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Abstract. Poles and building edges are frequently observable objects
on urban roads, conveying reliable hints for various computer vision
tasks. To repetitively extract them as features and perform association
between discrete LiDAR frames for registration, we propose the first
learning-based feature segmentation and description model for 3D lines
in LiDAR point cloud. To train our model without the time consum-
ing and tedious data labeling process, we first generate synthetic primi-
tives for the basic appearance of target lines, and build an iterative line
auto-labeling process to gradually refine line labels on real LiDAR scans.
Our segmentation model can extract lines under arbitrary scale pertur-
bations, and we use shared EdgeConv encoder layers to train the two
segmentation and descriptor heads jointly. Base on the model, we can
build a highly-available global registration module for point cloud regis-
tration, in conditions without initial transformation hints. Experiments
have demonstrated that our line-based registration method is highly com-
petitive to state-of-the-art point-based approaches. Our code is available
at https://github.com/zxrzju/SuperLine3D.git.

Keywords: 3D Line Feature, Point Cloud Registration

1 Introduction

Point cloud registration is an essential technique for LiDAR-based vehicle lo-
calization on urban road scenes [28]. Considering recent researches [18,15], the
SLAM community [19] divides these algorithms into two categories regarding
their purpose, as local and global search methods, respectively. The local search
category [6,7] typically constructs a non-convex optimization problem by greed-
ily associating nearest entities to align. This often relies on a good initial guess,
and thus mostly used for incremental positioning modules such as the LiDAR
odometry [41] and map-based localization [32]. The global search category is
used for less informative conditions, i.e., relocalization and map initialization
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problems when the initial guess is not reliable and large positional and rota-
tional change exists. Since nearest neighbor search methods cannot find correct
matching pairs in the Euclidean space, global search algorithms choose to extract
distinct entities and construct feature descriptors [45], to establish matches in
the description space.

There exists a variety of classical hand-crafted features (e.g., FPFH [33])
for global search and registration, and recent learning-based methods [43] have
improved the registration accuracy and success rate. However, the performance
of some methods [25,27] severely drops when adapting to real LiDAR scans,
because the density of scanned points is inversely proportional to the scanning
distance, and thus influences the coherence of point description. Considering
such limitation of a single point, we propose an idea of using structural lines,
analogously as previous approaches proposed for images [16,40], to see whether a
relatively stable descriptor can be concluded through a semantically meaningful
group of scattered points.

In typical LiDAR point cloud scanned from urban road scenes, there are three
categories of lines. 1) Intersection of planes, e.g., edge of two building facades
and curbs. 2) Standalone pole objects, e.g., street lamps and road signs alongside
the road. 3) Virtual line consists of edge points across multiple scan rings, gen-
erated by ray-obstacle occlusions. While the last category is not repeatable and
thus inappropriate for localization, the first two types are practical landmarks
suitable to be extracted and described. Since these line segments are larger tar-
gets compared to point features, they have a higher chance to be repeatably
observed. Moreover, the concluded position of each line is more precise to a sin-
gle corresponding point between frames due to the limited scanning resolution,
which causes sampling issues.

In this paper, we propose a self-supervised learning method for line segmen-
tation and description on LiDAR scans (Fig. 1). Following the training procedure
of SuperPoint [11] to solve the lack of publicly available training data, we choose
to train our line extraction model, by first construct limited synthetic data and
then perform auto labeling on real scans. By sharing point cloud encoding layers
and use two separate branches for decoding and application headers, we are able
to jointly train two tasks on those generated data. We view such a pipeline to
train and use line features for the scan registration purpose as the key contribu-
tion of our work, which includes:

– From the best of our knowledge, we propose the first learning-based line
segmentation and description for LiDAR scans, bringing up an applicable
feature category for global registration.

– We propose a line segment labeling method for point clouds, which can
migrate the model learned from synthetic data to real LiDAR scans for
automatic labeling.

