analysis on COCO mini-val using ATSS as the object detector.

1.2 Improvement Discussion

We used the TIDE [1] toolkit to analyse the performance improvement after
KD and compare our approach with the baseline FGD. We use ATSS as the
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object detector and present the COCO mini-val evaluation analysis under 0.5
IoU threshold in Fig. 1. For the general errors, we observe that our PGD can
significantly improve both false negatives and false positives over the baseline
FGD. When we look into different categories of errors, we find PGD can improve
most error cases, including Classification, Localisation, Duplicate, Background,
andMissing errors. Moreover, the student model improved by our method makes
fewer Localisation and Background errors than the teacher model; our method
can improve a student model’s localisation ability and the ability to ignore back-
ground noise. However, it does not lead to a reduction in Both errors, which
happens when classification and localisation are both incorrect. However, as this
error is similar between the teacher and plain student models, we attribute this
problem to training randomness.

We also used the recently proposed LRP [12] metrics to compare our method
with the baseline FGD. The results are shown in Table 2. Our method improves
the student detector’s LRP performance in both classification and localisation
comparing with the FGD, illustrating the effectiveness of our approach in im-
proving the student’s detection ability.

Setting AP LRP LRPloc LRPFP LRPFN

Teacher (R101, 3×, ms) 45.5 63.5 14.1 26.2 41.0

Student (R50, 1×) 39.4 68.5 15.3 30.5 46.5

FGD 42.6 66.0 14.5 28.0 44.1

PGD (Ours) 44.2 64.6 14.2 26.1 43.0

Table 2: LRP analysis on COCO mini-val using ATSS as the object detector

Setting AP AP50 AP75 APS APM APL

RetinaNet [10] 39.1 59.1 42.3 21.8 42.7 50.2

FCOS [13] 41.5 60.7 45.0 24.4 44.8 51.6

FreeAnchor [16] 43.1 62.2 46.4 24.5 46.1 54.8

SAPD [18] 43.5 63.6 46.5 24.9 46.8 54.6

ATSS [15] 43.6 62.1 47.4 26.1 47.0 53.6

AutoAssign [17] 44.5 64.3 48.4 25.9 47.4 55.0

PAA [7] 44.8 63.3 48.7 26.5 48.8 56.3

GFL [9] 45.0 63.7 48.9 27.2 48.8 54.5

IQDet [11] 45.1 63.4 49.3 26.7 48.5 56.6

OTA [6] 45.3 63.5 49.3 26.9 48.8 56.1

GFLv2 [8] 46.0 64.1 50.2 27.6 49.6 56.5

VFNet [14] 46.0 64.2 50.0 27.5 49.4 56.9

RepPointsV2 [2] 46.0 65.3 49.5 27.4 48.9 57.3

DDOD [3] 46.7 65.3 51.1 28.2 49.9 57.9

Ours 48.2 66.9 52.5 30.1 51.6 58.5

Table 3: Comparison with state-of-the-art dense object detectors on COCO test-dev.
All models are trained for 2× (24 epochs) with ResNet-101 as backbone.

1.3 COCO Test-Dev results

Knowledge distillation aims to equip a lightweight model with a strong gener-
alisation capability. With this in mind, we compare a detector produced using
our method with the most state-of-the-art dense object detectors on the COCO
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test-dev set. We used DDOD [3] as the object detector; ResNet-101 is used as
the student backbone, and Res2Net-DCN [5, 4] is used as the teacher backbone.
We train the model using COCO train-2017 set with 2× training schedule (24
epochs) and multi-scale input. The results are presented in Tab 3, from which
we can see that the model trained using our method achieves the highest AP,
suggestion that our approach can indeed improve a detector’s generalisation
ability.
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