– We explore the scale invariance of point cloud features, and provide a feasible
idea for improving the generalization of learning-based tasks on the point
cloud under scale perturbations by eliminating the scale factor in Sim(3)
transformation.



SuperLine3D: Self-supervised Line Segmentation and Description 3

Synthetic
Primitives

Geometric 
Adaptation

Scale-Invariant
Segmentation

Unlabeled 
Real Scans

Labeled 
Real Scans

(a) Automatic Line Segments Labeling

SuperLine3D 
 

Real Scans  
Pair

Lines for Registration 
 

(b) Line Segmentation and Description

Fig. 1. Pipeline overview. a): We train a scale-invariant segmentation on the synthetic
data and get the precise line segment labels after multiple geometric adaptation iter-
ations. b): We simultaneously train segmentation and description on labeled LiDAR
scans, where red, purple, and green layers stand for encoders, segmentation header,
and description header, respectively.

Extensive experimental results have shown that our line-based registration
can maintain high success rate and accuracy under large-angle perturbations,
and the trained model on one real scans dataset is highly adaptable to other
urban scene datasets.

2 Related Work

Learning-based Point Cloud Registration. In recent researches, there are
a variety of learning-based approaches proposed for registering point clouds,
and we can divide them into two groups considering whether explicit features
have been extracted. End-to-end approaches use ground-truth transformation in
loss calculation, and predict the transformation directly through the network:
FMR [17] registers point clouds by minimizing feature-metric loss, and PCR-
Net [34] evaluate the similarity of PointNet [30] features and regresses poses
through fully connected layers directly. These trained end-to-end models work
well on tested sequences, but they are facing a practical problem on how to per-
form a joint state estimation in a multi-sensor fusion system [12]. Nevertheless,
knowledge of these models are hardly adaptable to different motion scheme and
other datasets. Therefore, methods with explicit feature extraction and descrip-
tion are still an active branch in the SLAM community.

Registration with Explicit Features. Start with hand-crafted features (e.g.,
FPFH [33] and ISS [44]) concluding local patch appearances of point clouds,
methods of extracting and describing explicit features mainly aim at the saliency
of entities and coherency of description. While hand-crafted features are mostly
designed for evenly sampled clouds, learning-based features [21,10,25,9,22,4] have
better robustness and generalization, once trained on the target LiDAR scan
datasets. D3Feat [5] uses kernel-based convolution [36] to learn feature detection
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and description. SpinNet [3] builds a rotation-invariant local surface descriptor
through novel spatial point transformer and 3D cylindrical convolutional layer.
Both D3Feat [5] and SpinNet [3] are state-of-the-art learning-based point fea-
tures, but they still suffer from the inherent problem of point features, and thus
requires sample consensus as a post pruning procedure to filter correct feature
associations.

Line Features for SLAM. Image based line-aware approaches for detection
(e.g., LSD [37], EDLines [2], and TP-LSD [16]), description (e.g., LBD [42] and
SOLD2 [26]), and systematical SLAM designs (e.g., PL-SLAM [29]) have been
well studied in recent years, whereas LiDAR scan based extraction and descrip-
tion methods, although heavily used in modern LiDAR SLAM approaches (e.g.,
LOAM [41] and LeGO-LOAM [35]), are under explored. To the best of our
knowledge, we found Lu et al. [24] have proposed a 3D line detection method
through projecting LiDAR points onto image, and thus convert the task into
a 2D detection problem. Chen et al. [8] based on this work [24] to carry out a
line-based registration approach for structural scenes. However, their limitations
are two folds: 1) only work on organized point clouds, and 2) have not addressed
line description and thus not suitable for global search registration problems. In
contrast, we follow the idea of descriptor conclusion from SOLD2 [26], which has
been proven to be useful in our paper for the coherency of describing a group of
points.

3 Method

Considering the lack of available labeled line datasets of LiDAR scans, we follow
the self-supervised idea of SuperPoint [11], to train our line segmentation model,
by first constructing a simple synthetic data to initialize a base model, and then
refining the model iteratively with auto-labeled real LiDAR scans from geomet-
ric adaptation (Sec. 3.1). After that, we gather line correspondences between
different LiDAR scans, and jointly train the line segmentation and description
in an end-to-end approach (Sec. 3.2).

3.1 Line Segmentation Model

Synthetic Data Generation. As discussed above in Sec. 1, there are two
types of reliable line segments to detect: 1) intersection between planes, and
2) poles. Hence, we choose to use the following two mesh primitives shown in
Fig. 2(a) for simulating their local appearances, respectively. These two mesh
models are first uniformly sampled into 4,000 points as Fig. 2(b), with 5% relative
3-DOF positional perturbance added for each point. Then, to simulate possible
background points nearby, we randomly cropped 40 basic primitives with each
containing 1,000 points from real scans [14], and put them together to compose
the final synthetic data. In total, we generated 5,000 synthetic point clouds with
5,000 points per each cloud.
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Fig. 2. Synthetic data generation steps. We generate synthetic data through sampling
primitive mesh models and augmenting real scan scattered points as noises.

Scale-Invariant Line Segmentation. We treat line detection as a point cloud
segmentation problem, and the main challenge is the primitive scaling issue: In
a real LiDAR frame, the density of points decreases with the scanning distance,
and the voxel grid downsampling cannot fully normalize the density when the
target feature is far away from the sensor. Moreover, our synthetic data gener-
ation also did not consider the scale of line segments (as visualized in Fig. 2(e)
when put together). If such an issue is not handled, the model will not produce
reasonable predictions when the training and test data are on different scales.

To address this issue, our network obtains scale invariance by eliminating the
scale factor s of the Sim(3) transformation and using relative distances, as:

p′ = s ·Rp+ t,

f =

∑
i(p

′ − p′i)∑
i ∥p′ − p′i∥

=
s ·

∑
i R(p− pi)

s ·
∑

i ∥p− pi∥
.

(1)

In Eq. 1, we search k = 20 nearest points {p1, p2, ..., pk} of a point p, and calculate
the scale-invariant local feature f as the ratio of the Manhattan distance to
the Euclidean distance between p and its neighbors. The trade-off of such a
feature definition is that f cannot reflect the position of the original point in the
Euclidean space, so the transformation has information loss. Such an influence
are further evaluated in Sec. 4.3.

Model architecture. We choose DGCNN [39] as our backbone, since it directly
encodes points and their nearest neighbors without complicated operations. Eq. 2
shows its local feature encoding function called EdgeConv [39], where xj is the
j-th feature, Sxi is the neighbor of the xj in the feature space S, and h is the
learnable model.

h
(
xj ,

S xi

)
= h̄

(
xj ,

S xi − xj

)
. (2)

In the first EdgeConv layer, x represents the point coordinates in Euclidean
space. In our implementation, we gather k = 20 nearest neighbors of each points
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and calculate scale-invariant feature f . Then we turn the first EdgeConv layer
into:

h
(
fj ,

E fi
)
= h̄

(
fj ,

E fi − fj
)
. (3)

It replaces the coordinates in the Euclidean space with scale-invariant feature
f , but Efi is still the feature of i-th neighbor of point pj in Euclidean space,
not the neighbor of fj in feature space. Since part of the information in the
original Euclidean space has been lost when generating scale-invariant features,
preserving the neighbor relationship in the original Euclidean space can reduce
further information loss.

Automatic Line Segment Labeling. There is no available labeled line dataset
of LiDAR scans, and performing manual labeling on point clouds is difficult.
Hence, we build an automatic line labeling pipeline (Fig. 3). Inspired by ho-
mographic adaptation in SuperPoint [11], we perform geometric adaptation on
LiDAR scans. First, we train a scale-invariant segmentation model purely on
the synthetic data, and apply 2D transformations with a uniform distribution
of 20m in XOY and 360◦ in yaw to the LiDAR scans. Then, we use the trained
model to predict labels on the perturbed data, aggregate the scan labels from all
the perturbations and take the points that are predicted more than 80% belong-
ing to lines as candidate points. To cluster binary points into lines, we use the
region-growth algorithm. The connectivity between points is defined through a
0.5m KD-Tree radius search. We use the labeled points as seeds, grow to nearby
labeled points, and fit lines. Once such line segments are extracted, we continue
to refine the segmentation model on the obtained labeled LiDAR scans. We re-
peat the geometric adaptation 3 times to generate 12,989 automatically labeled
LiDAR frames on the KITTI odometry sequences [14].

Random 
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Aggregate 
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...

Line Fitting

Unlabeled 
Point Cloud

Scale-Invariant 
Segmentation

Geometric Adaptation

Train

Train
Synthetic Data

...
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Fig. 3. Automatic line labeling pipeline. We use geometric adaptation and line fitting
to reduce the network prediction noise and improve model accuracy on real LiDAR
scans through iterative training.

3.2 Joint Training of Line Segmentation and Description

Definition of Line Descriptors. Different from the geometry definition which
only requires two endpoints of a line segment. A descriptor for each line should



SuperLine3D: Self-supervised Line Segmentation and Description 7

Softmax

L2-norm

Segmentation Head

Description Head

Conv

Conv

N
2

N

d

EdgeConv Module

Segmentation Decoder

Descriptor Decoder

Cluster

Fig. 4. Network architecture. The network uses the EdgeConv [39] module to extract
features. The segmentation head and the description head predict the label and de-
scriptor for each point, respectively.

convey local appearances through its all belonged points, since observed end
points may be varied between frames due to possible occlusions. Therefore, we
define the descriptor as an average of its all belonged points.

Network Architecture. Our network structure (Fig. 4) consists of a stacked
three EdgeConv [39] layers for feature encoding, and two decoders for line seg-
mentation and description, respectively. Each EdgeConv layer outputs a N ×64
tensor used for 3-layer segmentation and description after a MaxPooling layer.
We use ReLU for activation. The segmentation head turns the feature vector to
a tensor sized N × 2 after convolution (N for the number of input points), and
then obtains a boolean label per each point through a Softmax layer, to predict
whether it belongs to a line. The descriptor head outputs a tensor sized N × d,
and then performs L2-Norm to get a d-dimensional descriptor.

Loss Functions. Our segmentation loss Lseg is a standard cross-entropy loss,
and we follow [38] and [5] to build a discrimitive loss for the descriptor. In
detail, we first use the line segment label to get the mean descriptor µ of each
line segment, and then use the Lsame for each line to pull point descriptors
towards µ. The Ldiff is proposed to make the descriptors of different lines repel
each other. In addition for a point cloud pair, we calculate the matched loss
Lmatch and the loss between the non-matched lines Lmismatch. Each term can
be written as follows:

Lsame =
1

N
·

N∑
i

(
1

|Ki|
·

Ki∑
j

[
∥µi − dj∥1 − δs

]2
+

)
,

Ldiff =
1

|C2
N|

·
C2

N∑
⟨ia,ib⟩

[2δd − ∥µiA − µiB∥1]
2
+
,

Lmatch =
1

N
·

N∑
i

[∥µi − µ′
i∥1 − δs]

2

+
,

Lmismatch =
1

|C2
N|

·
C2

N∑
⟨ia,ib⟩

[
2δd −

∥∥µiA − µ′
iB

∥∥
1

]2
+
,

(4)
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where N is the number of detected lines and C2
N stands for all pairs of two lines.

i and j are two iterators, for lines and points on a line, respectively. µi is the
aforementioned mean descriptor of a line, and dj is the descriptor of its related
point descriptor j. µ′

i and µ′
iB

are mean descriptors in another associated point
cloud, and δs and δd are the positive and negative margins. [x]+ = max(0, x),
and ∥·∥1 for the L1-distance. Finally, we use ω = 2 to balance the final loss L
as:

L = ω · Lseg + Lsame + Ldiff + Lmatch + Lmismatch. (5)

Line-based Registration Our network outputs labels and descriptors for each
point. We first extract lines using steps in Section 3.1. Then we perform de-
scriptor matching to get line correspondences. The threshold of the matched
descriptor is set to 0.1. The transformation T for registering the source cloud S
to the target cloud T is optimized by minimizing point-to-line distances of all
line matching cost ξi, i ∈ N:

ξi =

Ni∑
j

∣∣∣(T · pSj − pTie0

)
×
(
T · pSj − pTie1

)∣∣∣∣∣∣pTie0 − pTie1

∣∣∣ (6)

where pSj is the line points in the source frame, pTie0
and pTie1

are endpoints of the

matched line ⟨ie0 , ie1⟩ of line i.

4 Experiments

4.1 Network Training

To begin with our generated synthetic data, we first train our line segmentation
network using those synthetic point clouds with 50 epochs to converge. Then, to
use the auto labeling method for generating sufficient and qualified real-world
labeled scans, we obtain 12,989 LiDAR frames and iteratively train 100 epochs
to refine these auto labeling results. Finally, we train our whole line segmentation
and description network with 120 epochs to obtain the final applicable model
for real-world scans.

We use scans including sequences 00-07 from the KITTI odometry dataset [14],
with the last two sequences 06-07 for the validation set, and the rest 00-05 for the
training set, to train our network. For each LiDAR frame, we voxelize the points
cloud with 0.25m voxel size. We sample 20,000 points for evaluation and 15,000
points for training, since the kNN in EdgeConv is O(N2) space complexity and
consumes large memory in the training process. We calculate point-to-line dis-
tances following Eq. 6 on the line segments in Sec. 3.1. The line pair whose
mean distance is within 0.2m will be selected as a line correspondence to calcu-
late descriptor loss. We implement our network in Tensorflow [1] with Adam [20]
optimizer. The learning rate is set to 0.001 and decreases by 50% for every 15
epochs. The whole network is trained on 8 NVIDIA RTX 3090 GPUs.
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4.2 Point Cloud Registration Test

Benchmarking. We use sequences 08-10 from the KITTI odometry dataset [14]
to test the ability of our network on extracting line features and using them
for point cloud registration. The preprocessing steps remain the same with our
data preparation, and we choose to compare with traditional and learning-based
methods for the global search registration. These traditional methods include
ICP [6], RANSAC [13] and Fast Global Registration(FGR) [45], are all imple-
mented by Open3D [46]. Specifically, The RANSAC and FGR use the FPFH [33]
feature extracted from 0.25m voxel grid downsampled point clouds, and the max
iteration is set to 4e6. Two learning-based methods include HRegNet [22] and
Deep Global Registration (DGR) [9], and they use ground-truth pose to calculate
loss and predict the transformation directly through the network. PointDSC [4]
learns to prune outlier correspondences. D3Feat [5] and SpinNet [3] extract
salient features from point clouds. Our line-based registration extracts 18 line
segments with 350 points per frame on average. For fair comparisons, the num-
ber of keypoints in learning-feature-based methods is also set to 350, while other
parameters remain unchanged.

Metrics. We use both the Relative Translation Error (RTE) and Relative Ro-
tation Error (RRE) [22] to measure the registration accuracy. Additionally, as
a special reference for evaluating the success rate for global search registration
methods, we treat those calculated transformations with relative error w.r.t. the
ground truth smaller than 2m and 5◦, as a successful attempt of registration.

Table 1. Registration performance on KITTI dataset. Our line segmentation and
description method is highly competitive to the SOTA point-based approaches on the
success rate, and both RTE and RRE can be refined with a subsequent coarse-to-fine
ICP strategy.

RTE (m) RRE (deg)
Recall

Mean Std Mean Std

ICP [6] 0.417 0.462 0.707 0.741 11.30%
FGR [45] 0.685 0.514 1.080 0.921 81.17%
RANSAC [13] 0.214 0.193 0.924 0.907 52.45%

HRegNet [22] 0.299 0.380 0.712 0.643 75.93%
DGR [9] 0.164 0.385 0.226 0.569 41.41%
PointDSC [4] 0.187 0.225 0.306 0.297 44.98%
SpinNet [3] 0.183 0.142 1.267 0.761 93.98%
D3Feat [5] 0.088 0.043 0.343 0.242 98.90%

SuperLine3D 0.087 0.104 0.591 0.444 97.68%

Results and Discussions. Table 1 shows the registration performances. Un-
der random rotation perturbation, the recall of ICP is only 11.3%. The FGR
and RANSAC methods based on FPFH features have higher recall but larger
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Fig. 5. Registration recall with different RRE and RTE thresholds on the KITTI
dataset. The registration success rate of our line-based approach (blue) is close to
the SOTA point-based approach D3Feat (orange) under different criteria.

errors. The learning-based end-to-end methods HRegNet and DGR also drop
in recall and accuracy when dealing with large perturbed scenarios. PointDSC
relies on the feature model, and the features do not have full rotation invari-
ance, so its performance also deteriorates. Fig. 5 shows the registration recall
with different error thresholds. SpinNet and D3Feat have better performances,
with recall of over 90%. Our line-based registration achieves comparable perfor-
mance to point features, with a similar mean translation error and 1.22% lower
recall than D3Feat. Fig. 7 shows the visualization results on KITTI test se-
quence. Our method successfully registers point clouds under arbitrary rotation
perturbations. We will give more results in supplementary materials.
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Fig. 6. Registration performance with different RANSAC iterations. There are many
mismatches in point feature correspondences, which leads to unstable results when the
number of iterations is small.

Ablation on RANSAC iterations. Point feature-based registration requires
RANSAC to remove outliers and calculate the correct transformation. In the
Table 1 and Fig. 5, the max iteration of RANSAC in the D3Feat and SpinNet
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operations are set to 5e4. In contrast, our line-based registration does not rely
on the RANSAC to filter erroneous matches: To perform outlier removal during
transformation estimation, we calculate the line-to-line distances of line corre-
spondences after the initial alignment, to remove the line correspondences with
the mean distance greater than 1m and recalculate.

Fig. 6 shows the performance of point cloud registration under different
RANSAC iterations. The x-coordinates in the figure are logarithmic coordinates.
Our method does not use RANSAC for outlier rejection, and we use a dashed line
in blue as a reference when comparing with other methods requiring RANSAC
post processing. The star near the y coordinates represents the original result,
and the star with an x-coordinate of 1 is the result after outlier removal. Both
D3Feat and SpinNet can not get accurate transformation without RANSAC
until the max iteration exceeds 1,000.

Fig. 7. Qualitative visualization on KITTI test sequence. Top: line associations be-
tween two LiDAR frames, Bottom: registration results of two frames.

4.3 Line Segmentation Evaluation

To evaluate the scale-invariance of our base segmentation model, we train Point-
Net [30], PointNet++ [31] and vanilla DGCNN [39] on the synthetic dataset.
The training set includes 4,000 synthetic point clouds normalized within [0, 1].
We test the trained model with point clouds scaled from 0.1 to 3.0.

Fig. 8 shows the accuracy and mIOU of network predictions. Methods with-
out scale adaptation suffer from performance decrease when the scale changes.
The vanilla DGCNN gets best accuracy and mIOU in small scale disturbance
(0.8 to 1.6), while our scale-invariant approach is stable under arbitrary scales.
We can find that when the scale is determined, using the scale-invariant approach
will decrease the accuracy, so we only use it in synthetic data training. In the
joint training of segmentation and description, we utilize the vanilla DGCNN
instead.
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Fig. 8. Accuracy and mIOU of network predictions under different scale disturbances.
Our scale-invariant approach is stable under arbitrary scales, but is a little worse than
the vanilla DGCNN in the original scale.

Fig. 9. Qualitative visualization of line segmentation between Lu et al. [24] (left) and
ours (right). Our method segments most of the poles and building edges.

Fig. 9 shows the qualitative visualization of our line segmentation compared
with the only open-source 3D line detection method [24] we found. Our method
segments most of the lines, while the open-source one extracts LiDAR scan lines
on the ground and cannot detect the poles.

4.4 Generalization on Unseen Dataset

To compare the generalization of learning feature-based models, we test our
method against state-of-the-art point feature methods on the unseen Apollo
Sourthbay dataset [23] using the models trained on the KITTI dataset. We
uniformly choose half of the point clouds from the SanJoseDownTown sequence
as the source frames, select target frames every 5 frames, and add random yaw-
axis rotation perturbances on the source frames. We get 8,296 point cloud pairs
for evaluation. The data preprocessing of the point cloud is the same as the
KITTI dataset.
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Fig. 10. Qualitative visualization on Apollo SourthBay Dataset, SanJoseDowntown
sequence. The majority of the line correspondences are stable poles, which helps reduce
the translation error by a large margin.

Table 2 shows the point cloud registration results. On unseen datasets, all
methods show a drop in recall. D3feat has the best performance, while the mean
translation error of our method is the smallest one. Fig 10 shows qualitative
visualization on the test data. There are more poles in this sequence, which is
beneficial to our line-based registration.

Table 2. Test on unseen Apollo SourthBay Dataset, SanJoseDowntown sequence.

RTE (m) RRE (deg)
Recall

Mean Std Mean Std

SpinNet [3] 0.199 0.203 1.207 0.874 75.66%
D3Feat [5] 0.079 0.046 0.206 0.144 95.94%
SuperLine3D 0.045 0.107 0.262 0.402 93.84%

4.5 Ablation Study

Skip Encoding The receptive field is directly related to the number of encoded
features in the EdgeConv module. When k is greater than 20, we can only set
the batch size to 1 due to the enormous space complexity of EdgeConv. Its
receptive field cannot be increased by increasing k. To this end, we utilize skip
encoding. We gather S × k nearest neighbor features each time and select k
features with stride size S for encoding. In this way, the receptive field increases
S times without consuming too much memory (gathering S×k nearest-neighbor
features will also increase a little memory usage). In the experiments, we test
the cases with stride 1 (nearest neighbor encoding), 2, 4, and 6. As shown in the
Table 3, adjusting the stride to 4 reaches the best performance, since the local
features cannot be well encoded when the stride is too large.

Descriptor Dimension The descriptor dimension is one of the key factors for
the feature matching performance, and the matching performance is poor when
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the dimension is low. Our network extracts dense descriptors. Each point has a
descriptor of d float numbers. It will take up a lot of storage space when its dimen-
sion is too large. Compared with the 16-dimension descriptor, the 32-dimension
one has a more obvious improvement on the recall, while the 64-dimension de-
scriptor has a small improvement. And increasing dimension to 128 only brings a
smaller rotation error variance. Considering the average performances, we choose
the 64-dimension implementation.

Table 3. Ablation study on stride and descriptor dimension.

RTE (m) RRE (m)
Recall

Mean Std Mean Std

Stride

1 0.092 0.134 0.594 0.449 96.51%
2 0.088 0.116 0.595 0.465 96.70%
4 0.087 0.104 0.591 0.444 97.68%
6 0.134 0.216 0.783 0.757 64.23%

Descriptor
dimension

16 0.115 0.175 0.627 0.510 87.56%
32 0.095 0.132 0.597 0.462 95.28%
64 0.087 0.104 0.591 0.444 97.68%
128 0.090 0.120 0.593 0.441 96.70%

5 Conclusions

This paper proposes the first learning-based 3D line feature segmentation and
description method for LiDAR scans, which achieves highly-competitive perfor-
mance to the point-feature-based methods in the point cloud registration. In the
future, we will explore the usage of our deep learning line features on SLAM
problems such as mapping, map compression, and relocalization. We will also
optimize the network structure and reduce training resource consumption.
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